7. Motor Control and
Reinforcement Learning
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A. Action Selection and Reinforcement
B. Temporal Difference Reinforcement Learning

C. PVLV Model

D. Cerebellum and Error-driven Learning
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Sensory-Motor Loop

 Why animals have nervous systems but plants do
not: animals move

— a nervous system 1s needed to coordinate the movement
of an animal’s body

— movement 1s fundamental to understanding cognition
e Perception conditions action
e Action conditions perception

— profound effect of action on structuring perception 1s
often neglected
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Overview

* Subcortical areas: * Cortical areas:
o basal ganglia o frontal cortex
» reinforcement learning » connections to basal ganglia &
(reward/punishment) cerebellum
> connections to “what” pathway o parietal cortex
o cerebellum » maps sensory information to

> dr | . motor outputs
error-driven learnin :
g » connections to cerebellum

» connections to “how” pathway

o disinhibitory output
dynamic
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Learning Rules Across the Brain

Learning Signal Dynamics

Area Reward Error SelfOrg Separator Integrator Attractor

4+ ++
| Corcbellom |- |- | - -

+ - R ot e
- - e

= has to some extent ... = defining characteristic — definitely has
- = not likely to have ... ---=definitely does not have
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Primitive, Basic Learning. ..

Learning Signal Dynamics

Area Reward Error SelfOrg Separator Integrator Attractor

+++ ++
| Cerebellum  J--- | e b e L.

* Reward & Error = most basic learning signals
(self organized learning is a luxury...)

e Simplest general solution to any learning problem i1s a
lookup table = separator dynamics
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A. Action Selection and
Reinforcement

3/5/18 COSC 494/594 CCN 7




Anatomy of Basal Ganglia

Lim S-J, Fiez JA and Holt LL - Lim S-J, Fiez JA and Holt LL (2014) How may the basal ganglia contribute to
auditory categorization and speech perception? Front. Neurosci. 8:230. doi: 10.3389/fnins.2014.00230
http://journal.frontiersin.org/article/10.3389/fnins.2014.00230/full

3/5/18 COSC 494/594 CCN



Basal Ganglia and Action Selection
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Cortex

Striatum

Thalamus

Basal Ganglia: Action Selection

Motor

PM, M1, $1

motor
actions

Oculomotor

DLPFC, PPC

Prefrontal

DLPFC) ooc pu

eye strategies

movement

& plans

Orbitofrontal

rewards

Cingulate

@ HIP, EC, IT

AN

costs

* Parallel circuits select motor actions and “cognitive” actions
across frontal areas
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Release from Inhibition

[ LI WL
(Caudate Nucleusj 1 ||||H'H'HH'I'H||||| I

-)
Substantia Nigra
Pars Reticulata |

Tonic Inhibition Disinhibition Tonic Inhibition

(-)

~ ( Superior |
Colliculus j I'Ml"'"ll

Saccadic Eye Movement /
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Motor Loop Pathways

e Direct: striatum inhibits
GP1 (and SNr)

e Indirect: striatum inhibits
GPe, which inhibits GP1 | .
(and SNI') '. Yy -}s‘:\:‘. Striatum ' &

* Hyperdirect: cortex excites
STN, which diffusely
excites GP1 (and SNr)

e (GP1 inhibits thalamus,
which opens motor loops

to brainstem
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Basal Ganglia System

e  Striatum e  Thalamus®
=  matrix clusters (inhib.) = cells fire when both:
»  direct (Go) pathway — GPi >  excited (cortex)
»  indirect (NoGo) path — GPe > disinhibited (GPi)
= patch clusters = disinhibits FC deep layers
>  to dopaminergic system «  Substantia nigra pars compacta (SNc¢)
*  Globus pallidus, int. segment (GPi)* =  releases dopamine (DA) into striatum

=  tonically active . excites D1 receptors (Go)

n inhibits D2 receptors (NoGo)
*  Subthalamic nucleus (STN)

m inhibit thalamic cells

*  Globus pallidus, ext. segment (GPe)

: c - h direct path
= tonically active b L LIS o LN

. . : : . input from cortex
= inhibits corresponding GPi neurons

. diffuse excitatory output to GPi
. global NoGo delays decision

*and substantia nigra pars reticulata (SNr) *and superior colliculus (SC)
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What 1s Dopamine Doing?

Dopamine carries the brain’s reX)rd signal
reward prediction error

stimulus reward

Wise & Romper, 89 Schultz et. al, 98
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Basal Ganglia Reward Learning
(Frank, 2005...; O’Reilly & Frank 2006)

a) Dopamine Burst b) Dopamine Dip
G
—s excitatory
Striatum --@ inhibitory Striatum

--4 dopamine

@ Direct \ Indlrect

Dopamine

@ Dlrect\ Indlrect

Dopamine | _

* Feedforward, modulatory (disinhibition) on cortex/motor
(same as cerebellum)
 Co-opted for higher level cognitive control — PFC

-
-
-

—‘
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Basal Ganglia Architecture:
Cortically-based Loops

Functional territories
Bifmbic | [ Associative |  Sensory Motor |

Cerebral cortex

o

Strigtum

P H /
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Fronto-basal Ganglia Circuits 1n
Motivation, Action, & Cognition

DA

i 3
Fast learning
Ar&sociations
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ChR2-mediated excitation of direct- and indirect-pathway
MSNs in vivo drives activity in basal ganglia circuitry

a D1 b c d
=0-D1-control 4 130
701 -=-p1-chR2 h @p/ﬂ =
~ =0-D2-control a0 z
T [-e-D2-ChR2 e < o
o = o
= I o
D2 |omv 2 2 £
100 s CE” ] |40 mv i—— 8 =
i 40 ms rUML\ S
0 N 0 0
0 200 400 600 800 D1 D2 D1D2
— = Injected current (pA)
@ Striatal illumination f Str g Str h
Striatal recording H_ = - 401 D1 % D2
LT ; s ! =
— Laser R S W 52
RV o oS ' g o
A e 55
Ctx . S : ' BT TR o€
@ = 31D1 =2)D2 N
7% 5 fpow: & £%
Nr 5 500ps & o.%
o x g = 0
-5 0 5 10 -5 10 @ @ & &
Time (s) Time (s) 9 "*’QQ& Q‘ Q’QOg
i Striatal illumination j SNr Kk SNr I
Substantia nigra recording ' _. g Jo m Y V'I'-'\T ..1“—,. WY'I ,1"7'/" - 21D1 D2
Laser N ”" ‘{' '; pu o Tl 4 '-', '.\ )*'|"" ,,l )‘ ‘5\- agl 'é
| h |l‘lﬁm \)} ‘ ;i‘ ‘ ’ {U\“\, T | CQ
el SRR 22
'.." . '."!'f’ul\l \\‘i 11 hdve B E
- T £
2 2 o
&0 C(E 0 = 0

Tume (s) Time (s) N

3/5/18 COSC 494/594 CCN 18
nature

AV Kravitz et al. Nature 466(7306):622-6 (2010) doi:10.1038/nature09159



Human Probabilistic Reinforcement
Learning

Train
Patients with

Parkinson’s disease
(PD) are impaired in i
cognitive tasks that Jf Test

require learning from
positive and negative A (80/20) B (20/80)
feedback Choose A?

» Likely due to depleted
dopamine % 0)

« But dopamine
medication actually Avoid B?
worsens performance in C (70/30) D (30/70)
some cognitive tasks,

despite improving it in
others t?

Frank, Seeberger & E (60/40) F (40/60)
O'Reilly (2004)
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Testing the Model:
Parkinson’s and Medication Effects

»—» Seniors
e—-® PD OFF
¢ - ¢ PD ON

Probabilistic Selection
Test Performance

100
901 .
>
3 _
5 80r T
§ I
= 701 .
g 5
g 60f ]
50 .
Choose A Avoid B Frank, Seeberger &
Test Condition O’Reilly (2004)
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BG Model: DA Modulates Learning from
Positive/Negative Reinforcement

A C »— Intact
e —- @ Simulated PD
+- — + Simulated DA Meds
— excitato TR =
— o mhibitorry Probabilistic Selection
Y BG Model Go/NoGo Associations
— modulatory 0.50
o 0
c I
(] "
= 0.40
S I ~
%) L NS
8 0.30 P
< 0201 _ /\\\
(e} % ~
G 0.10f W \{
o} ! 8
£ ooof {/‘
¥ 0.10 [
e Go A NoGo B

SNc GP Test Condition

(A) The corticostriato-thalamo-cortical loops, including the direct (Go) and indirect

(NoGo) pathways of the basal ganglia.
‘ AYAAAS

(B) M. Frank’s neural network model of this circuit.
(C) Predictions from the model for the probabilistic selection task

Michael J. Frank et al. Science 2004;306:1940-1943

Published by AAAS



emergent Demonstration:
BG

A simplified model compared to Frank, Seeberger, & O’Reilly (2004)
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3/5/18

Anatomy of BG Gating Including
Subthalamic Nucleus (STN)

Frontal Cortex

striatum

PFC-STN provides an override mechanism

COSC 494/594 CCN
(slide < Frank)
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Subthalamic Nucleus: Dynamic
Modulation of Decision Threshold

preSMA/AcC  Conflict!

H(P(choice))

striatum

0 0.25 0.50 0.75 1.0
Probability of a Positive Outcome

Conflict (entropy) in choice prob = delay decision!

3/5/18 COSC 494/594 CCN
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B. Temporal Difference
Reinforcement Learning
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Reinforcement Learning: Dopamine

No prediction
Reward occurs

Rescorla-Wagner / Delta Rule:
BRI IR _" e d=r —7r

.'(r.wo.cg) e R Do . 6 — ZIU‘
Reward predicted
Reward occurs
"‘““‘"‘L““‘w But no CS-onset firing — need to
anticipate the future!

};:‘:;:|'..“.':to':
. e -

cG=(r+f)—7

CcS

Reward predicted
No reward occurs

tssomihisss e, s

CS-onset = future reward = f

......
.....
. . . .

1 és
Cs (no R) -_ COSC 494/594 CCN
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Temporal Differences Learning

s V) =r@®) +y'rt+ 1) +y*r(t+2) + -
=r()+y[r@+1D) +yrt+2)+ -]

e V@) =7r®t) +yV(t+1)

e 0=(r(t) +yV(t+1)) -V ()

c 5=(r@®) +yV(t+1)) =V ()

e f=yV(t+1) = this is the future!
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Network Implementation

1 T T T T T l} T T T
. 05 trial: 15
L§
= 0 trial_name: t=15
-05 phase: PLUS_PHASE
: ot } t ! } ! } } }
/™S 4 6 8 10 12 4 16 88
. trial
TrialOutputDeta

t
2() ext_rew: I
co ca ez

€3 CuA Cs

C6 CT C8 CHCHOWCHCRCBCHCISCWCT CRCHN

1 B2 B3 B4 BS B6 BT BR BY BI0 Bil BJ2Z B3 B4 BI5 Bi6 BI7 B

A2 A3 A4 AS A6 AT A8 A9 A0 AL AR AB A

A_I6 A_I7
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The RL-cond Model

e ExtRew: external reward r(¢) (based on mnput)

e TDRewPred: learns to predict reward value

— minus phase = prediction V(¢) from previous trial

— plus phase = predicted V(#+1) based on Input
e TDRewlnteg: Integrates ExtRew and TDRewPred
— minus phase = V(¢) from previous trial
— plus phase = V(t+1) + r(¢)
e TD: computes temporal dif. delta value = dopamine signal

— compute plus — minus from TDRewlInteg
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Classical Conditioning

 Forward conditioning

— unconditioned stimulus (US): doesn’t depend on experience
— leads to unconditioned response (UR)
— preceding conditioned stimulus (CS) becomes associated with US

— leads to conditioned response (CR)
e Extinction

— after CS established, CS is presented repeatedly without US

— CR frequency falls to pre-conditioning levels
e Second-order conditioning

— CS1 associated with US through conditioning
— (S2 associated with CS1 through conditioning, leads to CR
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CSC Experiment

e A serial-compound stimulus has a series of distinguishable
components

e A complete serial-compound (CSC) stimulus has a component for
every small segment of time before, during, and after the US

— Richard S. Sutton & Andrew G. Barto, “Time-Derivative Models of Pavlovian
Reinforcement,” Learning and Computational Neuroscience. Foundations of
Adaptive Networks, M. Gabriel and J. Moore, Eds., pp. 497-537. MIT Press,
1990

e RL-cond.proj implements this form of conditioning

— somewhat unrealistic, since the stimulus or some trace of it must persist until
the US
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RL-cond.proj

apach: 9

tnal: 8

[ total_trials: 189

trial_name; =8

quarter: 4

phase: PLUS_PHASE
t_cycias: 1 tof_cycle: 18900

exl_rew. 0

vos_err: 0

B
A
input e
)
TDRewintag
TORewPred
ExtRew TD
RiCondNet Valua: act

COSC 494/594 CCN
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emergent Demonstration:
RL

A simplified model of temporal difference reinforcement learning
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Actor - Critic

-;T‘6
I -

output

a) Dopamine Burst

Dopamine

3/5/18

Frontal Cortex

Striatum

\@ )
Dlrect‘

. Indlrect

—s excitatory
--@ inhibitory
--4 dopamine

COSC 494/594 CCN
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! | .
A e
@ Dlrect‘ Indirect

Dopamine

b) Dopamine Dip

Gntal CortD

Striatum

-

-
-

——
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Opponent-Actor Learning (OpAL)

Actor has independent G and N weights

Scaled by dopamine (DA) levels during choice

Choice based on relative activation levels

Low DA: costs amplified,

benefits diminished = choice 1

High DA: benefits amplified,
costs diminished = choice 3

Moderate DA = choice 2

Low DA
Weights

NG
-

PaxG

DD: a

Accounts for differing costs &

benetfits

Choice: 3

PrvxN

Uo

High DA

G())

-b

Weights

36

Choice: 1

BnxN

COSC 494/594 CCN
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C. PVLV Model
of DA Biology

A model of dopamine firing in the brain
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Brain Areas Involved in Reward Prediction

e Lateral hypothalamus (LHA): provides a primary reward signal for
basic rewards like food, water etc.

e Patch-like neurons in ventral striatum (VS-patch)

— have direct inhibitory connections onto dopamine neurons in VTA and SNc

— likely role in canceling influence of primary reward signals when they’re
successfully predicted

e Central nucleus of amygdala (CNA)

— important for driving dopamine firing at the onset of conditioned stimuli

— receives input broadly from cortex

— projects directly and indirectly (via VS-patch) to the VTA and SNc¢ (DA
neurons)

— neurons in the CNA exhibit CS-related firing
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PVLV Model of Dopamine Firing

e Two distinct systems: Primary Value (PV) and Learned Value (LV)

DA signal at time of external reward (US):
Opy = PVe =PV =71 —7

DA signal for LV when PV not present/expected:
61V — LVe — LVI

e LV, 1s excitatory drive from CNA responding to CS (eventually
canceled by LV.,)

e LV, and LV, values learned from PV, when rewards present/expected
 Hence, CS (or some trace) must still be present when US occurs

e (CNA supports 1t order conditioning, but not 2™ order (that’s in BLA)

3/5/18 COSC 494/594 CCN 38




Biology of Dopamine Firing

—- eXcitatory
- —@ inhibitory US/PV|

PV i
LV, A
CS us - T o o -
LV; I\ A\
DA ___ A ) G
3/5/18 COSC 494/594 CCN 39
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More Detailed Description of PVLV

e  Major issue: Which of PV/LV systems should be in charge of overall dopamine
system?

* PVand LV learning occur when PV present or expected (indicated by PV, > 0 )

*  PVrsystem learns: Wpyr = Tpresent — PV (improves prediction)

e Recall alternative DA signals:
Opv = PVe — PV, Oy = LV, — LV;

 Novelty Value (NV) signal reflects stimulus novelty

e  Opverall dopamine signal:
Spy(t) — Opy(t — 1) if PV, > 0,

6= [6,(t) — 81y (t — 1] + [NV(t) = NV(t —1)] otherwise

3/5/18 COSC 494/594 CCN 40
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More Detailed Description (ctu’d)

e Learning PV, weights:
dwpy = £(PVe — PVj)x

 Learning LV weights 1s conditional on PV filter:
Sw, = {e(PVe — LWV)x ifPV, > 0,

0 otherwise
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PVLV.proj Model

* PV in Ventral Striatum system

LV in Amygdala system cs o
: \ ¥ _
A VTAI and VS adapt tO US_|_ § Ventral Striatum (NAc) g
@ Matrix (phasic CS's)
Am LVdala) /—'| Patch (PV - phasic at US)
* Eventually VTA, bursts for CS e i
Context | | Learns A ' '
onset (vHip, OFC) at US )-‘ 7{ v - us],
.gc LHB [US- . pV']+
4 M [ ']+
« LHB+RMTg and VS adapt to [ [v]. [Trss
td | (DA+)|diP
US- il e S
P
ot VTAm and VS adapt to US— us+ Us-
(LHA, etc) (PBN, etc)
* Eventually DA dip for CS ol
simplified!
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emergent Demonstration:
PVLV
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D. Cerebellum and
Error-driven Learning

“The blessing of dimensionality”
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The Motor Control System

Motor regions of
cerebral cortex

)

Thalamus

—>

Basal ganglia

J A

>

Cerebellum

3/5/18

Y
( »| Brainstem
I Y
—> ( Spinal cord (}—'P Motor response
{(movement)
Sensory
receptors
Sensory feedback from muscle |
COSC 494/594 CCN
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Functions of Cerebellum

e Maintenance of equilibrium and posture

e Timing of learned, skilled motor movement

— any motor movement that improves with practice
— timing, fluency, rhythm, coordination

— 1nvolved in cognitive processes too
e (Correction of errors during the execution of movements
— error-driven learning

e Many inputs from cortical motor and sensory areas

e Influences cortical motor outputs to spinal chord
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Cerebellar Microstructure

Nature Reviews | Neuroscience

COSC 494/594 CCN
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Cerebellum

15x%108

e Inputs from parietal cortex and motor areas of frontal cortex
e Three layers, very many cortical maps
e Single basic circuit replicated throughout

e 200 million mossy fiber inputs (each to 500 granule cells)
— projection of input into hyperdimensional space
— separator learning and dynamics

e 40 billion granule cells (input from 4-5 mossy fibers)

e 15 million Purkinje cells (input from 200,000 granule cells)

— matrix organization

— enormous integration and cross connection

e Climbing fibers (one per Purkinje, from inferior olive)
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Lookup Table & Pattern Separation

’’’’’
//

Lookup Table --
store learned
input/output
pairs

COSC 494/594 CCN
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Cerebellar Error-driven Learning

Plég}ilgle ((ft,',:]1 Separation may be easier in higher dimensions
aﬂﬁ;’?"?m - %itr'\ ’ . .
\%ﬂ 'J':i"r?‘ N | \Granutar feature
s S el ' layer —
\\ %), &‘ - t y map
> \Medullary
- layer
\ coliatorals hyperplane
complex in low dimensions simple in higher dimensions
Y P \\g ifl_ltl bing ’ ’ ’
F ]\ e Cerebellum =
..\ Purkinje axons SuppOI't VCCtOI' MaChlne
* Granule cells = high-dimensional encoding (separation)
* Purkinje/Olive = delta-rule error-driven learning
* Classic 1deas from Marr (1969) & Albus (1971)
3/5/18 COSC 494/594 CCN 50
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Cerebellum 1s Feed Forward

Feedforward circuit:

Input (PN) — granules —
Purkinje — Output (DCN)

Inhibitory interactions — no
attractor dynamics

Key idea: does delta-rule
learning bridging small
temporal gap:

S(~100) — R(?)
T Error(z+100)

Purkinje
cell

Climbing cells

/ fiber

10 fibers

Parallel fibers

Granule
f

N

Bob Crim

3/5/18 COSC 494/594 CCN
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M| rozon
Zone cooe:_____‘:

Mesostructure

*  Microzone: defined by group of adjacent PCs
contacted by CFs with same receptive profiles

trees 7 fibers

Purkinje cell§ X
dendriti< i\ Parallel

— comprises hundreds of PCs and several hundreds Unfolded

of thousands of other neurons ggte:ellar
X

— shaped as narrow strips a few PCs wide and several dozens of PCs in length

— a fraction of a millimeter in width and several millimeters in length

— parallel fibers (PFs) extend for several millimeters, crossing width of microzone and extending into
neighbors

— estimated that cat has about 5000 microzones, human has several hundred thousand

e  Multizonal micro-complexes (MZMCs): basic functional units of cerebellar cortex

— each comprises several microzones receiving common CF input and delivering their PC output to
the same region of the cerebellar nuclei

— seem to have an integrated function

— constituent microzones may be in different regions of the cortex, which receive different MF input
and may be associated with different aspects of motor control

— MZMCs may provide for parallel processing and integration of inputs
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Spinocerebellum

Macrostructure

Cerebrocerebellum

Cerebellar Output

spinocerebellum medial

fastigial ! descending
. systems

Flocculus

Nodulus

motor

N / execution

interposed — descending
systems

areas motor
e
denfate 4& 6 planning

cerebellum

vestibular balance &

o 0 ——
nuclei eye movements

vestibulocerebellum
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Properties of Hyperdimensional Spaces

e Hyperdimensional spaces = spaces of very high dimension
e  (Consider vectors of 10,000 bits

— measure distance by Hamming distance (HD)

— or normalized Hamming distance (NHD)

e Mean HD = 5000, SD = 50 (binomial distribution)

e <107 of space closer than NHD = 0.47 or farther than 0.53 (£300 = £6 SD)
e  Therefore random vectors almost surely have NHD = 0.5£0.03

e  Vectors with <3000 changed bits still accurately recognized

e Ref: Pentti Kanerva (2009), Hyperdimensional Computing: An Introduction to
Computing in Distributed Representation with High-Dimensional Random Vectors,
Cognitive Computation, 1(2)
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Orthogonality of Random

Hyperdimensional Bipolar Vectors
e 99.99% probability of being within

46 of mean |u ' V| <A
o It1s 99.99% probable that random it oos 6 < 4n
n-dimensional vectors will be iff n|cos H| <4n

within € = 4 /+/n orthogonal
e &=4% forn=10,000

iff |COSH|<4/\/;=8

* Probability of being less Pr{|cos|> ¢} = erfc(ﬂ)
orthogonal than & decreases V2
exponentially with # N éexp(_gzn / 2) N % eXp(_z o2 ] 3)

e The brain gets approximate
orthogonality by using random

high-dimensional vectors
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Hyperdimensional Pattern Associator

Suppose p1, Pa, ---, Pp are a set of random hyperdimensional bipolar vectors (inputs)
e Letqq,qy, ..., qp be arbitrary bipolar vectors (outputs)

e Define Hebbian linear associator matrix
P
1
M=— E %
N qxPr
k=1

e Then Mp; = q, (table lookup)

e To encode a sequence of random vectors p4, Py, ---, Pp:
P—1

1 T
M = N E Prk+1Pxk
=1

e Then Mpy = pr+1 (sequence readout)
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Some math. ..

e Suppose pq, Py, -, Pp are random hyperdimensional bipolar vectors
1
*  Suppose M = =¥7_; q;p;
1
e Then, Mpy = (NZ§=1 ij]T') Pk
1
=~ (P + Xj2k q,P; )Pk
1 1
=~ qkpz;pk + X2k 9;Pj Pk
= Qi ++ X2k q;P; Px
e For random hyperdimensional vectors, pJT-p k=0

e Therefore, Mp, = qy
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BG + Cerebellum Capacities

e [ earn what satisties basic needs, and what to avoid
(BG reward learning)

— And what information to maintain in working memory
(PFC) to support successful behavior

e Learn basic Sensory — Motor mappings accurately
(Cerebellum error-driven learning)

— Sensory — Sensory mappings? (what 1s going to happen
next)

3/5/18 COSC 494/594 CCN 58
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BG + Cerebellum Incapacities

* Generalize knowledge to novel situations
— Lookup tables don’t generalize well...
e Learn abstract semantics
— Statistical regularities, higher-order categories, etc
* Encode episodic memories (specific events)
— Useful for instance-based reasoning
e Plan, anticipate, simulate, etc...

— Requires robust working memory

3/5/18 COSC 494/594 CCN 59
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emergent Demonstration:
Cereb
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