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7. Motor COHtI'Ol and B. Temporal Difference Reinforcement Learning
Reinforcement Learning QB AL LT

D. Cerebellum and Error-driven Learning
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Sensory-Motor Loop Overview
e Why animals have nervous systems but plants do * Subcortical areas: * Cortical areas:
not: animals move o basal ganglia o frontal cortex
— anervous system is needed to coordinate the movement > reinforcement learning > connections to basal ganglia &
f 9 1’s bod: (reward/punishment) cerebellum
oLanania sy > connections to “what” pathway o parietal cortex
— movement is fundamental to understanding cognition o cerebellum > maps sensory information to
9 2,9 a X ) motor outputs
o Perception conditions action > error-driven learning N et e

» connections to “how” pathway
o disinhibitory output
— profound effect of action on structuring perception is dynamic

often neglected

e Action conditions perception
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Learning Rules Across the Brain Primitive, Basic Learning...

Dynamics

Dynamics Reward Error Self Org  Separator  Integrator Attractor
Reward Error SelfOrg S Integrator  Attractor

[(Primitve | [ [ [ -+

T+
+

-+ ++
| Cerebeltun |--- | |--- | |- ]--- |

= - e e * Reward & Error = most basic learning signals
o pv——— (self organized learning is a luxury...)

* Simplest general solution to any learning problem is a

= has to some extent ... = defining characteristic — definitely has lookup table = separator dynamics
- = not likely to have ... ---=definitely does not have
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7. Motor Control & Reinforcement Learning

A. Action Selection and
Reinforcement

31517 COSC 494/594 CCN

Basal Ganglia: Action Selection

O

motor eye strategies future costs
actions movement & plans rewards

Striatum

Thalamus.

« Parallel circuits select motor actions and “cognitive” actions
across frontal areas
3517 COSC 494/594 CCN
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Basal Ganglia and Action Selection
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Release from Inhibition

Caudate Nucleus % ! I'HI'H'}H"‘MH“IH \[

Substantia Nigra
Pars Revcuiata ) {HHHAHAAA R+ AR B

Tonic Inhibition Disinhibition

Superior |
Colliculus H'M'l“l'l“ T

Saccadic Eye Movement /

3/517 COSC 494/594 CCN
(slide < O'Reilly)

Tonic Inhibition

Basal Ganglia System

+  Striatum *  Thalamus®
= matrix clusters (inhib.) = cells fire when both:
> direct (Go) pathway — GPi > excited (cortex)
> indirect (NoGo) path — GPe >  disinhibited (GPi)

= patch clusters =  disinhibits FC deep layers

> to dopaminergic system
*  Globus pallidus, int. segment (GPi)" = releases dopamine (DA) into striatum

0 (e = excites DI receptors (Go)
= inhibits D2 receptors (NoGo)

*  Subthalamic nucleus (STN)

=  inhibit thalamic cells

*  Globus pallidus, ext. segment (GPe)

= tonically active * hyperdirect pathway
- " 3 = input from cortex
=  inhibits corresponding GPi neurons

= diffuse excitatory output to GPi

= global NoGo delays decision

*and substantia nigra pars reticulata (SNr)
3/5/17 COSC 494/594 CCN

*and superior colliculus (SC)

COSC 494/594 CCN

¢ Substantia nigra pars compacta (SNc)

What is Dopamine Doing?

Dopamine carries the brain’s re%rd signal
reward prediction error

stimulus reward

Wise & Romper, 89
30517 COSC 494/594 CCN

Schultz et. al, 98
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7. Motor Control & Reinforcement Learning

Basal Ganglia Reward Learning

(Frank, 2005...; O’Reilly & Frank 2006)

a) Dopamine Burst b) Dopamine Dip

Frontal Cortex
—=excitatory X
--® inhibitory Striatum
-—4_dopamine -

Direct %\ T Indirect

Dopamine Dopamine AN

"""" """"

« Feedforward, modulatory (disinhibition) on cortex/motor
(same as cerebellum)
« Co-opted for higher level cognitive control — PFC

Frontal Cortex

Striatum
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Basal Ganglia Architecture:
Cortically-based Loops

Functional territories

Hbic | [ Associative | — Sensory Motor |

305117 COSC 494/594 CCN 14
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Fronto-basal Ganglia Circuits in
Motivation, Action, & Cognition
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ChR2-mediated excitation of direct- and indirect-pathway
MSN:ss in vivo drives activity in basal ganglia circuitry

AT <

305017 COSC 494/594 CCN

nature

AV Kravitz et al. Nature 466(7306):622-6 (2010) doi:10.1038/nature09159

Human Probabilistic Reinforcement
Learning

. § Train
« Patients with

Parkinson’s disease
PD) are impaired in
s:ognitive tasks that i Jf Test
require learning from
positive and negative A (80/20) B (20/80) @
feedback Choose A?
« Likely due to depleted
dopamine % 0)
But dopamine

medication actually

Avoid B?
worsens performancein ~ C (70/30) D (30/70)

some cognitive tasks,

despite improving it in i

others '7 *’2
Frank, Seeberger & E /4 F (40/
O'Reilly (2004) AR 7 ()
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Testing the Model:
Parkinson’s and Medication Effects

Probabilistic Selection
Test Performance

100
90+ 4
3
% 80F i
Z 70 1
4
& 60r g
501 4
Choose A Avoid B Frank, Seeberger &
Test Condition O'Reilly (2004)
3/517 COSC 494/594 CCN 18
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7. Motor Control & Reinforcement Learning

BG Model: DA Modulates Learning from
Positive/Negative Reinforcement

S > Probabilistic Selection
o Saum . BG Model Go/NoGo Associalions
§
D) Gamd Souw )
A =_indirect _® § 0.30 - e
)\ Cers £ oz0) 2
Jdireet\ ST/ 8 ool > \\\[
X 3 -] .
4 -/ 2 o) {
SNc> GPi/SNr ]
G ) o

” NoGo B
Test Condition

(A) The corti i thal. rtical loops, i the direct (Go) and indirect
(NoGo) pathways of the basal ganglia.

(B) The Frank (in press) neural network model of this circuit.

(C) Predictions from the model for the probabilistic selection task

Michael J. Frank et al. Science 2004;306:1940-1943

Science

Published by ARAS

emergent Demonstration:
BG

A simplified model compared to Frank, Seeberger, & O'Reilly (2004)

31517 COSC 494/594 CCN 20

Anatomy of BG Gating Including
Subthalamic Nucleus (STN)

Frontal Cortex

striatum

PFC-STN provides an override mechanism

3/517 COSC 494/594 CCN 21
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Subthalamic Nucleus: Dynamic
Modulation of Decision Threshold

preSMA/ACC  Conflict!
H(p(choice))

075 10

0 025 050
Probability of a Positive Outcome

Conflict (entropy) in choice prob = delay decision!

3/517 COSC 494/594 CCN 22
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B. Temporal Difference
Reinforcement Learning

31517 COSC 494/594 CCN 23
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Reinforcement Learning: Dopamine

No prediction
Reward oocurs

Rescorla-Wagner / Delta Rule:

cd=r—T
cd=r— Z.ru'
Reward predicted
‘Reward occurs
Lucasgl A

But no CS-onset firing — need to
anticipate the future!

cd=(r+f)—r

Reward predicted
No reward ocours {

1duy,

CS-onset = future reward = 1

B 1 2
3517 cs (no R}. * COSC 494/594 CCN 24
(slide < O'Reilly)
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7. Motor Control & Reinforcement Learning

Temporal Differences Learning
C V() = r(t) + At + 1)+ A2r(t+ 2)...

SV =r(t) 9V (t+1)

c0= (r(t) +V(E+1)) = V()

co=(r)+V(t+1) = V()
. f= ,‘“'*(tJr 1) «— this is the future!

3517 COSC 494/594 CCN 25
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The RL-cond Model

o ExtRew: external reward r(¢) (based on input)
e TDRewPred: learns to predict reward value
— minus phase = prediction V(7) from previous trial
— plus phase = predicted V(#+1) based on Input
¢ TDRewlInteg: Integrates ExtRew and TDRewPred
— minus phase = V(¢) from previous trial
— plus phase = V(¢+1) + (f)
e TD: computes temporal dif. delta value = dopamine signal
— compute plus — minus from TDRewlInteg

31517 COSC 494/594 CCN 27
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Network Implementation

COSC 494/594 CCN
(slide < O'Reilly)
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CSC Experiment

e A serial-compound stimulus has a series of distinguishable
components

* A complete serial-compound (CSC) stimulus has a component for
every small segment of time before, during, and after the US

— Richard S. Sutton & Andrew G. Barto, “Time-Derivative Models of Pavlovian

Reinforcement,” Learning and Comp I Neus Found: of
Adaptive Networks, M. Gabriel and J. Moore, Eds., pp. 497-537. MIT Press,
1990

« RL-cond.proj implements this form of conditioning

— somewhat unrealistic, since the stimulus or some trace of it must persist until
the US

31517 COSC 494/594 CCN 29
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Classical Conditioning

Forward conditioning

— unconditioned stimulus (US): doesn’t depend on experience

— leads to unconditioned response (UR)

Extinction

preceding conditioned sti;

— after CS established, CS is presented repeatedly without US

— CR frequency falls to pre-conditioning levels

Second-order conditioning

— CSI associated with US through conditioning

— (€S2 associated with CS1 through conditioning, leads to CR

COSC 494/594 CCN

lus (CS) ¢ iated with US

leads to conditioned response (CR)

28

31517

RL-cond.proj

g

oot
e

COSC 494/594 CCN
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7. Motor Control & Reinforcement Learning

emergent Demonstration:
RL

A simplified model of temporal difference reinforcement learning

31517 COSC 494/594 CCN 31

Actor - Critic

*6 o
r<—/

a) Dopamine Burst b) Dopamine Dip

Frontal Cortex Frontal Cortex

Striatum Striatum

—=excitatory
--® inhibitory
-—4_dopamine -

Dopamine

3/517 COSC 494/594 CCN 32
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Opponent-Actor Learning (OpAL)

e Actor has independent G and N weights
o Scaled by dopamine (DA) levels during choice

« Choice based on relative activation levels

o Low DA: costs amplified, towDA GO
benefits diminished = choice 1|

« High DA: benefits amplified,
costs diminished = choice 3

e Moderate DA = choice 2

o e s o2

e Accounts for differing costs &
benefits

Choice:3

31517 COSC 494/594 CCN 33

C. PVLV Model
of DA Biology

A model of dopamine firing in the brain
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Brain Areas Involved in Reward Prediction

o Lateral hypothalamus (LHA): provides a primary reward signal for
basic rewards like food, water etc.

o Patch-like neurons in ventral striatum (VS-patch)
— have direct inhibitory connections onto dopamine neurons in VTA and SN¢

— likely role in canceling influence of primary reward signals when they’re
successfully predicted

*  Central nucleus of amygdala (CNA)
— important for driving dopamine firing at the onset of conditioned stimuli
— receives input broadly from cortex
— projects directly and indirectly to the VTA and SN¢ (DA neurons)
— neurons in the CNA exhibit CS-related firing

31517 COSC 494/594 CCN 35
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PVLV Model of Dopamine Firing

e Two distinct systems: Primary Value (PV) and Learned Value (LV)

o DA signal at time of external reward (US):
Spy = PV —PVj=r—7

o DA ssignal for LV when PV not present/expected:
Sy = LV, — LV;

o LV, is excitatory drive from CNA responding to CS (eventually
canceled by LV;)

e LV, and LV; values learned from PV, when rewards present/expected
* Hence, CS (or some trace) must still be present when US occurs

o CNA supports 1% order conditioning, but not 2™ order (that’s in BLA)

3/5/17 COSC 494/594 CCN 36
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7. Motor Control & Reinforcement Learning 3/6/17

Biology of Dopamine Firing More Detailed Description of PVLV

+  Major issue: Which of PV/LV systems should be in charge of overall dopamine
system?

()
A A R, — e PVand LV learning occur when PV present or expected (indicated by PV, > ©,,)

- —@ inhibitory o0 I\ — «  PVrsystem learns: Bwpvr = Tpresent — PVr (improves prediction)

A *  Recall alternative DA signals:

we A A Spv = PVe—PVi, 8y = LVo—LV;

_LYi_ _ A A __ ¢ Novelty Value (NV) signal reflects stimulus novelty

DA _ @ X __ ¢ Overall dopamine signal:

5= Spu(t) = Spy(t — 1) if PV, > Opy
[61y(t) = 81y(t — )] + [NV(t) — NV(t — 1)]  otherwise
«  Note DA burst is phasic (ceases after CS onset)
305017 COSC 494/594 CCN 37 345017 COSC 494/594 CCN 38
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More Detailed Description (ctu’d) PVLV.proj Model

e Learning PV; weights: PV in Ventral Striatum system
6va = e(PVe — PV)x * LV in Amygdala system
e VTA, and VS adapt to US+ H [ Ventar v (i T
* Eventually VTA, bursts for CS I (Amyasaie) P:Anlwvwz:cs\LSv
o Learning LV weights is conditional on PV filter: olect o
Swn, = {s(PVe — LVe)x if PV, > Opy - LHE SRS adapt 10
0 otherwise ¢ VTA, and VS adapt to US—

* Eventually DA dip for CS

simplified!

31517 COSC 494/594 CCN 39 3/5/17 COSC 494/594 CCN 40

D. Cerebellum and

emergent Demonstration: Error-driven Learning

PVLV

“The blessing of dimensionality”

31517 COSC 494/594 CCN 41 3/5/17 COSC 494/594 CCN 42
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7. Motor Control & Reinforcement Learning

Functions of Cerebellum

e Maintenance of equilibrium and posture

o Timing of learned, skilled motor movement
— any motor movement that improves with practice
— timing, fluency, rthythm, coordination

— involved in cognitive processes too

¢ Correction of errors during the execution of movements

— error-driven learning

e Many inputs from cortical motor and sensory areas

o Influences cortical motor outputs to spinal chord

31517 COSC 494/594 CCN

Lookup Table & Pattern Separation

Cerebellum

Lookup Table --
store learned
input/output
pairs

3/517 COSC 494/594 CCN
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Cerebellum

« Inputs from parietal cortex and motor areas of frontal cortex
e Three layers, very many cortical maps

«  Single basic circuit replicated throughout

* 200 million mossy fiber inputs (each to 500 granule cells)

— jection of input into k

1 space
— separator learning and dynamics

e 40 billion granule cells (input from 4-5 mossy fibers)

¢ 15 million Purkinje cells (input from 200,000 granule cells)
— matrix organization
— enormous integration and cross connection

*  Climbing fibers (one per Purkinje, from inferior olive)

31517 COSC 494/594 CCN

Cerebellar Error-driven Learning

Purkinie Gol ‘Separation may be easier in higher dimensions

epérating
hyperplane

complex in low dimensions simple in higher dimensions

= Cerebellum =

Support Vector Machine

\ Purkinje axons’

* Granule cells = high-dimensional encoding (separation)
* Purkinje/Olive = delta-rule error-driven learning
* Classic ideas from Marr (1969) & Albus (1971)

3/517 COSC 494/594 CCN 46
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Cerebellum is Feed Forward

Feedforward circuit:

Input (PN) — granules — =
Purkinje — Output (DCN)

Climbing

Inhibitory interactions — no y
/ fiber

attractor dynamics /

Key idea: does delta-rule
learning bridging small
temporal gap: DCNT
S(-100) — R(7) |

Parallel fibers

0 fibers

Granule
cells

N\

Crmi

Eob.

1 Error(z+100)

3517 COSC 494/594 CCN
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Properties of Hyperdimensional Spaces

+ Hyperdimensional spaces = spaces of very high dimension
«  Consider vectors of 10,000 bits
— measure distance by Hamming distance (HD)
—  or normalized Hamming distance (NHD)
e Mean HD = 5000, SD = 50 (binomial distribution)
e <107 of space closer than NHD = 0.47 or farther than 0.53 (+300 = +6 SD)

¢ Therefore random vectors almost surely have NHD = 0.5+0.03

*  Vectors with <3000 changed bits still ly recognized
«  Ref: Pentti Kanerva (2009), Hyperdi ional Cq An I duction to
puting in Distributed Rep ion with High-Di I Random Vectors,
Cognitive Computation, 1(2)
315017 COSC 494/594 CCN 48
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7. Motor Control & Reinforcement Learning

Orthogonality of Random

Hyperdimensional Bipolar Vectors
99.99% probability of being within
40 of mean

It is 99.99% probable that random
n-dimensional vectors will be
within € = 4/\n orthogonal

&= 4% for n= 10,000

Probability of being less
orthogonal than & decreases
exponentially with n

[u-v|<4o

iff ] [v] |cos6]<4vn
iff n|cos 6] < 4Jn

iff [cos6] < 4/\n=¢

edn
Pr{‘cose‘ > s} =erfc [W)

=~ éexp (—6271 / 2) + %exp (—2£2n / 3)

The brain gets approximate
orthogonality by assigning random

high-dimensional vectors
3/517 49
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Hyperdimensional Pattern Associator

Suppose Py, Pz, --., Pp are a set of random hyperdimensional bipolar vectors (inputs)
Let q4, qy, ..., qp be arbitrary bipolar vectors (outputs)

Define Hebbian linear associator matrix

7
M= Z Pk
k=1

Then Mpy, =~ q (table lookup)

To encode a sequence of random vectors py, Py, ..., Pp:
P-1

M= Z Pi+1Pk
k=1

Then Mpj, = pr+1 (sequence readout)

COSC 494/594 CCN 50
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BG + Cerebellum Capacities

Learn what satisfies basic needs, and what to avoid
(BG reward learning)

— And what information to maintain in working memory
(PFC) to support successful behavior

Learn basic Sensory — Motor mappings accurately

(Cerebellum error-driven learning)

— Sensory — Sensory mappings? (what is going to happen
next)

COSC 494/594 CCN 51
(slide < O'Reilly)

BG + Cerebellum Incapacities

Generalize knowledge to novel situations

— Lookup tables don’t generalize well...

Learn abstract semantics

— Statistical regularities, higher-order categories, etc
Encode episodic memories (specific events)
— Useful for instance-based reasoning

Plan, anticipate, simulate, etc...

— Requires robust working memory
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emergent Demonstration:
Cereb
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