Combinatory Logic
For Autonomous Molecular Computation

Bruce J. MacLennan
Department of Computer Science, University of Tennessee, Knoxville

1 Introduction

Our goal is a systematic and general approach to na-
nostructure synthesis and control through molecular
combinatory computing. Combinatory computing is
based on simple network (graph) substitution opera-
tions, deriving from combinatory logic [2], which are
sufficient for any computation. When these opera-
tions are implemented by molecular processes, they
provide a means of computing within supramolecu-
lar networks, which may be used to assemble these
networks or to control their behavior. Indeed, com-
puter scientists have known for decades how to com-
pile ordinary programs into combinator programs,
and so this approach offers the prospect of compil-
ing computer programs into molecular structures so
that they may execute at the molecular level and
with “molar” degrees of parallelism. Further, the
Church-Rosser Theorem [2, ch. 4] proves that sub-
stitutions may be performed in any order or in par-
allel without affecting the computational result; this
is very advantageous for molecular computation.

2 Combinatory Computing

One of the remarkable theorems of combinatory
logic is that two simple substitution operations are
sufficient for implementing any program (Turing-
computable function). One of these operations is

/o

(2
—
A
RO

Figure 1: K combinator substitution operation.

Figure 2: S and S combinator substitution opera-
tions.

called K and is described by the substitution rule:
(KX)Y) = X.

Here X and Y represent arbitrary binary trees and
K is a leaf labeled K; parentheses group the subtrees
of an interior node (which we designate A). The
interpretation of the rule is that wherever a subtree
of the form ((KX)Y) is found in the network, it may
be replaced by X. This reaction is depicted in Fig. 1,
which also illustrates its similarity to a molecular
substitution. The effect of the operation is to delete
Y from the network.

The second primitive operation is described by the
rule:

(8X)Y)2) = (X 2)(Y 2)).

This rule may be interpreted in two ways, either as
copying the subtree Z or as creating two links to
a shared copy of Z (thus creating a graph that is
not a tree). It can be proved that both interpre-
tations produce the same computational result, but
they have different effects when used for nanostruc-
ture assembly. For this reason we need both variants
of the operation, which we denote S (replicating)
and S (sharing). The molecular implementations of
the two are very similar (see Fig. 2). If C =V (a
sharing node), then we have two links to a shared

Figure 3: Visualization of cross-linked membrane.

copy of Z. On the other hand, if C' = R (a repli-
cation node), then other substitution reactions will
begin the replication of Z, so that eventually the two
links will go to two independent copies of Z. It can
be shown that computation can proceed in parallel
with replication without affecting the results of the
process.

Although K and S are sufficient for all computa-
tion, they cannot (even with S) create cyclic struc-
tures, for which we use an additional primitive oper-
ation Y, which creates a self-referential link through
a V node [6].

The primitive substitutions already mentioned
(K,S,S,Y) are adequate for describing the assembly
of static structures, but for dynamic applications we
will need additional operations that can respond to
environmental conditions (“sensors”) or have non-
computational effects (“actuators”). Many of these
will be ad hoc additions to the basic computational
framework, but we are developing general interface
conventions to facilitate the development of a sys-
tematic nanotechnology [8]. For example, we may
design a molecular group K_, that is normally inert,
but is recognized (and therefore operates) as K in the
presence of an environmental condition A (e.g., light
of a particular wavelength or a particular chemical
species). Such a sensor may be used to control con-
ditional execution, such as the opening or closing of
a channel in a membrane.

3 Nanostructure Synthesis
and Control

For a first example of nanostructure synthesis, we
can consider a molecular combinatory program to
assemble a membrane such as shown in Fig. 3. This
is produced by xgrid; ;,NNN (where N is any inert

Figure 4: Visualization of small cross-linked nano-
tube.

group); xgrid,, ,, which computes an m X n mem-
brane, is defined:

xgrid,, , = B(B(Zm—1W))(B(Zn-1W)(Zn ®r)).

Unfortunately, space does not permit an explana-
tion of this program, which may be found, with
correctness proofs, is a prior report [4]. The above
definition makes use of various combinators (B, W,
etc.), which are defined in terms of K, S, or S.
When all these definitions are expanded, xgrid,, ,
is found to be a binary tree of size 20m + 28n + 73
primitive groups (A, K,S,S) [4]. Therefore, the pro-
gram for an m X n membrane is of size O(m + n).
Perhaps remarkably, standard recoding techniques
[4, 6] can be successively applied to reduce this to
O(logm + logn), to O(loglogm + loglogn), etc.

We have also developed combinatory programs
for other membrane architectures, such as hexag-
onal grids [4]. Further, while the “mesh size” of
these membranes is determined by the length of the
link group, simple variants of the programs produce
meshes that are multiples of this fundamental length
8]

The Y (cycle forming) operation can be used to
connect the lower and upper margins of the cross-
linked membrane to generate a nanotube such as
shown in Fig. 4 [4]. This is created by xtubes 4N,
where

xtubep,, , = W™ H (W™~ (7'N) (B™Y (Cpn1))).-

The size of this program is 102m +44n — 96 primitive
groups.

The preceding examples have shown how we can
assemble membranes and nanotubes that are ho-
mogeneous in structure, but often it is required to
generate heterogeneous structures. For example, we

may want a membrane with pores or channels dis-
tributed through it is some regular way. To accom-
plish this we have developed a general rectangular
“patch format” [8]. Any such patch may be joined
either horizontally or vertically with another patch
of compatible dimensions, to yield a patch combin-
ing the two. In this way patches may be hierarchi-
cally assembled into larger patches. Furthermore,
combinatory computing permits the patch assem-
bly operations to iterated, thus creating large mem-
branes with complex hierarchical structures. This
allows us to build upon a basic library of elementary
membrane patches, pores, and other nanostructural
units. Similar techniques may be used to assemble
heterogeneous nanotubes from smaller segments, Y-
connectors, etc.

Rather than computing to a stable state, dynamic
structures remain potentially active, ready to re-
spond to environmental conditions [8]. An exam-
ple is a channel in a membrane, which may open or
close in response to a change in the environment.
The simplest channels are “one-shot,” that is, once
opened they remain open, or once closed, remain
closed. A one-shot channel that closes when trig-
gered can be implemented by using a sensor molecule
to trigger the assembly of a membrane patch cover-
ing a pore. A channel that opens works similarly,
discarding the covering membrane patch. Resettable
channels, which can be opened and closed any num-
ber of times, are more complicated, since they need
a supply of sensor molecules that are protected from
being triggered before they are used.

Nano-actuators can, of course, be designed as ad
hoc extensions to the combinatory framework, but
we are also investigating purely computational im-
plementations of actuators. For example, under pro-
gram control, we can synthesize a chain of molecu-
lar units; similarly under program control, we can
collapse such a chain into a single unit. By using
such processes in complementary pairs (like oppos-
ing muscle groups) we have computational control
of physical motion. The force exerted by each such
nano-actuator depends on the linking bond strength
(perhaps 50 kJ/mol; see Sec. 5), but they can work
cooperatively to generate larger forces.

4 Computational Applications

Molecular combinatory computing is not limited to
nanostructure synthesis and control, but may be ap-
plied to more conventional computational problems.
Suppose we want to attack an NP problem with mo-
lar parallelism (that is, with a degree of parallelism
on the order of 10%?). Further suppose we have a
polynomial-time program p to test the correctness

of a potential solution z. As previously remarked,
the program p can be compiled into a molecular com-
binator tree P; similarly a potential solution = can
be encoded as a combinator tree X. Then the tree
(PX) will evaluate the potential solution, reducing
to the molecular combinator representation of true
or false (usually K and (SK)). Therefore, by produc-
ing enough replicates of P and a sufficient variety of
potential solutions X, we may evaluate the potential
solutions with molar parallelism.

5 Molecular Implementation

Of course, all the advantages of molecular combina-
tory computing are illusory unless a molecular im-
plementation of the combinatory operations can be
discovered or developed. Therefore we have spent
some time trying to develop at least one feasible
molecular implementation. The two principal prob-
lems are: (1) How are the combinator networks rep-
resented molecularly? (2) How are the substitution
operations implemented molecularly?

We are investigating the representation of the
networks as hydrogen-bonded covalently-structured
molecular building blocks (MBBs). Hydrogen bonds
are used because they are labile in an aqueous
environment, balancing reasonable stability with
the flexibility required for structural reorganiza-
tion. (Hydrogen bond strength is in the range 2-40
kJ/mol.) Hydrogen bonds are the basis, of course,
for recognition and ligation in DNA and related
molecules. Further, large, tree-like structures called
dendrimers have been assembled from hydrogen-
bonded MBBs [9, 11].

Covalently-structured MBBs are used because
they provide a comparatively rigid framework in
which to embed hydrogen bonding sites, and be-
cause there is an extensive synthetic precedent for
their design [1].

It appears that our primitive groups (A, K, R, S,
S, V, Y and the links) will require two or three H-
bonds at each attachment site and four or five for
secure identification of node type. By comparison
with thymine (23 atoms) and adenine (26 atoms),
which have two H-bonds each, we anticipate that
the size of our building blocks might be 90 atoms
(K,S,S,Y) to 150 atoms (A, R, V).

To implement the substitutions we anticipate
the use of three enzyme-like covalently-structured
molecules for each primitive combinator; they im-
plement three stages in each substitution operation.
The first of these molecules, which we call analysase,
is intended to recognize the pattern enabling the op-
eration and to bind to the components of the match-
ing subtree. For example, K-analysase binds to a

structure of the form ((KX)Y') (see Fig. 1), in par-
ticular to links to the variable components U, X,
and Y. The second stage, which is implemented by a
permutase molecule, physically relocates some of the
components to prepare them for the last stage. We
are investigating the use of graded electrostatic po-
tentials to effect this relocation. The final molecule,
a synthesase, recognizes the configuration created by
the permutase, and binds to the waste structures, re-
leasing the desired product from the permutase. For
example, S- or S-synthesase will remove the S- or S-
permutase from the structure on the right in Fig. 2.
Here again we are depending on the extensive syn-
thetic precedent for covalently-structured molecules
with strategically located hydrogen bonding sites.

It is necessary to point out that any system of
molecular computation must be fueled if it is univer-
sal (has the power of a universal Turing machine).
This is because a spontaneous chemical reaction de-
creases Gibbs free energy, and so must eventually
reach equilibrium, but a computation may be non-
terminating. To have the power of universal compu-
tation we must have the potential of nonterminating
programs. Fortunately we have several demonstra-
tions of continuously operating nanomachines driven
by electromagnetic radiation or chemical fuel [3, 10],
which demonstrate the feasibility of nonterminating
reactions. In our case, the most likely sources of fuel
are the various species of analysase, permutase, and
synthesase molecules.

6 Conclusions

A small set of simple network-substitution oper-
ations are sufficient to implement any computa-
tion that can be performed on a digital com-
puter. These operations, which may be per-
formed in any order or in parallel, provide an
ideal model for autonomous molecular computa-
tion. We have given several examples of the use
of molecular combinatory programming to create
useful nanostructures. We also presented a possi-
ble implementation based on enzyme-mediated re-
organization of large networks of molecular build-
ing blocks linked by hydrogen bonds. Additional
information about this project can be found in re-
ports and articles archived at the project website:
http://www.cs.utk.edu/ "mclennan/UPIM.

7 Acknowledgments
This research is supported by Nanoscale Exploratory

Research grant CCR-0210094 from the National Sci-
ence Foundation. It has been facilitated by a grant

from the University of Tennessee, Knoxville, Center
for Information Technology Research.

References

[1] D. G. Allis and J. T. Spencer. Nanostructural
architectures from molecular building blocks.
In W. A. Goddard, D. W. Brenner, S. E.
Lyshevski, and G. J. Iafrate, eds., Handbook
of Nanoscience, Engineering, and Technology,
ch. 16. CRC Press, 2003.

[2] H. B. Curry, R. Feys, and W. Craig. Combina-
tory Logic, Volume I. North-Holland, 1958.

[3] N. Koumura, R. W. J. Zijlstra, R. A. van
Delden, N. Harada, and B. L. Feringa. Light-
driven monodirectional molecular rotor. Na-
ture, 401:152-5, 1999.

[4] B. J. MacLennan. Membranes and nano-
tubes: UPIM report 4. Tech. Rep. CS-02-495,
Dept. of Computer Science, Univ. of Tennessee,
Knoxville, 2002.

[5] — Molecular combinator reference manual.
Tech. Rep., Dept. of Computer Science, Univ.
of Tennessee, Knoxville, 2002.

[6] —. Replication, sharing, deletion, lists, and nu-
merals: UPIM report 3. Tech. Rep. CS-02-493,
Dept. of Computer Science, Univ. of Tennessee,
Knoxville, 2002.

[7] —. Universally programmable intelligent mat-
ter (exploratory research proposal): UPIM re-
port 1. Tech. Rep. CS-02-486, Dept. of Com-
puter Science, Univ. of Tennessee, Knoxville,
2002.

[8] —. Sensors, patches, pores, and channels:
UPIM report 5. Tech. Rep. forthcoming,
Dept. of Computer Science, Univ. of Tennessee,
Knoxville, 2003.

[9] M. Simard, D. Su, and J. D. Wuest. Use
of hydrogen bonds to control molecular aggre-
gation. Self-assembly of three-dimensional net-
works with large chambers. J. of American
Chemical Society, 113(12):4696-4698, 1991.

[10] B. Yurke, A. J. Turberfield, A. P. Mills Jr,
F. C. Simmel, and J. L. Neumann. A DNA-
fuelled molecular machine made of DNA. Na-
ture, 406:605-8, 2000.

[11] S. C. Zimmerman, F. W. Zeng, D. E. C. Re-
ichert, and S. V. Kolotuchin. Self-assembling
dendrimers. Science, 271:1095, 1996.

