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Computational Psychiatry:

« Existing psychiatric diagnostic system and treatments
for mental or psychiatric disorder lacks biological
foundation [1].

« Complexity of brain presents challenges in developing
hypothesis to lead the research in psychiatry.

THE UNIVERSITY OF [1] Wang, Xiao-Jing, and John H. Krystal. "Computational psychiatry." Neuron 84.3 (2014): 638-654.
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Computational Psychiatry:
Computational Psychiatry aims to [2]:

-> model the computations that brain performs to find
solutions to problems.

-> understand how the ‘abnormal’ thoughts and
behaviors, (considered as psychiatric disorders) relate to
normal function and neural processes.

-> provide tools to identify the causes of particular
symptoms by establishing mathematical relationship
between symptoms, environments and neurobiology.

[2] Adams RA, Huys QJ, Roiser JP. Computational Psychiatry: towards a mathematically informed understanding of mental ililness.
E THE UNIVERSITY OF J Neurol Neurosurg Psychiatry. 2015 Jul 8:jnnp-2015.
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Computational Psychiatry:

« It encompasses two approaches [3]:

« Data-driven: Data analysis method from Machine Learning
(ML): Diagnostic classification, treatment selection, relationship between
symptoms.

» Theory-driven: Mathematically specify relations between
variables.

3] Huys QJ, Maia TV, Frank MJ. Computational psychiatry as a bridge from neuroscience to clinical applications. Nature neuroscience.

THE UNIVERSITY OF 2016 Mar;19(3):404.
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Theory-driven approach:

Models can be classified in many different ways: [3]
» Synthetic / Biophysically detailed model
» Algorithmic model
* Optimal model

[3] Huys QJ, Maia TV, Frank MJ. Computational psychiatry as a bridge from neuroscience to clinical applications. Nature neuroscience.

THE UNIVERSITY OF 2016 Mar;19(3):404.
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Synthetic / Biophysically detailed model:

« Helps to link biological abnormalities in psychiatric disorder to
neurodynamical and behavioral consequences [3].

* One such model has been described in [4].
* Objective of the model was to:

-> Study the effects of disinhibition associated with schizophrenia
in a cortical working memory model.

-> How stable the Working memory trace is, when perturbed by an
additional distracting input.

T THE UNIVERSITY OF [4] Murray, John D., et al. "Linking microcircuit dysfunction to cognitive impairment: effects of disinhibition associated with schizophrenia

TENNES SEE in a cortical working memory model." Cerebral cortex 24.4 (2012): 859-872.
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Synthetic / Biophysically detailed model:
The model included:
Recurrently connected pyramidal neurons (Excitatory)
GABAergic interneurons (Inhibitory)
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Synthetic / Biophysically detailed model:

« Disinhibition is implemented through a reduction of NMDA
conductance on interneurons.

» This weakens the recruitment of feedback inhibition i.e.
inhibitory interneurons are less strongly recruited by
pyramidal-cell activity,

« More pyramidal cells can be activated by recurrent collaterals.
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Synthetic / Biophysically detailed model:

« With increasing reduction of conductance, bump width and
firing rate of excitatory neurons increase.
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Synthetic / Biophysically detailed model:

* Broadening of the bump width in disinhibition case during

persistent activity in working memory.
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Synthetic / Biophysically detailed model:

Error:

Misses:
Nonmatch response to a
probe at a target location.

False alarms:
Match response to a probe
at a nontarget location.
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Synthetic / Biophysically detailed model:

Disinhibition broadening overlaps more with the near probe location
cases, hence results in increasing error rate.
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Algorithmic model:
* Reinforcement Learning model

« Applied extensively to deal with issues like emotional
decision-making, motivation, affect etc. [3].

¢ One such model has been described in [5]:

Negative symptoms are a core feature of schizophrenia and
the objective of the model was to establish relationship
between reinforcement learning abnormality with negative
symptoms.

[5] Gold, James M., et al. "Negative symptoms and the failure to represent the expected reward value of actions: behavioral and

ﬁﬂﬁﬁ’ﬁﬁ‘éléﬁt(ﬁ computational modeling evidence." Archives of general psychiatry 69.2 (2012): 129-138.
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Algorithmic model:
It was found that [5]:

Patients in the high-negative symptom group

-> demonstrated impaired learning from rewards but intact
loss-avoidance learning

-> failed to distinguish rewarding stimuli from loss-avoiding
stimuli in the test phase.

[5] Gold, James M., et al. "Negative symptoms and the failure to represent the expected reward value of actions: behavioral and

?ﬁﬁ’ﬁ%‘éléﬁt(ﬁ computational modeling evidence." Archives of general psychiatry 69.2 (2012): 129-138.
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Algorithmic model:

 First two pair corresponds to reward earning and last two pair relates to
loss avoidance.

Not a winner.
Try again!

THE UNIVERSITY OF
TENNE S SEE [5] Gold, James M., et al. "Negative symptoms and the failure to represent the expected reward value of actions: behavioral and

computational modeling evidence." Archives of general psychiatry 69.2 (2012): 129-138.
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Algorithmic model:

« Patients with high negative symptoms tend to learn from loss-avoidance
instead of reward earning.
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Figure 3. Performance on the gain and loss-avoidance difference score
among patients and healthy control (HC) subjects. The difference score was
calculated using block 4 performance. Scores above zero indicate better
learning from gain than from loss avoidance, while scores below zero
indicate better learning from loss avoidance than from gain. HNS indicates
high-negative symptom; LNS, low-negative symptom.

[5] Gold, James M., et al. "Negative symptoms and the failure to represent the expected reward value of actions: behavioral and
THE UNIVERSITY OF  computational modeling evidence." Archives of general psychiatry 69.2 (2012): 129-138.
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Bayesian model:

 Itis used to better understand the nature of the problems
and their solutions [3].

[3] Huys QJ, Maia TV, Frank MJ. Computational psychiatry as a bridge from neuroscience to clinical applications. Nature neuroscience.

THE UNIVERSITY OF 2016 Mar;19(3):404.
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Generative model of decision making:

volatili . -
Iy decision ‘noise

state uncertainty/ambiguity

risk/
outcome
uncertainty

sensory uncertainty

Possible uncertainty changes in schizophrenia:
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[2] Adams RA, Huys QJ, Roiser JP. Computational Psychiatry: towards a mathematically informed understanding of mental illness. J

THE UNIVERSITY OF  Neurol Neurosurg Psychiatry. 2015 Jul 8;jnnp-2015.
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Generative model of decision making:

x1-> input;

wi1-> associated uncertainty Q ethe
red jar”
RO

x2-> identity of the jar; W oy

decision ‘noise’

w2-> associated uncertainty; - sae uncertainyamtigty
. mcermrty ()
wo-> uncertainty about next outcome

sensory uncertainty

Possible uncertainty changes in schizophrenia:

x3-> belief that jar can be swapped ranrn Ly,
y-> decision,;

tau-> Uncertainty/noise in decision

[2] Adams RA, Huys QJ, Roiser JP. Computational Psychiatry: towards a mathematically informed understanding of mental illness. J
THE UNIVERSITY OF  Neurol Neurosurg Psychiatry. 2015 Jul 8;jnnp-2015.
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To conclude,

Computational psychiatry helps understand mental
disorder by allowing fitting computational model to
behavioral data.

[5] Gold, James M., et al. "Negative symptoms and the failure to represent the expected reward value of actions: behavioral and
THE UNIVERSITY OF  computational modeling evidence." Archives of general psychiatry 69.2 (2012): 129-138.
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Thank You....
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