Mental Illness

Computational models to improve psychiatry

Ryan Weiss 4/28/17

Mental Illness/Disorder

- Mental illness is any disease or condition that influences the way a person thinks, feels, behaves, and/or relates to others and to his or her surroundings.
- Symptoms can vary from mild to severe and are ongoing
- Symptoms negatively affect a persons daily life and require treatment

Causes of Mental Illness/Disorder

- Biological
 - Chemical imbalance in neurotransmitters
- Hereditary
 - Combination of genes
- Psychological
 - Triggered by trauma
- Environmental
 - Stressors, life changing

List of Mental Illness

- Addiction
- Anxiety
- ADHD/ADD
- Bipolar
- Depression
- Eating
- OCD
- Schizophrenia

- PTSD
- Dissociative
- Tourette's
- Personality
- Insomnia
- Narcolepsy

Diagnosing Mental Health

- A physical exam
 - Rule out physical problems
- Lab tests
 - Thyroid function and drug screen
- Psychological evaluation
 - Explain symptoms like thoughts, feelings, behavior in questionnaire

Computational Psychiatry and RDoC

- Behavioral tasks
 - Index different psychological processes
- Computational models
 - Fit general psychological process
- Parameter estimation
 - Fitting models to subjects

- Machine learning clustering methods
 - Identify clinically significant conditions

Research Domain Criteria

- Aim to identify neural correlation of psychiatric disorder, bottom-up approach
- Key Matrix of Data
 - Columns represents units of analysis, including genes, cells, behavior
 - Rows represent research domains, including cognitive systems, arousal/regulatory systems
- Three claims
 - Mental illness as disorders of brain circuits
 - Identifiable with tools of clinical neuroscience
 - Biosignatures allow for clinical management

Major Depression Disease (MDD)

- Dysfunction of multimode brain networks
 - Reciprocal interaction between midline limbic regions (ventral anterior cingulate cortex, vACC) and dorso-lateral prefrontal cortex (dlPFC)
 - Interaction between emotion and cognition
 - Abnormal glutamate metabolism in vACC
 - Treatment success in selective serotonin reuptake inhibitor, SSRI, and deep brain stimulation
- No current mechanistic framework describes network dynamics, glutamate, and serotonin interaction

Computational Model of MDD

- Biophysical model of vACC and dlPFC
 - Switch between emotional and cognitive processing
- Simulate slowing glutamate decay
 - Sustained vACC activity
- Hyperactivity of vACC not suppressed by dlPFC
 - Mimics cognitive dysfunction seen in MDD
- Deep brain stimulations or SSRI counteract vACC activity
- Theta and beta/gamma oscillations switch-like operation in network

Diagram

Figure 1.

B MDD: slower glutamate decay in vACC

C SSRI: vACC hyperpolarization through 5-HT_{1A}R

Spiking model behaviors

- Integrate and Fire neuron model, Excitatory and Inhibatory
- Each subnetwork contained NE = 800 pyramidal cells and NI = 200 interneurons with membrain potential Vm as

$$C_{
m m} rac{{
m d}V_{
m m}}{{
m d}t} = -g_{
m m}(V_{
m m}(t)-V_{
m L}) - I_{
m syn}(t) \hspace{1cm} I_{
m syn}(t) = I_{
m AMPA,ext}(t) + I_{
m AMPA,rec}(t) + I_{
m NMDA,rec}(t) + I_{
m GABA,rec}(t).$$

• Vl = -70mV (leak), Vth = -50mV (threshold) and Vres = -55mV (reset)

Simulating MDD

- Simulate deficient glutamate reuptake by increasing time constant of synaptic glutamate decay.
 - tAMPA = 2.05ms, 2.1ms, 2.15ms
- Simulate SSRI by hyperpolarization of excitatory cells
 - Reduced resting potential VL = -70.6mV

Model tasks

- Strong conflicting emotional and cognitive demand task per epoch
 - Purely emotional (sadness provocation task SP)
 - Purely cognitive (working memory task WM)
- Healthy has two stable states
 - SP epoch vACC responds persistent activation
 - WM epoch dlPFC responds persistent activation

Model MDD

- Adding slower glutamate reuptake
 - 2.5% slowdown showed slight alterations (mild)
 - 5% slowdown disruptions in vACC and barely any dlPFC response (moderate)
 - Further slowdown causes severe disruptions

Treatment (SSRI)

- Simulate effects of SSRI treatment
 - Non response
 - optimal response
 - emotional inhibition
- SSRI affects VL
 - Low dose of SSRI VL = -70.05 mV
 - High dose of SSRI VL = -70.5 mV
 - Optimal VL = -70.18 mV (mild)
 - Optimal VL = -70.6 mV (severe)

Treatment (DBS)

- Adding Deep brain stimulation to SSRI treatment recovered oscillatory dynamic characteristics of a healthy activated state
 - Enhanced theta oscillations and suppressed rhythmic activity in the beta/gamma band

Figure 5.

MDD Conclusion

- The model shows:
 - glutamate dysregulation can cause aberrant brain dynamics
 - responds to treatment (SSRI)
 - can be reflected in EEG rythms a biomarkers for detecting MDD

Questions?