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Introduction

. Most of the combinator definitions and equivalences (hdybose peculiar to molec-
ular computation, such & D, andV) are from Curry and Feys [1].

. We follow the usual convention in combinatory logic of ¢iinig parentheses that as-
sociate to the left. For exampl&Y'Z meang (XY')Z), andB(BW(BC))(BB(BB))
meang((B((BW)(BC)))((BB)(BB))).

. In the definitions of the operators, variables are markid primes (e.g.,.X’) and
parenthesized superscripts (e¥) to indicate shared complexes. See the descrip-
tion of theV (Sharing) Primitive (Section 17).

. Notice that the following are distinct and have differemanings: X" (powers of
combinators),X,, (polyadic combinators)X ™ (sharing), X, (deferred combina-
tors), X[ (left reduction), X, (polyadic extension); se@ther Notation (p. 17). X,

is also used in the usual way to denote an element in a sEriek,, X3, .... When
subscripts and superscripts of any kind are combined, thecsipts take precedence;
thus®™ meang ®,,)™.

. The sizelX| of a nonprimitive combinatoX is expressed in terms of the number
of S, K, andA nodes that it contains. Since nonprimitive combinator d&dims are
binary trees, if they contain no other nodes besifleK, andA, then the counts
satisfyA = S + K — 1, and the total nodes afle= 24 +1=2(S + K) — 1.

. A combinator is calledegular if it does not affect its first argument, thus,
FXY,-- Y, = XZ,--- Z,. Q)
Most combinators (e.gB, B, C, I, K, S, W, Y, &, ®,, ¥) are regular.

. A combinator is said to be airder n if it expectsn arguments. Thubkis of order 1,
K'is of order 2, anc is order 3.

. If F'is aregular combinator, as in Eq. 1, then it is said to bdegfee m; that is, it
producesn combinators beyond the one required for its regularity. &@mple |
andK are of degree 0, and andS are of order 2S,, is of ordern + 2 and of degree
n+ 1.



Definitions of Combinators

1 A Primitive (Application Complex)

The application A) complex represents the application of a combinator torgsiment.
The application of" to X, written F' X, is represented by a molecular compléXF X, in
which the “operator” binding site ok is linked to F', the “operand” binding site is linked
to X, and the “result” site is linked t®/, the complex into which the result X will be
linked.

All (or most) of the non-terminal (interior) nodes of a comdior tree aré\ nodes; the
terminals (leaves) are primitive combinators (eSgandK). If the network is not a tree, but
has shared nodes or cycles, then (most of) the non-termittdshareA andV (sharing)
nodes. (We say “most” because later we may want to defineiaddiinterior node types.)

2 B Combinator (Elementary Compositor)

Definition:
BXYZ = X(YZ) 2)
Reduction to SK:
B = S(KS)K 3)
Size:2S + 2K + 3A = T total.
Equivalences:
B = CB 4
B = CUIOWU) 5)
B"FGX;---X, = F(GX;---X,) (6)
B FX: - X,YZ = FX;---X,(YZ) (7)
B fo--- X = Fo(Fi(-- (FRoX)--9), n>0 (8)
BMEX\Y, - XY, = F(X1Y1) - (X,Y,), n>0 9)

Notes: Eq. 2 shows that if’ andG are two order-1 (monadic) functions, thB#'G is
their compositionF’ o G (see also Sec. 28).
If Frisregular (p. 2)FXY:---Y, = XZ;,---Z,, then

BFGXY,---Y, = GXZ,---Z,.

That is, G is applied to the result of applying to the argumentXY; ---Y,,; F is per-
formed, therG.



3 B’ Combinator (Permuting Compositor)

Definition:
B'XYZ = X(ZY) (10)

Reduction to SK:
B = CB (1)

Size:7S + 6K + 12A = 25 total.
Equivalences:

(B)'FXGy -+ Gn = F(Gn(---(G1X)-2), n >0 (12)
wFX1-- X YZ = FX;---X,(ZY) (13)
BlyF X1 Xy = F(Xpy1---X1),n>0 (14)

BFXY;---X,Y, = FYX)) - (YpX,), n>0 (15)

4 C Combinator (Elementary Permutator)

Definition:
CXYZ = X7Y (16)

Reduction to SK:
C = S(BBS)(KK) a7

Size:6S + 6K + 11A = 23 total.
Equivalences:

CoyFX,---X,YZ = FX,---X,ZY (18)
CF X Xp X = FX0 X+ X, (19)
CMPX Xy Xph = FXy - XXy (20)

C = JC(JC,)(C,) (21)

5 C, Combinator (Pure Permutator)

Definition:
CXY =YX (22)
Reduction to SK:
C., = dl (23)
C., = Ji (24)



Size:6S + 6K + 11A = 23 total (Def. 23).
Equivalences:

CrXy e X1 = Xppr--- X1, 0> 0 (25)
CmXi- Xy = Xpp(-(XoXy)-+4), n >0 (26)

6 D Primitive (Elementary Deleter)

Reaction:
Dp+PQ — Pp+DQ (27)
DAXY +DQ+PQ — DX + DY + PAQ, (28)
DURX +2PQ — UX +P3,RQ+DQ (29)
DUVX +PQ — PUVX +DQ (30)
DPVX +PQ — DX +PyVQ (32)

Notes: In Eq. 27,p represents any primitive combinator (e.§.or K). Notice that in
Eq. 29, a deletion cancels a replication in progress. Howeved. 30, a deletion does not
affect a shared complex, except to cap the deleted shankg li

Reaction Specification:

d D, aa A x, y,d: D, p: P, g Q, q: Q.
da alx, a2y dqgq,pQq
=> (DeleteApplication)

dx, dy,pa algqg az?2dg.

d D, unrnR x p:P,p:P, g Q, q: Q.
drl, ur2 rx,pq p g
=> (DeleteReplicatorl)

ux, pril pr2 raq dq.

d D, unrnR x p:P,p:P, g Q, q: Q.
dr2, url rx,pq p q
=> (DeleteReplicator2)

ux, pril pr2 raq dq.

d D, u v:V, x p:P,qg Q.

dviiuvz2 vx pq

=> (DeleteSharingl)
pvliluvz?2vxdaq.

d D, u v:V, x p:P,qg Q.



dv2 uvl1lvx pq
=> (DeleteSharing2)

d:

pvz2 uvlvyxdaq.

D, p: P, viV, x p: P, g Q.

dvi1lpv2 vx pg
=> (DeleteFinalSharingl)

d:

pvlilpv2vaqg dx

D, p: P, viV, x p:P, g Q.

dva2 pvilvx pg
=> (DeleteFinalSharing2)

d:

pvz2pvlilvaqg dx

D, pc: Prim, p: P, q: Q.

dpc, pq
=> (DeletePrimitive)

replaced by each primitive combinator species in use (&g.,S).

v

p pc, d Q.

Notes: In the last DeletePrimitive ) rule, ‘Prim ’ stands for any primitive com-
binator. Therefore, at least at the present time, that ruistrbe repeated withPrim ’

| Combinator (Elementary Identificator)
Definition:
X = X
Reduction to SK:
| = SKX

Size:1S + 2K + 2A = 5 total (takingl = SKK).
Equivalences:
I = CKX
I = WK

I Xo---Xn = Xo---X,

J Combinator

Definition:
JUXYZ = UX({UZY)

(32)

(33)

(34)
(35)
(36)

(37)



9 K Combinator (Elementary Cancellator)

Definition:
KXY = X (38)

Reaction:
UAKXY +DQ — UX + DAKQY (39)

Equivalences:

K'XY,---Y, = X (40)
KXo XnY = Xo-- X, (41)
KX - Xoy = X1 X3+ Xon_3Xon_1, n > 1 (42)
(CK)pX1--- XY = Y, n>0 43)
(CK)(”)Xl - XYZ = X X, Z (44)

Reaction Specification:

a A b A k K d D, g Q, u xYy.
ua alb blk b2x a2y dqg
=> (Kreaction)

ux,da alb blk b2qg aZ2y.

10 N Combinator (Inert Complex)

TheN (inert) combinator is used when we want to prevent reducti@merally when we
are intending to produce a static structure. For examplthefstructureF X, --- X, is
generated, then there is a risk that the reduction ruleg'feill destroy the structure. This
is avoided by using the inert combinator, elyX; - - - X,,. Since it is inert, there are no
reduction or reaction rules for it. Of course, in practideere need not be just one inert
combinator, and any molecular species that does enter hiet@dmputational reactions
could be used.

11 P Primitive (Result Cap)

The result cap is inert; it is a place-holder for the “resbitiding-site of any group.

12 Q Primitive (Argument Cap)

The argument cap is inert; it is a place-holder for the “argathbinding-site of any group
(in particular, for the “operator” and “operand” sites of awomplex).



13 R Primitive (Elementary Replicator)

Reaction:
UVRp+Pp+PQ — Up+Vp+P3RQ (45)
UVRAXY + PAQy + P, RQ — UVAR XY + 3PQ (46)
Notes: In EqQ. 45,p represents any primitive combinator (e §9r K).
Reaction Specification:
r R, aAuvxy,r R, a: A,
p: P, p: P, p P, Q g: Q, g Q
url, vr2 ra alx a_2y,
pril pr2 rq p'a,alq,az2q
=> (ReplicateAppIicatlon)
ua, v a,
alrl a 1r 2,
az2r.l a_2r._2,
rx r.y,
pPa p q,p’ q.
rr R, pc: Prim, u, v, pc: Prim, p: P, p: P, q: Q.
url vr2 rpc pgq,p pc
=> (ReplicatePrimitive)
u pc, v pc,
pril pr2 raq.
Notes: In the last ReplicatePrimitive ) rule, ‘Prim ’ stands for any primitive

combinator. Therefore, at least at the present time, thainust be repeated witfPrim ’

replaced by each primitive combinator species in use (&g.,S).

14 S Combinator (Elementary Distributor, Replicating)

Definition:
SXYZ = XZ(YZ)

Reaction:
UAsSXY Z + P,RQ — UA(AX)(AY)RZ 4 PS 4+ PQ
Reaction Specification:

a: A a: A at A s S, R, p:P,p: P, g Q,
u, X, Y, Z.

(47)

(48)



ua ala,a la’, a_ls, a_2x, a2y, a?2z,
pril pr2 rq
=> (Sreaction)
ua ala,alx a2r.1,
az2a’,a’ ly, a _2r_2,
r

Z!
ps, p Q.

Equivalences:

S = B(B(BW)C)(BB)
shxyz,.. - Z, = XZ---Z,(YZ---Z,)

15 S Combinator (Elementary Distributor, Sharing)

Definition: 5
SXYZ = XZ'(YZ)

Reaction:
UAsSXY Z +P,VQ — UA(AX)(AY)VZ +PS 4+ PQ

Reaction Specification:

a: A a: A a A s:Ssh,v:V, p:P,p: P, g Q,
u, X, Y, Z

ua ala,ala’,a._ls a 2x, a2y a?2z,
pv.li1p v2vqg

=> (SharingSreaction)
ua ala,ba lx a_2v.]1,

2 a’, 5’_1 Y, 5"_2 v_2,
Z,

< o

ps, p q.

Equivalences:

S = B(B(BW)C)(BB)
SMXyZz,.. Z, = XZ---Z'(YZ - Zy)

Notes: See Sec. 19 for a discussion of this definition.

(49)
(50)

(51)

(52)

(53)
(54)



16 S, Combinator (Polyadic Elementary Distributor)

Definition:
S, XY, Yo Z = XZ(V1Z)---(YoZ), n>0

Reduction to SK:
So = |

S =S
Sn+1 - BSnOS

Size:(5n —4)S+4(n — 1)K+ 9(n — 1)A = 18(n — 1) + 1 total forS,,, n > 1.

(55)

(56)
(57)
(58)

Notes: S, can be replicating or sharing depending on whether S is used in its

recursive definition. If it is sharing, it produces the feliog structure:
S, XYY, Z = XZMW (v, 2" V) .. (v, 1 ZW)(Y,Z0)

LetS=SorS depending on whether sharing is desired or not.
Equivalences:

Sw = Sa
S, &l
Sl = |

The effect of iterating or S is as follows fn > 0):

SZ”}XYl---YnZy--Zm

— XZ,- ZaNZy-Zy) - (Yo Zy - Zy)
ggn}Xyl...ynZI...Zm

= X7z ... 20 (v Z Lz Ly, 29z

17 V Primitive (Sharing Complex)

(59)

(60)
(61)
(62)

(63)

(64)

The sharing primitive \() is used for constructing non-tree structures, includipglic
structures. It is produced by sharing combinators such, &/, andY. Note that av
complex between a combinator and its arguments will blodkicgon of the combinator,

soV complexes appear primarily in structured that are beiregéckas data.

Primes and parenthesized superscripts on variables algagalicate informally the
sharing of structures. Thus, if there is a single sharingageraboveX, then the two links
to it will be called X and X’. Notice that both will be “covered” by a sharing complexif i
is necessary to make this explicit, the two links will be venitX ® and X’. If one of these
links is replaced by another sharing complex, then the maidink and the two new ones

10



will be called X, X', X", and so forth. Obviously such a notation cannot capturehall t
possible structures of sharing complexes, but it allowsthenient expression of chains
of V complexes, which is the most common case. To go beyond tlaigrains should be
used.

18 W Combinator (Elementary Duplicator, Replicating)

Definition:
WXY — XYY (65)
Reduction to SK:
W = (Sl (66)
W = S(Cl) (67)
W = SS(KI) (68)

Size:7S + 6K + 12A = 25 total (Def. 66 or 67).
Equivalences:

n+1

—N—
WFX — FX---X (69)
W FXp - XY = FX;---X,YY, n >0 (70)
Wi XYY, = XViVi--Y,¥,, n>0 (71)

19 W Combinator (Elementary Duplicator, Sharing)

Definition: )
WXY = XY'Y (72)
Reduction to SK:
Wy, = CSI (73)
Wy = S(CI) (74)
Wy, = SS(KI) (75)

Notes: W, andW,, are two variants, functionally equivalent\fkb but producing dif-
ferently ordered links to the sharing)X(complex (see Equivalences below). In the absence
of subscripts, we will takdV to beW,,, since it is a little more convenient to use. Defini-
tion 75 is not very useful, because it needlessly beginsoan of the first argument of
W12.

11



Notice that eithe¥V or S may be taken as a primitive sharing operation, since eiter ¢
be defined in terms of the other. At this time, it looks as tHosigyill be the best choice as
a primitive, soW will be defined by Eq. 73 or 74.

Reaction:

UAWXY +P,VQ — UAXVY +PW +PQ (76)

Reaction Specification:
w: Wsh, a: A, a> A, u, X, y, v. V, p: P, p: P, g Q.
ua,ala,alwaz2x,a2y pvlil pv2vaqg

=> (SharingWreaction)
ua ala,a lx, a2vl a2v2 vy p w pqJ.

Equivalences:

W XY = XYY (77)
Wy XY =— XYYV’ (78)
WELXY = XY®W...y®yOy© (79)
n+1
Wy XY, ---Y, = XYYi---Y/V,, n>0 (80)

Notes: The superscripts oY in Eq. 79 represent successive sharings ¢gee Sec. 17).

20 W, Combinator (Pure Duplicator)

Definition:
WX = XX (81)

Reduction to SK:
W, = Wi (82)

Size:8S + 8K + 15A = 31 total.

21 Y Combinator (Elementary Fixed-point, Replicating)

Definition:
YF = X(YX) (83)

Reduction toSK:
Y = SSK(S(K(SS(S(SSK))))K) (84)

Size:8S + 4K + 11A = 23 total.

12



Equivalences:

Y = WS(BWB) (85)
Y = SSI(SB(K(SII))) (86)
Y = ZZwhereZ =W(B(SI)) (87)
Y = WIoWoB (88)

Notes: Definition 84 by John Tromp [2] may be the shortest definitionerms ofSK
(12 combinators). Definitions by Curry and Turing are lon@ér and 20, respectively).

22 Y Combinator (Elementary Fixed-point, Sharing)
Definition:
YX = ¢y wherey = Fy© (89)

Reaction: ] ]
UAYX + P,VQ — UVAX + PY +PQ (90)

Reaction Specification:

y: Ysh, a: A, v: V, x, p: P, p: P, g Q.
ua,aly az2x pvlil pvz2vq
=> (SharingYreaction)

uvilvaalx, a2v2 py pa.

Notes: The following illustrates the self-sharing cycle creatgdviF:

YF =

= PR(FFFO (RO - )))

Of course, itis théd complex that is shared, nét, as the notation suggests.

13



23 Z Combinators (Iterators or Church Numerals)

Definition:
Z, X =X"
Reduction to SK:
Zo = Kl (91)
Z,.1 = SBZ, (92)

Size:(3n+ 1)S + (2n + 3)K + (5n + 3)A = 10n + 7 total, for Z,,.
Equivalences:

Zyin = ©BZ,Z, (93)
Lom = Znmol, (94)
Zom = Z,Z, (95)

24 ® Combinator (Dyadic Compositor)

Definition:
XY ZU = X(YU)(ZU) (96)

Reduction to SK:
® = B(BS)B (97)

Size:7S + 6K + 12A = 25 total (Def. 97).
Equivalences:

P"FGHX,---X, = F(GX, --X,)(HX;---X,) (98)

Notes: ® composes an order-2 combinator with two order-1 combisadtoproduce an
order-1 combinator.

25 &, Combinator (Polyadic Compositor)

Definition:
&, XYY, Z = X(V1Z)--- (YnZ), n>0 (99)

Reduction toSK:
®, = S,0K (100)

Size:(5n — 2)S + (4n — 1)K + (9n — 4)A = 18n — 7 total for®,,, n > 1.

14



Notes: ®,, composes an order-combinator withn order-1 combinators to produce an
order-1 combinator.

®,, can be replicating or sharing), depending on wheth&r, or S, is used in defini-
tion 100. If it is sharing, then the following structure isngeated:

O, XYi -V, Z = X(ViZ0 )+ (Vo ZW) (Y, Z2) (101)
Equivalences:
®,.1 = BS,oB (102)
The effect of iteratingp or @ is as follows fn > 0):

XYY Ty Ty

= X(YiZiZu) - (YaZs - Zon) (103)
‘i);nXK"'Yan“Zm

= X(iz{"V- 207 (M ZY) (104)
" XYY 2y D

= XZ1-- ZnaY1Z1--Zp) - (YZi- Zm) (105)

26 X, Combinator (Chi Distributor)

Definition:
X, FGU; ---U, = F(GUy)---(GU,), n >0 (106)
Reduction to SK:
Xy = K (107)
Xy = B (108)
Xnp1 = Wy(Ce)(B°X,.B)) (109)

Size:30nS + (28n + 1)K + 58nA = 116n + 1 total, forX,,, n > 0.
Equivalences:

X, = (WqoCgoCB®B)"K (110)
Xpi1 = WoClPtoB"™BoX, (111)
X, = (WoClrtUoBIB)" oK (112)
Xy, = U (113)

Notes: X,, composes an ordercombinator with an order-1 combinator, usetdimes,
to produce an ordet-combinator.

15



The effect of a left reduction is:

(X)) FGy - GUy -+ U,
= F(Gi(-+ (Gnlh) )+ (Gi -+ (Gln) ) (114)

If Wy, is used in Definition 109, then

X, FGU, ---U, = F(GOU,)---(G"YU,) (115)

27 W Combinator (V¥ Distributor)

Definition:
VXYUV = X(YU)(YV) (116)

Reduction to SK:
U = §(P(PB))B(KK) (117)

Size:26S + 24K + 49A = 99 total.
Equivalences:

U = B(BW(BC))(BB(BB)) (118)
U = @*BB(KK) (119)
¥ = Cypo*(BK)K (120)
U = WoCyoBoByy, (121)
¥ = S(B(BS(B(BS(BB))))B)(KK) (122)

Notes: ¥ composes an order-2 combinator with an order-1 combinased twice, to
yield an order-2 combinator.

16



Other Notation

28 Composition

Definition:
X oY =BXY

Size:2S + 2K + 5A = 9 total, plus| X| + |Y|.
Equivalences:

Xol = loX =X

Xo(YoZ) = (XoY)oZ
B(XoY) = BXoBY

29 Powers
Definition:
(XoY)Z = X(YZ)
Reduction to SK:
X0 = |
X! = X

Xn+1 = X OX”

(123)

(124)
(125)
(126)

(127)

(128)
(129)
(130)

Size:2(n —1)S+2(n — 1)K+ 5(n —1)A =9(n — 1) total, plusn|X|, for X™, n > 1.

Equivalences:

Xm o Xn — Xm+n
(Xm)n — an
(BX)™ = B(X™)

30 Deferred Combinators
Definition:

X(o) - X
Xm+) = BX@)

17

(131)
(132)
(133)

(134)
(135)
(136)



Size:2nS + 2nK + 4nA = 8n total, plus|.X
Equivalences:

s fOfX(n), n > 0.

Xmsn)y = B"X (138)

Notes:If Fisregular (p. 2)FGY;---Y, = GZ;---Z,,, then
FpyGXy--- X3 Y- Y, = GX, - Xy Zy - Zy. (139)
That is, F{; defersthe action off” by k steps. Sinc®, C, |, K, andW are regular, we have

Egs. 7, 18, 36, 41, and 70.

31 Left Reduction

Definition:
X = | (140)
Xy = X (141)
Xpyp = BXpoX (142)

Size:4(n—1)S+4(n—1)K+9(n—1)A = 17(n—1) total, plusn|X|, for Xp,;, n > 1.
Equivalences:

FiXoXy---Xo, = F(F - (F(FXoX1)X2) - Xn1) Xy (143)
FrninXoXi - X = F(FXoX1)Xe- - X, (144)
Xy = B"Xo B"!Xo0.---0B2XoBXoX (145)

Xiny1] = Xm)oX@m-1)0---0Xp)oXn)o Xy (146)

Xy = (CB?X)"X (147)

X[m—|—n] = BmX[n] o X[m] (148)

Notes: Fj,; can be called aeft reduction [3].  To see this, writeF" in infix form,
Fzy = z o y and assume associates to the left (300 y ¢ z = (z ¢ y) © 2). Then:

Frzor - 2p = 29021 0+ - 0 Ty,

If F'is an order-2 combinator, thef,) is a combinator of order + 1.
For F regular,
Fin) = (CB?F) (149)

18



32 Polyadic Extension

Definition:
X0O = (150)
Xt = x (151)
X+ = x o BXI (152)

Size:4(n—1)S+4(n—1)K+9(n—1)A = 17(n—1) total, plusn| X |, for X", n > 1.
Equivalences:

X+l = (BZXB)"X (153)
Notes: If F'is regular,
FiPl = (B2XB)" (154)
Firtll — FoBFo---0B"F (155)
F[nJrl] - F(O) O F(l) O+++0 F(n) (156)
plmtn]  _  plm] o gm pln] (157)
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