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Basal Ganglia

The basal ganglia are a group of neural systems in the brain
responsible for decision making tasks, ranging from direct motor
control to more abstract planning.

The basal ganglia learns via reinforcement learning, primarily
through bursts and dips in dopaminergic activity.

Dopamine bursts signal the receipt or expectation of positive
reward, whereas dopamine dips signal the absence of an expected
reward.
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Insect Olfactory System

*  The insect olfactory system (IOS) is a small neural system that processes olfactory information
from the antennae of the insect and uses this information to make motor action decisions.

*  Because it contains sensory perception and action making in a single package, it acts as a
simplified analog to both the mammalian sensory systems and also the basal ganglia.

*  Understanding the IOS can reveal possible insights into how its mammalian correlates function.

e Olfaction is an extremely complex sensory process:
*  Odor plumes are often highly turbulent, yet insects are able to follow plumes to their origin.
* Insect must be able to filter out important odors from an extremely noisy olfactory background
environment.
* Information from the hundreds or thousands of olfactory sensors on the antennae needs to be integrated
into a single spatio-temporal signal.

e
Poodle moth: Arthur Anker via Flickr Imperial moth: Cecropia moth (Photo: Cathy Keifer/Shutterstock) Japanese silk moth (Photo:

https://www.butterfliesandmoths.org/species/Eacles- Marco Uliana/Shutterstock)
imperialis
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Insect Olfactory System

. The sensory receptors in the antennae each code for a single
olfactory receptor gene [2]
. Because it contains sensory perception and action making in a

single package, it acts as a simplified analog to both the
mammalian sensory systems and also the basal ganglia.

. The antennal lobe is responsible for consolidating the signals
coming from the antennae into a single spatio-temporal code [3].
Compresses information into a lower-dimensional representation
[4].

. The Kenyon cells are part of the mushroom body and are
responsible for storing the spatio-temporal code from the antennal
lobe into memory [4]. The Kenyon cells represent memory in a
high-dimensional, sparse representation [4]. Note: analogous to the
mammalian hippocampus.

. The mushroom body is responsible for associating sensory
information with reward, and projects to motor outputs [3].
. Octopamine from the VUMmzx1 neural group increases excitatory

post-synaptic potentiation (EPSP) which increases associative
learning [3]. This is very similar to the dopamine/basal ganglia
relationship.

. Both first-order and second-order conditioning have been observed
in flies [3]. An odor was associated with an electric shock (first
order conditioning), and then another odor is associated with the
first odor, which 1geads to the same aversive response [3].
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Computational Theory

*  Computational models have been
successfully developed and tested that
capture the majority of the biological data
observed in moths [5].

e Cells in the antennal lobe act to combine
information from the antenna into a spatio-
temporal code. A gain-control mechanism is
also implemented such that activity in the AL
1s independent of odor concentration [4].

* Antennal lobe also squeezes the
dimensionality of the antenna information
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Computational Theory

e As stated, computational
models have been
successfully developed
and tested that capture
the majority of the
biological data observed
in moths [5].

* The model learned to
associate a specific odor
with reward: first-order
conditioning [5]. This
learning can occur with

less than 10 exposures to E,Zmlm j
the odor [5]. S Y
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