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Abstract

Molecular combinatory computing makes use of a small set of chemical substitu-
tion reactions that together have the ability to implement arbitrary computations.
Therefore it provides a means of “programming” the synthesis of nanostructures and
of controlling their behavior by programmatic means. We illustrate the approach by
several simulated nano-assembly applications, and discuss a possible molecular im-
plementation in terms of covalently structured molecular building blocks connected
by hydrogen bonds.
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1 Introduction

Our goal is a systematic and general approach to nanostructure synthesis and
control through molecular combinatory computing. Combinatory computing
is based on simple network (graph) substitution operations, deriving from
combinatory logic [2], which are sufficient for any computation. When these
operations are implemented by molecular processes, they provide a means
of computing within supramolecular networks, which may be used to assem-
ble these networks or to control their behavior. Indeed, computer scientists
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Fig. 1. K combinator substitution operation. U, X, and Y represent any networks
(graphs).

—

have known for decades how to compile ordinary programs into combinator
programs, and so this approach offers the prospect of compiling computer
programs into molecular structures so that they may execute at the molecu-
lar level and with “molar” degrees of parallelism. Further, the Church-Rosser
Theorem [2, ch. 4] proves that substitutions may be performed in any order
or in parallel without affecting the computational result; this is a very advan-
tageous property for molecular computation. !

2 Combinatory Computing
2.1 Computational Primitives

Molecular combinatory programs are supramolecular structures in the form of
binary trees. The interior nodes of the tree (which we call A nodes) represent
the application of a function to its argument, the function and its argument
being represented by the two daughters of the A node. The leaf nodes are
molecular groups that function as primitive operations.

One of the remarkable theorems of combinatory logic is that two simple
substitution operations are sufficient for implementing any program (Turing-
computable function). One of these operations is called K and is described by
the substitution rule:

(KX)Y) = X. (1)

1 More precisely, the theorem states that if you get a result, you always get the
same result. Some orders, however, may lead to nonterminating computations that
produce no result. To date, we have found little need in molecular computing for
such potentially nonterminating programs.



Fig. 2. S and S combinator substitution operations. C = R for S and C' =V for S.
Note the reversed orientation of the rightmost A group.

Here X and Y represent arbitrary binary trees and K represents a leaf of
type K; parentheses group the subtrees of an interior node (an A node). The
interpretation of the rule is that wherever a subtree of the form ((KX)Y) is
found in the network, it may be replaced by X. This reaction is depicted in
Fig. 1, which also illustrates its similarity to a molecular substitution. The
effect of the operation is to delete Y from the network. The K group and
Y subtree are released as waste products, which may be recycled in later
reactions.

The second primitive operation is described by the rule:

(5X)Y)2) = (X2)(Y Z)). (2)

This rule may be interpreted in two ways, either as copying the subtree Z
or as creating two links to a shared copy of Z (thus creating a graph that is
not a tree). It can be proved that both interpretations produce the same com-
putational result, but they have different effects when used for nanostructure
assembly. For this reason we need both variants of the operation, which we
denote S (replicating) and S (sharing). The molecular implementations of the
two are very similar (see Fig. 2). If C =V (a sharing node), then we have two
links to a shared copy of Z:

(5X)Y)Z) = (xZ2V) (Y Z9)).

The structure created by this operator shares a single copy of Z; the notations
ZM and Z© refer to two links to a “Y-connector” (called a V node), which
links to the original copy of Z. (Subsequent computations may rearrange the
locations of the two links.) The principal purpose of the S operation is to
synthesize non-tree-structured supramolecular networks.

On the other hand, if C = R (a replication node), then other substitution
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Fig. 3. Y combinator primitive substitution operation. Arrows indicate link direc-
tion; note resulting elementary cycle between A and V groups.

reactions will begin the replication of Z, so that eventually the two links will
go to two independent copies of Z:

((5X)Y)2) = ((X2)(Y Z")).

Here Z' refers to a new copy of the structure Z, which is created by the
primitive replication (R) operation. It can be shown that computation can
proceed in parallel with replication without affecting the results of the process
(a consequence of the Church-Rosser theorem).

Although K and S are sufficient for all computation, they cannot (even with
S) create cyclic structures, for which we use an additional primitive operation
Y, which creates a self-referential link through a V node. It is defined [8]:

(YF) = 4y where y = (Fy©). (3)

See Fig. 3. The operation creates an elementary cycle, which may be expanded
by computation in combinator tree F'. Examples of the use of both Sand Y
are given in Sec. 3.

2.2 Molecular Extensions

The primitive substitutions already mentioned (K,S,S,Y) are adequate for
describing the assembly of static structures, but for dynamic applications we
will need additional operations that can respond to environmental conditions
(“sensors”) or have noncomputational effects (“actuators”). Many of these
will be ad hoc additions to the basic computational framework, but we are
developing general interface conventions to facilitate the development of a
systematic nanotechnology [10]. For example, we may design a molecular group
K_, that is normally inert, but is recognized (and therefore operates) as K



Fig. 4. Visualization of cross-linked membrane generated by xgrids 4NNN.

in the presence of an environmental condition A\ (e.g., light of a particular
wavelength or a particular chemical species). Such a sensor may be used to
control conditional execution, such as the opening or closing of a channel in a
membrane (see Sec. 3.2).

3 Nanostructure Synthesis and Control
3.1 Assembly of Static Structures

We have investigated the synthesis of a number of nanostructures by molec-
ular combinatory computing. These include membranes and nanostructures
of several different architectures. We have developed also systematic means
to combine these into larger, heterogeneous structures, and to include active
elements such as channels, sensors, and nano-actuators.

For a first example of nanostructure synthesis, we can consider a molecu-
lar combinatory program to assemble a membrane such as shown in Fig. 4.
This is produced by xgrid; JNNN (where N is any inert group); in general,
xgrid,, , XY Z computes an m X n membrane in which X, Y, and Z are the
terminal groups to be used on the left ends, right ends, and bottoms of the
chains. xgrid,,, ,, is defined:

xgrid, , = BB(Zon 1W)) (B(Zy W) (Znr)). (4)
Unfortunately, space does not permit an explanation of this program, which

may be found, with correctness proofs, is a prior report [5]. The above defini-
tion makes use of various standard combinators (B, W, etc.), which are defined



Fig. 6. Visualization of side of small cross-linked nanotube generated by xtubes 4N.

in terms of K, S, or S [2]. When all these definitions are expanded, xgrid, , ,, is
found to be a binary tree of size 20m + 28n + 73 primitive groups (A, K, S, S)
[5]. Therefore, the program for an m X n membrane is of size O(m + n). This
does not seem to be unreasonable, even for large membranes, but it can be
decreased more if necessary. For example, if m = 10*, then Z,, in Eq. 4 can be
replaced by Z;Z1y, reducing the size of this part of the program from O(10%)
to O(k) (explained elsewhere [8]). Similar compressions can be applied to the
other parts dependent on m and n. Therefore, by these recoding techniques
the size of the program can be successively reduced to O(logm + logn), to
O(loglogm + loglogn), etc. Furthermore, as will be explained later, large
membranes can be synthesized by iterative assembly of small patches.

The Y (cycle forming) operation can be used to connect the lower and upper
margins of the cross-linked membrane to generate a nanotube such as shown
in Figs. 5 and 6. This is created by xtubes 4N, where

xtube,, , = WL (W™ (&™N)(B™Y (Cp1))).



The program is explained in another report [5]; its size is 102m + 44n — 96
primitive groups (A, K,N,S,S,Y).

The membranes and nanotubes previously described are said to have a unit
mesh, that is, the dimensions of the basic cells are determined by the size of the
primitive groups (A, V) and the links between them. It is relatively straight-
forward to modify the preceding definitions to have larger mesh-dimensions
(multiples of the cells). In addition, various pendant groups can be incorpo-
rated into the structure [10].

The preceding examples have shown how we can assemble membranes and
nanotubes that are homogeneous in structure, but often it is required to gen-
erate heterogeneous structures. For example, we may want a membrane with
pores or channels distributed through it is some regular way. To accomplish
this we have developed a general rectangular “patch format” [10].

Any such patch may be joined either horizontally or vertically with another
patch of compatible dimensions, to yield a patch combining the two. For ex-
ample, if P is an m x n patch and @ is an m x n' patch, then B"*'QP is
an m X (n + n') patch with @ to the right of P. Similarly, if P is m x n and
Q@ is m' x n, then P o B™(Q is the (m + m') x n patch with P below Q. In
this way patches may be hierarchically assembled into larger patches. Fur-
thermore, combinatory computing permits the patch assembly operations to
iterated, thus creating large membranes with complex hierarchical structures.
This allows us to build upon a basic library of elementary membrane patches,
pores, and other nanostructural units.

Nanotubes can also be synthesized in patch format to allow end-to-end con-
nection. If 7" is a patchable tube synthesizer of length m and U is one of length
m/', both of the same circumference n, then U o T is a patch synthesizer that
connects U to the right of 7. This operation is easily iterated, for T* is k repli-
cates of T connected end-to-end (and thus of length km). This operation can
also be expressed Z,T. If, as is commonly the case, the size of the synthesizer
T is O(m + n), then the size of Z,T is O(k + m + n).

3.2  Dynamic Structures

Rather than computing to a stable state, dynamic structures remain poten-
tially active, ready to respond to environmental conditions [10]. Unfortunately,
space does not permit a detailed discussion of the synthesis of membranes with
pores and channels; the following brief remarks must suffice.

A rectangular pore is simply a patch in which the interior is an open space.
These pores can be combined with other patches to create membranes with



pores of a given size and distribution (all in terms of the fundamental units,
of course). Pores can be included in the surfaces of nanotubes as well.

An example of an active structure is a channel in a membrane, which may
open or close in response to a change in the environment. This is most sim-
ply accomplished by synthesizing a molecular group, which we denote K_,,
that responds to condition A by reconfiguring into a K combinator. The sim-
plest channels are “one-shot,” that is, once opened they remain open, or once
closed, remain closed. A one-shot channel that closes when triggered can be
implemented by using a sensor molecule to trigger the assembly of a mem-
brane patch covering a pore. A channel that opens works similarly, discarding
the covering membrane patch. Resettable channels, which can be opened and
closed any number of times, are more complicated, since they need a supply
of sensor molecules that are protected from being triggered before they are
used.

Nano-actuators can, of course, be designed as ad hoc extensions to the com-
binatory framework, but we are also investigating purely computational im-
plementations of actuators. For example, under program control, we can syn-
thesize a chain of molecular units; similarly under program control, we can
collapse such a chain into a single unit. By using such processes in comple-
mentary pairs (like opposing muscle groups) we have computational control of
physical motion. The force exerted by each such nano-actuator depends on the
linking bond strength (perhaps 50 kJ/mol; see Sec. 4.1), but they can work
cooperatively to generate larger forces.

Molecular combinatory computing is not limited to nanostructure synthesis
and control, but may be applied to more conventional computational prob-
lems. Suppose we want to attack an NP problem with molar parallelism (that
is, with a degree of parallelism on the order of 10?3). Further suppose we have
a polynomial-time program p to test the correctness of a potential solution x.
As previously remarked, the program p can be compiled into a molecular com-
binator tree P; similarly a potential solution x can be encoded as a combinator
tree X. Then the tree (PX) will evaluate the potential solution, reducing to
the molecular combinator representation of true or false (usually K and (SK))
[8]. Therefore, by producing enough replicates of P and a sufficient variety of
potential solutions X, we may evaluate the potential solutions with molar
parallelism.

4 Molecular Implementation

Of course, all the advantages of molecular combinatory computing are illu-
sory unless a molecular implementation of the combinatory operations can be



discovered or developed. Therefore we have begun investigating one feasible
molecular implementation. The two principal problems are: (1) How are the
combinator networks represented molecularly? (2) How are the substitution
operations implemented molecularly?

4.1 Networks

Combinatory computing proceeds by making substitutions in networks of in-
terconnected nodes. These networks constitute both the medium in which
computation takes place and the nanostructure created by the computational
process. Therefore it is necessary to consider the molecular implementation
of these networks as well as the processes by which they may be transformed
according to the rules of combinatory computing.

The first requirement is that nodes and linking groups need to be stable in
themselves, but the interconnections between them need to be sufficiently
labile to permit the substitutions. Second, the node types (A, K, S, etc.) need
to identifiable, so that the correct substitutions take place. In addition, for
more secure matching of structures, the link (L) groups should be identifiable.
Further, it is necessary to be able to distinguish the various binding sites on
a node. For example, an A node has three distinct sites: the result site, an
operator argument, and an operand argument [8].

Our current approach is to implement the networks as hydrogen-bonded cova-
lently-structured molecular building blocks (MBBs). Hydrogen bonds are used
because they are labile in an aqueous environment, balancing reasonable sta-
bility with the flexibility required for continual structural reorganization. Hy-
drogen bonding as a means of connecting and identifying covalently-bonded
subunits is the basis, of course, for recognition and ligation in DNA and re-
lated molecules. Further, large, tree-like structures called dendrimers have
been assembled from hydrogen-bonded MBBs [11,14]. Nevertheless, hydrogen
bonds are not very stable in aqueous solution, so there may be a delicate
balance between stability and lability. Covalently-structured MBBs are used
because they provide a comparatively rigid framework in which to embed hy-
drogen bonding sites, and because there is an extensive synthetic precedent
for engineering molecules of the required shape and with appropriately located
hydrogen bonding sites [1].

It is necessary to be able to distinguish the “head” and “tail” ends [8] of the
L groups (i.e., our graph edges are directed), and we estimate that two or
three H-bonds are required to do this securely. (For comparison, thymine and
adenine have two H-bonds, cytosine and guanine have three.) Therefore, if we
take 20 kJ/mol as the strength of a typical H-bond (the strengths of which



vary from 2 to 40 kJ/mol), then the total connection strength of a link will
be about 50 kJ/mol.

Hydrogen bonding can also be used for recognizing different kinds of nodes by
synthesizing them with unique arrangements of donor and acceptor regions.
Currently [8], we are using eleven different node types (A, D, K, L, P, Q, R, S, S,
V, Y), so it would seem that arrangements of five H-bonds would be sufficient
(since they accommodate 16 complementary pairs of bond patterns).

As previously remarked, it is necessary to be able to distinguish the three
binding sites of an A node. However, since the “tail” of any L group must be
able to bind to either of the A’s argument sites, they must use the same H-
bond pattern. Therefore, at least part of the discrimination of the A’s binding
sites must be on the basis of the orientation of the A node. Fortunately, the
orientation specificity of H-bonds allows this.

Therefore, it appears that our primitive groups will require two or three H-
bonds at each attachment site and four or five for secure identification of node
type. By comparison with thymine (23 atoms) and adenine (26 atoms), which
have two H-bonds each, we anticipate that our primitive combinators (K, S,
S, Y) might be 90 atoms in size, L groups about 120, and ternary groups (A,
V, R) about 150.

4.2 Substitutions

We state briefly the requirements on a molecular implementation of the prim-
itive combinator substitutions. First, there must be a way of matching the
network configurations that enable the substitution reactions. For example,
a K-substitution (Eq. 1) is enabled by a leftward-branching tree of the form
((KX)Y), and an S-substitution (Eq. 2) is enabled by a leftward-branching tree
of the form (((SX)Y)Z) (see Figs. 1 and 2). So also for the other primitive
combinators (D, R, S, Y). Second, the variable parts of the matched structures
(represented in the substitution rules by italic variables such as X and Y),
which may be arbitrarily large supramolecular networks, must be bound in
some way. Third, a new molecular structure must be constructed, incorporat-
ing some or all of these variable parts. Further, reaction waste products must
be recycled or eliminated from the system, for several reasons. An obvious
one is efficiency; another is to avoid the reaction space becoming clogged with
waste. Less obvious is the fact that discarded molecular networks (such as Y
in Eq. 1) may contain large executable structures; by the laws of combinatory
logic, computation in these discarded networks cannot affect the computa-
tional result, but they can consume resources.

There are also energetic constraints on the substitution reactions, for any sys-
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tem of molecular computation must be fueled if it is universal (has the power
of a universal Turing machine). This is because a spontaneous chemical reac-
tion decreases Gibbs free energy, and so must eventually reach equilibrium,
but a computation may be nonterminating. To have the power of universal
computation we must have the potential of nonterminating programs. Fortu-
nately we have several recent concrete examples of how such nonterminating
processes may be fueled. For example, Koumura et al. [3] have demonstrated
continuous (nonterminating) unidirectional rotary motion driven by ultravio-
let light. In the four-phase rotation, alternating phases are by photochemical
reaction (uphill) and by thermal relaxation (downhill). Also, Yurke et al. [13]
have demonstrated DNA “tweezers,” which can be cycled between their open
and closed states so long as an appropriate “DNA fuel” is provided. LaBean
et al. [4] have demonstrated autonomous DNA “robots” powered by ATP con-
sumption of a ligase. These all provide plausible models of how molecular com-
binatory computation might be powered. We can conclude that the individual
steps of a combinator substitution must be either energetically “downhill” or
fueled by external energy or reaction resources. In our case, the most likely
sources of fuel are the various species of “substitutase” molecules, considered
next.

To implement the substitution processes we are investigating the use of enzyme-
like covalently-structured molecules to recognize network sites at which sub-
stitutions are allowed, and (through graded electrostatic interactions) to re-
arrange the hydrogen bonds to effect the substitutions. Again, the rich syn-
thetic precedent for covalently-structured molecules makes it likely that the
required enzyme-like compounds, which we call substitutase molecules, can be
engineered. We anticipate the use of three enzyme-like covalently-structured
molecules for each primitive combinator; they implement three stages in each
substitution operation. The first of these molecules, which we call analysase,
is intended to recognize the pattern enabling the substitution and to bind to
the components of the matching subtree. For example, K-analysase binds to a
structure of the form ((KX)Y) (see Fig. 1), in particular to links to the vari-
able components U, X, and Y. The second stage, which is implemented by a
permutase molecule, physically relocates some of the components to prepare
them for the last stage. To this end, we are investigating the use of graded
electrostatic interactions to move the bound variable parts into position for the
correct substitution product. The permutase molecule also includes any fixed
combinators (e.g., R, V) that are required for the product, which are bound to
other product components at this time. At the end of this stage, the product
network is essentially complete, but still bound to the permutase molecule.
The final molecule, a synthesase, recognizes the configuration created by the
permutase, and binds to the waste structures, displacing and releasing the de-
sired product from the permutase. For example, S- or S-synthesase will remove
the (S- or S-) permutase and release the structure on the right in Fig. 2. Here
again we are depending on the extensive synthetic precedent for covalently-
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structured molecules with strategically located hydrogen bonding sites.

4.8 Discussion

Finally, we will review some of the issues that must be resolved and prob-
lems that must be solved before molecular combinatory computing can be
applied to nanotechnology. First, of course, it will be necessary to synthesize
the required MBBs for the nodes and links, and to synthesize the required
substitutase molecules; fortunately, there is every reason to believe that this
is well within the capabilities of the state of the art of synthetic chemistry [1].
Another issue is error control: substitutions will not take place with perfect
accuracy, and we know that some substitution errors can result in runaway
reactions [7,12]. Therefore we must develop means to prevent errors or to
correct them soon after they occur. A third issue is that the supramolecu-
lar networks may get quite dense during computation, and we are concerned
about the ability, and probability, of the substitutase molecules reaching the
sites to which they should bind (i.e., what are the steric constraints on the
processes?). Nevertheless, the enormous potential of molecular combinatory
computing makes these problems worth solving.

5 Conclusions

A small set of simple network-substitution operations are sufficient to imple-
ment any computation that can be performed on a digital computer. These op-
erations, which may be performed in any order or in parallel, provide an ideal
model for autonomous molecular computation. We displayed several simulated
applications to nanostructure synthesis, and indicated how it may be applied
to the assembly of large, active, heterogeneous structures. Finally, we dis-
cussed a possible molecular implementation based on networks of covalently-
structured MBBs connected by H-bonds, and substitution operations imple-
mented by endothermic reactions with synthetic “substitutase” molecules. Ad-
ditional information about this project can be found in reports and articles
[5,6,8-10] archived at the project website: http://www.cs.utk.edu/ mclennan/
UPIM.
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