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A. Biology of Perception
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Retinal Layers
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From right:
(1) rods and cones (tan),
(2) bipolar and horizontal cells (yellow),
(3) amacrine and retinal ganglion cells (purple)
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Retinal Cells

Retina 1s CNS tissue

Nonuniform distribution of cells

— rods in periphery specialized for sensitivity and motion
— cones in macula/fovea specialized for color & form (acuity)

— humans are foveating animals
Information compression:

— 120 million rods (low light)

» huge convergence of rods on bipolars = sensitivity
— 6 million cones (color and high acuity)
— 1 million RGC (retinal ganglion cells)

> estimated to transmit 10° bits/sec

» spontaneously active; information conveyed by change in rate
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Optic Pathway

.=
S
&

@

2/20/18 COSC 494/594 CCN
(slide < O'Reilly)



Key Organizing Principles

e Transduction of different information

— wavelength (rods; blue, green, red cones)
— spatial frequency (resolution)
— motion
e Topographic organization
— contrasting similar information

e Filtering to extract relevant information
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Retinal Cells

Surround Center Surround
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Retinal Contrast Filtering

a) On-center b) Off-center c) Contrast sensitive

Edge =
net +

Uniform
=net0
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Retinal ganglion cells respond to edges

Input image “Neural image”
(cornea) (retinal ganglion cells)
‘ J " ' ' |

Center-surround receptive fields: emphasize edges.
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LLGN of the Thalamus

* A “relay station,” but also much more

e Organizes different types of information into
different layers with aligned retinotopic maps

e Performs dynamic processing: magnocellular
motion processing cells, attentional processing

e (On- and off-center information from retina i1s
preserved in LGN
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Structure of LGN

Parallel pathways

Midget (parvocellular)

8 S Left LGN
Parasol (magnocellular) 8
LE VF

Retina LGN

e (Cells have monocular input

e Six layers alternate input from two eyes (RGC)
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V1 Complex: & MAX over larger spatial RF

[ [ |
V 1 V1-Sim 3
-Simple

Max
(V1S with MAX
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V1 simple cell edge detector

Length-Sum

(max over polarity)

End-Stop

(max over polarity;
orientation contrast

2| Fa

LGN
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“What” vs. “Where” Pathways
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* “What” 1gnores
differences 1n location,
1llumination, size,
rotation

“Where” emphasizes
location, size, and
1gnores object 1dentity

COSC 494/594 CCN
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Principal Regions 1n “What” Pathway

Occipital Lobe Temporal Lobe
V1: Primary visual cortex PIT: Posterior inferotemporal (IT)
cortex

— encodes image in terms of

oriented edges — location & size invariant object

V2: Secondary visual cortex recognition

: : : — includes FFA (fusiform face area)
— encodes in terms of intersections

& junctions AIT: Anterior IT cortex
V4: Third cortical area in ventral — abstract/semantic visual
stream information

—more complex features over wider
range of locations

— modulation by attention
2/20/18 COSC 494/594 CCN 16




Hierarchy of Visual Detectors

D |, 0 N e & & =
g:/% i)
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V1 V2 V4 IT-posterior IT-anterior
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B. Primary Visual Cortex

What is the origin of detectors for oriented bars of light?
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Self-Organization of V1 Orientation

Selective Neurons

STIMULUS RESPONSE TUNING CURVE
Stimulus Stimulus Stimuilus
off ~ on : off
L

Cell's response

= X I g

' " Orientation of bar
[l

FIGURE 4.8 Response of a single cortical cell to bars presented at various orientations.

COSC 494/594 CCN
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Topographic Maps

« Map of orientations

* Hypercolumn: Full set
of coding for each
position

* Pinwheel can arise
from learning and 5
lateral connectivity: w4
not hard-wired!
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What 1s Common?

2/20/18 COSC 494/594 CCN 21
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V1R{: Simulating One Hypercolumn

* Natural visual scenes are
preprocessed by passing them
(separately) through layers of on-
center and off-center inputs

* Hidden layer: edge detectors seen
in layers 2/3 of V1; Layer 4
(input) just represents unoriented

on/off inputs like LGN (but can
be modulated by attention)

* Circular neighborhoods of lateral
excitatory connectivity in Hidden

layer VARFNetwork VValue: act
* Inhibitory competition in Hidden
layer
2/20/18 COSC 494/594 CCN 22
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emergent demonstration:
VIRt
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Faces vs. Natural Scenes

Nature Scenes

Faces

Some differences, but pinwheels still emerge

25
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Rewiring Cortex

Experiments by Mriganka Sur
& colleagues (MIT)

What happens if retinal axons
are redirected into auditory

thalamus (MGN) instead of its
usual inputs?

Answer: Auditory cortex (Al)
develops orientation columns
and retinotopic maps similar to

\Al

Animals experience activity in
Al as visual perception

COSC 494/594 CCN

(a) Normal

Auditory cortex

Visual cortex

Superior
LGN colliculus

-----
. ey

==, Inferior
colliculi

(b) Rewired

Visually responsive
auditory cortex

Visual cortex

.....

.....

.....

‘. .

26




Orientation Columns in A1

Rewired A1 Normal V1
E n

&
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Orientation columns develop in A1 similar to those in V1

gl
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Are They Having Visual Experiences?

\

Auditory  Visual
cortex cortex

Yawired Control

2/20/18 COSC 494/594 CCN
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They Are Having Visual Experiences

Rewired ferret R3

. 100
'
X 80
: Rewired
'
: - g I Pre-LGNALP lesion
: 40 ° B Post-LGN/LP lesion
! 20 8| M rostAt iesion
‘ &
: 0
light light '
Normal ferret N1
100 100
80 80
§ 60 60 Normal
§ [ Pre-LGN/LP + SC lesion
5 40 40 3 B Post-LGNAP + SC lesion
20 20 §
0 0 2

Sound Left Centre; Right light
light light
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Visual Acuity

e There 1s less visual
acuity in the rewired

. Left monocular field

g 1.04 Right monocular field pathway

é% 05  Suggests there may be
se | intrinsic factors in

56 0.25 . . .

A organization of auditory
Fons M M. M cortex as well as

Feret extrinsic factors
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C. Object Recognition and
the “What” Pathway

How do we recognize objects (across locations, sizes, rotations with
wildly different retinal images)?
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Invariant Object Recognition

e O @ @
D g e />< G 7.@
N - EE Q / G
Wy 1 O o
V1 V2 V4 IT-posterior IT-anterior
COSC 494/594 CCN
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High
Overlap

2/20/18

It’s Hard

No Overlap

Output = "A"

- Qutput ="F"

V

Isual Inputs

COSC 494/594 CCN
(slide < O'Reilly)
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Invariant Object Recognition

* Hierarchy of increasing:
T * Feature complexity
X * Spatial invariance
/ * Increasing RF size:
V4
4 * Conjunction of features (to
A 7 \ form more complex objects)
O‘ Z V2 . Collapsir}g over logation
¢ information (“spatial
> invariance”
0, | * Strong match to RF’s in
corresponding brain areas
2/20/18 COSC 494/594 CCN 34
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Biological Data: >
Increasing Complexity

and Invariance o
NEIEREEE S
% ® NI O35 g 0
O X & QD N | =
x @X| D@\ .
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The Model: combining Fukushima with convolutional neural
nets, bidirectional connectivity and learning!

; T
[ -.l!. !. .II.H‘F

ObyecNet Value: act

V1 = oriented line (edge) detectors, hard-coded
V4 units encode conjunctions of V1 edges across a subset of space
Each IT unit pays attention to all of V4

(V2 omitted here, important for figure-ground etc)

2/20/18 COSC 494/594 CCN
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V1 Receptive Fields

* 4x5 hypercolumns

 Two rows of simple cells at
4 orientations and two
polarities

* Two rows of end-stop
complex cells

*  One row of length-sum
complex cells

* 50% overlap with adjacent
hypercolumns

angle: 0 (horiz) 45

Hypercolumn 4
output 3
organization row: 2
1
0

V1 End Stop (V1es):
inhibition from same
orientation at one end

V1 Length Sum (V1ls):
average over elements

V1 Square Group (V1sg):
simple x2 dim reduction &
spatial homogenization
(grey = ctr of gabor)

V1 Polarity Invariant (V1pi):

orientation only

V1 Simple (V1s): polarity &
orientation

2/20/18 COSC 494/594 CCN
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Simple Textbook Test
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Activation-Based Receptive Fields

 How do we plot receptive fields for V4?

e Receiving weights show which V1 units a V4 unit
responds to, but they don’t show what thing in the
world the unit responds to

e Solution: Show the network lots of input patterns.

 Then, display a composite of all the input patterns
that activate the unit (weighted by activity).

2/20/18 COSC 494/594 CCN 39
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V4 Receptive Fields

V] V4 Ll JULDu llgee

« Some V4 units code for location-specific conjunctions of V1 features
» This will show up as a sharp receptive field for Image input

2/20/18 COSC 494/594 CCN
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V4 Receptive Fields

V] ‘ V4 I'l LDy l1paoe

« Some V4 units code for simple features in a location invariant way
« This will show up as smeary parallel lines in Image input

2/20/18 COSC 494/594 CCN
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V4 Receptive Fields

A% | V4 [T JULDY I mgoe

Can also look at which Output units tend to get active for any given V4 unit
Generally a given V4 unit is associated with multiple objects

COSC 494/594 CCN
(slide < Frank)
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3D Object Recognition Test

3D models from Google
SketchUp

100 categories
9—10 objects per category
2 objects left out for testing

+/— 20° horiz depth rotation
+ 180° flip

0-30° vertical depth rotation
14° 2D planar rotations
25% scaling

30% planar translations

2/20/18 COSC 494/594 CCN 43
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Depth & Lighting Variations
for One Object

2/20/18 COSC 494/594 CCN 44
(slide < Frank)




Generalizati()n 1o CU3D 100 Generalization

o
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Novel Category 7 |5 8™
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o |
N
8 - ql ‘Ql I [ [ q
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(88 X & K QVOCJ
oX QR
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emergent demonstration:
Objrec
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Active Cortical Dendrites Modulate
Perception

200 um

e (Ca’*activity in some L5 pyramidal cells in S1 f s
correlated with perception threshold 1y

e May amplify long-range feedback from other
cortical regions to primary sensory areas via %
superficial layers

e Apical amplification hypothesis: Ca** activity RS
correlates with subliminal-to-liminal transition - g
- =
e More generally, apical amplification via dendritic Yagnt
CA?* currents seems related to cognitive ()
processing & conscious perception E/d >

e Takahashi et al., Science 354 (2016): 1587.
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D. Attention and “How”
Pathway

Why 1s visual system split into what/where pathways?

Why does parietal damage cause attention problems (neglect)?
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Some Functions of Dorsal Pathway

“Where” pathway (spatial relations)
— visual attention (this chapter)

But more broadly “how” pathway

— maps perception to action (next chapter)

Numerical and mathematical processing
Representation of abstract relationships
Modulation of episodic memory

Aspects of executive control

COSC 494/594 CCN
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Spatial Attention and Neglect

2/20/18 COSC 494/594 CCN 50
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Hemispatial Neglect

Mainly from MODEL PATIENT'S COPY
Injuries to
right parietal
cortex

MODEL

-t 3

H H
BHHEE

Test paper Patient bisections //

(with horizontal lines on it) (Vertical lines)

2/20/18 COSC 494/594 CCN 51
(slide based on O’Reilly)

— _ _|._|'
_|_

+ 1 4

__—+
—  _— —
—-




Neglect

Cue D

Target x

’g 420+
Posner Task o 4101
= 39071
« Valid cues speed performance ke 3704
(relative to “no cue” condition) o
* Invalid cues slow performance ¢ 350+
(relative to “no cue” condition) .
Neutral
Valid Trial Invalid Trial
+ |:| +
=
3
@
+ + . Y
COSC 494/594 CCN
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(slide based on O’Reilly)

Valid  Invalid

* Patients perform
normally in the
“neutral” (no cue)
condition, regardless
of where the target is
presented

 Patients benefit just
as much as controls
from valid cues
 Patients are hurt
more than controls
by invalid cues

52
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] ] Models: Boxology
A vs. Biology

‘ Interrupt |—
Localize {-
‘ Disengage {-—

0Cation
‘ Engage ‘
Inhibit ‘

COSC 494/594 CCN
(slide < O'Reilly)
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Posner Task Simulation

 Model explains the basic finding that valid cues speed target
processing, while invalid cues hurt

e Also explains finding that patients with small unilateral
parietal lesions benefit normally from valid cues in
ipsilateral field but are disproportionately hurt by invalid
cues

* No need to posit “disengage” module

e Also explains finding of neglect of contralateral visual field
after large, unilateral parietal lesions when some stimulus 1s
present in 1psilateral field (“extinction”)

2/20/18 COSC 494/594 CCN 54
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Balint’s Syndrome

e Bilateral parietal lesions = Balint’s syndrome

* = simultanagnosia = 1nability to recognize multiple
objects presented simultaneously

e Decreased level of attentional effects on Posner task

* Better explained by competitive model than
Posner’s disengage theory

— Latter predicts bilateral slowing for invalid trials (1.¢.,
difficulty disengaging)
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Simple Attention Exploration
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What’s Missing? Lacking Depth..

2/20/18 COSC 494/594 CCN
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Supplementary
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Topographic Representation
of Numerosity 1n the
Human Parietal Cortex

B. M. Harvey, B. P. Klein, N. Petridou, S. O. Dumoulin, Science 06
Sep 2013:Vol. 341, Issue 6150, pp. 1123-1126
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Background

e  Humans and many other animals use numerosity to guide behavior and decisions

*  Numerosity perception becomes less precise as size of numbers increases

— particularly effective for small numbers

e  Animals, infants, and tribes with no numerical language perceive numerosity

e  Hence, numerosity processing is an evolutionarily preserved cognitive function
— distinct from counting and humans’ unique symbolic and mathematical abilities

e Because aspects of numerosity processing mirror primary sensory perception,
sometimes referred to as a “number sense”

e Are the cortical representation and processing of numerosity organized
topographically, even though no sensory organ has a numerical structure?
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Fig. 1 Stimuli, responses, and neural population tuning.(A) lllustration of stimulus conditions,
with examples representing different numerosities.

A Four _ _ Seven B Presented numerosity C
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B. M. Harvey et al. Science 2013;341:1123-1126
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Fig. 2 Topographic representation of numerosity.(A) The variance explained by the model (R2)
highlighted a region in the right parietal cortex where neural populations demonstrated
numerosity tuning in all stimulus conditions (Fig. 1A).
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Fig. 3 Comparison of numerosity preferences across recording points in different stimulus
conditions, averaged across participants.(A) Because numerosity preferences are
topographically organized in all stimulus conditions, they are always correlated.

A 1 B
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Fig. 4 The progression of population tuning width (see Fig. 1C) across the cortical surface (A)
and with preferred numerosity (B) for one representative participant.Dots represent mean tuning
widths in each preferred numerosity bin, and error bars represent standard errors.
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Other Results

e Organization in LH 1s less clear than seen in RH

o Daifferences between subjects in map, range of
numerosity preferences in map, tuning width,
consistency between stimulus conditions, and
topographic organization in LH and 1n right
posterior parietal lobe outside region of interest

* No evidence of Arabic numeral-tuned responses in
the numerosity map

2/21/18 COSC 494/594 CCN 65




Gabor Uncertainty Principle
and Gabor Elementary
Functions

MacLennan, B. J. Gabor Representations of Spatiotemporal Visual
Images. University of Tennessee, Knoxville, Computer Science
Department technical report CS-91-144, September 1991
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Dennis Gabor

e Dennis Gabor (1900-79) is the father of holography (1947,
1971 Nobel Prize in Physics)

e “the future cannot be predicted, but futures can be invented”

 Developed a theory of information (1946) complementary
to Shannon’s theory

e Gabor Uncertainty Principle based on same mathematics as
derivation of Heisenberg Uncertainty Principle

e Nearly optimal Gabor representations are used in primary
visual cortex
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Time to Detect Difference in Frequency

11 o, 3 3 4 56.

i f+AM i
- A F!
AfAt > 1
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A Little More Formally...

 Nominal duration (A7) = duration of rectangular
pulse with same area as signal and height equal to
amplitude at origin

» Hence, At|p(0)| = [~ |p(t)|dt

J

e Some details omitted
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A Little More Formally (2)

 Nominal bandwidth (Af) of spectrum = width of
rectangular pulse with height equal to spectrum’s

amplitude at origin and same area as absolute value
of spectrum

* Hence, Af|P(0)| = [ |D(f)ldf

2/20/18 COSC 494/594 CCN 70




A Little More Formally (3)

 Computing the Fourier transform at origin,
|P(0)] < At|e(0)]

e So At = |®(0)]/|@(0)]

 Computing the inverse ( A Afhi s
Fourier transform at origin,/> _________________ (
[(0)] < Af|P(0)] \>f _________
* SoAf = |p(0)|/|P(0)] .
e Hence, AfAt > 1 =g
f dom v/\ M —
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1D Gabor Elementary Function

imaginary

real

Gaussian

modulated
complex time
exponential
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Orthogonal Components of 1D Gabor

Cosine (real) Sine (imaginary)

¥ iy

u u
Po 4. -6. -F-
u U —o.s}
_1‘__

et = cos ft + isinft
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Real Part of 2D Gabor Elem. Function

6. %

4.1

2.1

0.1

2.4+

—4.4+

67 : : : : : is
-6. -4. -2. 0. 2. 4. 6.
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Maximum Logon Content of Signal

f AfAt =1
(N-1)Af
2Af
Af
0 ==
0 Al 2At - (M-1)At
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Maximum Logon Content

e [fT = MACt is the duration and F = NAf 1s the bandwidth

e The maximum number of logons MN is achieved when
AtAf =1 (1.e., Gabor elementary functions)

e In general, the area doesn’t have to be divided into
rectangles of the same shape, so long as area 1s 1

* So the maximum logon content 1s 7F (duration times
bandwidth)

* Any such signal can be represented uniquely as a sum of 7F
Gabor elementary functions
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Gabor Representations

e Any “finite energy” function ¥ of finite duration T
and finite bandwidth F'1s equal to a linear
superposition of Gabor elementary functions:

Y(t) = ZM DD 'ijk(t) + b1 Sk (L)
where Cjy (t) = e TEIAD*/@ cos[2mk Af (t — jAL)]

and Sj (t) = e TUEIADY/ @ sin[2mk Af (t — jAt)]

 The same applies in higher dimensions.
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Gabor Filters in Early Vision

Measurements of receptive fields of simple cells 1n cat
visual cortex have show them to be like Gaussian-
modulated sinusoids (Jones & Palmer, 1987)

Daugman (1984, 1985, 1993) showed 97% of them are
statistically indistinguishable from the odd- or even-
symmetric parts of a 2D Gabor elementary function

Adjacent simple cells have grating patches that are 90° out
of phase, but matched in preferred orientation and
frequency

And more... (MacLennan, 1991)
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