Molecular Implementation
of Combinatory Computing
for Nanostructure Synthesis and Control:

Progress on Universally Programmable Intelligent Matter

UPIM Report 6
Technical Report UT-CS-03-506

Bruce J. MacLennan*

Department of Computer Science
University of Tennessee, Knoxville
maclennan@cs.utk.edu

July 7, 2003

Abstract

Molecular combinatory computing makes use of a small set of chemical re-
actions that together have the ability to implement arbitrary computations.
Therefore it provides a means of “programming” the synthesis of nanostruc-
tures and of controlling their behavior by programmatic means. We illustrate
the approach by several simulated nano-assembly applications, and discuss a
possible molecular implementation in terms of covalently structured molecular
building blocks connected by hydrogen bonds.

*This report is an extended version of a paper to be presented at IEEE-Nano 03 [Mac03c] incor-
porating additional material from a presentation at JCIS 7 [Mac03b]. This report may be used for
any non-profit purpose provided that the source is credited.

1 Introduction

We are investigating a systematic approach to nanotechnology based on a small num-
ber of molecular building blocks (MBBs). Central to our approach is the identification
of a small set of such MBBs that is provably sufficient for controlling the nanoscale
synthesis and behavior of materials. To accomplish this we have made use of combina-
tory logic [CFC58], a mathematical formalism based on network (graph) substitution
operations suggestive of supramolecular interactions. This theory shows that two
simple substitution operations (known as S and K) are sufficient to describe any com-
putable process (Turing-computable function) [CFC58, sec. 5H]. Therefore, these two
operations are, in principle, sufficient to describe any process of nanoscale synthesis
or control that could be described by a computer program. In a molecular context,
several additional housekeeping operations are required beyond S and K, but the total
is still less than a dozen.

In addition, computer scientists have known for decades how to compile ordinary
programs into combinator programs, and so this approach offers the prospect of com-
piling computer programs into molecular structures so that they may execute at the
molecular level and with “molar” degrees of parallelism. Further, the Church-Rosser
Theorem [CFC58, ch. 4] proves that substitutions may be performed in any order or
in parallel without affecting the computational result; this is very advantageous for
molecular computation. (More precisely, the theorem states that if you get a result,
you always get the same result. Some orders, however, may lead to nonterminating
computations that produce no result. To date, we have found little need in molecular
computing for such potentially nonterminating programs.)

At TIEEE-Nano 2002 we presented an overview of the strategy and potential of
molecular combinatory computing [Mac02f]. In this report, in addition to a brief in-
troduction to molecular combinatory computing, we discuss possible molecular imple-
mentations as well as our accomplishments in the (simulated) synthesis of membranes,
channels, nanotubes, and other nanostructures.

2 Combinatory Computing

2.1 Computational Primitives

Molecular combinatory programs are supramolecular structures in the form of binary
trees. The interior nodes of the tree (which we call A nodes) represent the application
of a function to its argument, the function and its argument being represented by the
two daughters of the A node. The leaf nodes are molecular groups that function
as primitive operations. As previously remarked, one of the remarkable theorems of
combinatory logic is that two simple substitution operations are sufficient for imple-
menting any program (Turing-computable function). Therefore we use primarily the
two primitive combinators, K and S (which exists in two variants Sand S proper).

/o

o
oy
©

Figure 1: K combinator substitution operation. U, X, and Y represent any networks
(graphs).

—

To understand these operations, consider a binary tree of the form ((KX)Y'), where
X and Y are binary trees (Fig. 1). (The A nodes are implicit in the parentheses.)
This configuration triggers a substitution reaction, which has the effect

(KX)Y) = X. (1)

That is, the complex ((KX)Y') is replaced by X in the supramolecular network struc-
ture; the effect of the operation is to delete Y from the network. The K group is
released as a waste product, which may be recycled in later reactions. The tree Y is
also a waste product, which may be bound to another primitive operator (D), which
disassembles the tree so that its components may be recycled. The D primitive is the
first of several house-keeping operations, which are not needed in the theory of com-
binatory logic, but are required for molecular computation. (Detailed descriptions
can be found in a prior report [Mac02d].)
The second primitive operation is described by the rule:

(8X)Y)2) = (XZ)(Y Z)). (2)

This rule may be interpreted in two ways, either as copying the subtree Z or as
creating two links to a shared copy of Z (thus creating a graph that is not a tree). It
can be proved that both interpretations produce the same computational result, but
they have different effects when used for nanostructure assembly. For this reason we
need both variants of the operation, which we denote S (replicating) and S (sharing).
The molecular implementations of the two are very similar (see Fig. 2).

Figure 2: S and S combinator substitution operations. C' =R for S and C' =V for S.
Note the reversed orientation of the rightmost A group.

If C = R (a replication node), then other substitution reactions will begin the
replication of Z, so that eventually the two links will go to two independent copies of
Z:

(8X)Y)2Z) = (XZ)(Y Z)). (3)

Here Z' refers to a new copy of the structure Z, which is created by a primitive
replication (R) operation. The R operation progressively duplicates Z, “unzipping”
the original and new copies [Mac02d]. The properties of combinatory computing allow
this replication to take place while other computation proceeds, even including use
of the partially completed replicate (a consequence of the Church-Rosser theorem).
The S variant of the S operation is essential to molecular synthesis [Mac02d].
Thus, if C = V (a sharing node), then we have two links to a shared copy of Z
(Fig. 2):
(5X)Y)2) = (XZ0)(Y20)). (4)

The structure created by this operator shares a single copy of Z; the notations Z()
and Z(© refer to two links to a “Y-connector” (called a V node), which links to the
original copy of Z. (Subsequent computations may rearrange the locations of the two
links.) The principal purpose of the S operation is to synthesize non-tree-structured
supramolecular networks.

Figure 3: Y combinator primitive substitution operation. Arrows indicate link direc-
tion; note elementary cycle between A and V groups.

Finally, we use the Y operator to create elementary cyclic structures, which can
be expanded into larger cycles. It is defined [Mac02d]:

(YF) =y where y = (Fy?). (5)

See Fig. 3. The operation creates an elementary cycle, which may be expanded by
computation in combinator tree F. Examples of the use of both S and Y are given in
Sec. 3.

2.2 Molecular Extensions

The primitive substitutions already mentioned (K, S,S,Y) are adequate for describing
the assembly of static structures, but for dynamic applications we will need additional
operations that can respond to environmental conditions (“sensors”) or have noncom-
putational effects (“actuators”). Many of these will be ad hoc additions to the basic
computational framework, but we are developing general interface conventions to fa-
cilitate the development of a systematic nanotechnology [Mac03a|. For example, we
may design a molecular group K_, that is normally inert, but is recognized (and
therefore operates) as K in the presence of an environmental condition A (e.g., light
of a particular wavelength or a particular chemical species). Such a sensor may be
used to control conditional execution, such as the opening or closing of a channel in
a membrane (see Sec. 3.5.1).

Figure 4: Visualization of cross-linked membrane produced by xgrid; JNNN. A groups
are red, V groups green; other groups are inert.

3 Examples

We have investigated the synthesis of a number of nanostructures by molecular combi-
natory computing. These include membranes and nanostructures of several different
architectures. We have developed also systematic means to combine these into larger,
heterogeneous structures, and to include active elements such as channels, sensors,
and nano-actuators.

3.1 Membranes

For our first example we will discuss the synthesis of a cross-linked membrane, such as
shown in Fig. 4. Such a structure is produced by the combinator program xgrid; 4JNNN,
where xgrid is defined:

xgridy . = B(B(Zn-1W))(B(Zn-1 W) (Zn®4)), (6)

which is an abbreviation for a large binary tree of A, K, S, and S groups. Unfor-
tunately, space does not permit an explanation of this program or a proof of its
correctness, both of which may be found in a technical report [Mac02a]. However,
all the combinators that it uses are defined in the appendix to this report. In the
formula xgrid,,, , XY Z, the parameters m and n are the height and width of the mem-
brane, respectively. X, Y, and Z are the terminal groups to be used on the left ends,
right ends, and bottoms of the chains. (In the expression xgrid; JNNN, N is any inert
group.)

The size of xgrid,,, ,,, the program structure to generate an m x n membrane, can
be shown [Mac02a] to be 20m + 28n + 73 primitive groups (A, K, S, S). This does
not seem to be unreasonable, even for large membranes, but it can be decreased more
if necessary. For example, if m = 10*, then Z,, in Eq. 6 can be replaced by Z,Zo,
reducing the size of this part of the program from O(10%) to O(k) (see [Mac02d]
for explanation). Similar compressions can be applied to the other parts dependent
on m and n. Therefore, by these recoding techniques the size of the program can be
successively reduced to @(logm+logn), to @(loglogm+loglogn), etc. Furthermore,
as will be explained in Sec. 3.4, large membranes can be synthesized by iterative
assembly of small patches.

3.1.1 Hexagonal Membrane

For another example, consider the hexagonally structured membrane in Fig. 5. It is
constructed by the combinator program hgridt, ;N, where [Mac02a]:

Arow,, = B\/VV[n_l} o B, (7)
Vrowt, = W, oKloK, 2 0B o CMINoCIN, (8)
drowt,, = Vrowt, o Arow,,, 9)
hgridt,,,, = Z, 1W(Z,,drowt,N). (10)

The size of the program is @(m + n) primitive combinators.

3.2 Nanotubes

Next we consider the synthesis of nanotubes, such as shown in Figs. 6 and 7. This is
accomplished by using the Y combinator to construct a cycle between the upper and
lower margins of the cross-linked membrane (Fig. 4). The program is [Mac02a):

xtubep,,, , = W™~ (W™~ (@"N)(B™Y (Cpmyl)))- (11)

The size of xtubep,, ,, is 102m + 44n — 96 primitive groups (A, K, N, S, S5, V).

Figure 5: Visualization of small hexagonal membrane synthesized by hgridt, 3N.

Figure 6: Visualization of small nanotube, end view, produced by xtubes 4N.

Figure 7: Visualization of small nanotube, side view, produced by xtubes 4N.

1N

3.3 Non-unit Meshes

The membranes and nanotubes previously described are said to have a wunit mesh,
that is, the dimensions of the basic (square or hexagonal) cells are determined by
the size of the primitive groups (A, V) and the links between them. It is relatively
straight-forward to modify the preceding definitions to have larger mesh-dimensions
(multiples of the cells). In addition, various pendant groups can be incorporated into
the structure. (See a forth-coming report [Mac03a] for details.)

3.4 Assembly of Heterogeneous Structures

Large membranes will not be homogeneous in structure; often they will contain pores
and active channels of various sorts embedded in a matrix. One way of assembling
such a structure is by combining rectangular patches as in a patchwork quilt. To ac-
complish this we have defined a uniform interface for such patches (see a forthcoming
report [Mac03a| for details).

A combinatory program P constructs an m X n patch if it has the following patch
synthesizer “signature”:

PFY; -+ Y, Xi - Xy = FVi - ViU -+ - Uy,

F is any combinatory operator (especially another patch synthesizer). Xi,...,X,,
will be horizontal connections from the patch to the right (or terminal groups if
this is the right-most patch); similarly Y3,...,Y, are vertical connections from the
patch below. Whatever rectangular structure is created by P (e.g., a cross-linked
or hexagonal grid), V1, - - - V,, represents the horizontal connections from its left side,
and Uy, ..., U,, the vertical connections from its top. The V}, and U; connections are
passed to F', which is typically another patch synthesizer.

Any such patch may be joined either horizontally or vertically with another patch
of compatible dimensions, to yield a patch combining the two. For example, if P is
an m X n patch and @ is an m x n' patch, then B"™'QP is an m x (n + n') patch
with @ to the right of P. Similarly, if P is m x n and @ is m' x n, then P o B™Q is
the (m +m') x n patch with P below Q.

Nanotubes can also be synthesized in patch format to allow end-to-end connection.
If T is a patchable tube synthesizer of length m and U is one of length m/, both of the
same circumference n, then Uo7 is a patch synthesizer that connects U to the right of
T. This operation is easily iterated, for T is k replicates of 7' connected end-to-end
(and thus of length km). This operation can also be expressed Z,T'. If, as is commonly
the case, the size of the synthesizer T is @(m+n), then the size of Z,T is O(k+m+n).
Similarly, rectangular patches can be iteratively assembled, both horizontally and
vertically, to hierarchically synthesize large, heterogeneous membranes. This allows
us to build upon a basic library of elementary membrane patches, pores, and other
nanostructural units.

11

3.5 Active Elements

Rather than computing to a stable state, dynamic structures remain potentially ac-
tive, ready to respond to environmental conditions [Mac03a]. Unfortunately, space
does not permit a detailed discussion of the synthesis of membranes with pores and
channels; the following brief remarks must suffice.

3.5.1 Pores and Active Channels

A rectangular pore is simply a patch in which the interior is an open space. These
pores can be combined with other patches to create membranes with pores of a given
size and distribution (all in terms of the fundamental units, of course). Pores can be
included in the surfaces of nanotubes as well.

Channels open or close under control of sensor molecules, which can respond to
conditions, such as electromagnetic radiation or the presence of chemical species of
interest. This is most simply accomplished by synthesizing a molecular group, which
we denote K_,, that responds to condition A by reconfiguring into a K combinator.

Given a sensor, “one-shot” channels — which open and stay open, or close and
stay closed — are easy to implement. In the former case, the sensor triggers the
dissolution of the interior of its patch (perhaps using the deletion operator D to
disassemble it). In the latter case, the sensor triggers a synthesis process to fill in
a pore. Reusable channels (which open and close repeatedly) are more complicated,
since, in order to reset themselves, they need a supply of sensor molecules that are
protected from being triggered before they are used.

3.5.2 Nano-Actuators

Nano-actuators have some physical effect depending on a computational process. Cer-
tainly, many of these will be synthesized for special purposes. However, we have been
investigating actuators based directly on the computational reactions. To give a very
simple example, we may program a computation that synthesizes a chain of some
length; we may also program a computation that collapses a chain into a single link.
The two of these can be used together, like opposing muscle groups, to cause motion
under molecular program control. The force that can be exerted will depend on the
bond strength of the nodes and links (probably on the order of 50 kJ/mol; see Sec.
4.1.2). However, these forces can be combined additively, as individual muscle fibers
work cooperatively in a muscle.

3.6 Computational Applications

Molecular combinatory computing is not limited to nanostructure synthesis and con-
trol, but may be applied to more conventional computational problems. Suppose we

10

want to attack an NP problem with molar parallelism (that is, with a degree of par-
allelism on the order of 10?*). Further suppose we have a polynomial-time program p
to test the correctness of a potential solution x. As previously remarked, the program
p can be compiled into a molecular combinator tree P; similarly a potential solution
x can be encoded as a combinator tree X. Then the tree (PX) will evaluate the po-
tential solution, reducing to the molecular combinator representation of either true
or false: usually K and (SK) [Mac02d]. Therefore, by producing enough replicates
of P and a sufficient variety of potential solutions X, we may evaluate the potential
solutions with molar parallelism.

4 Possible Molecular Implementation

Of course, all the advantages of molecular combinatory computing are illusory unless
a molecular implementation of the combinatory operations can be discovered or de-
veloped. Therefore we have spent some time trying to develop at least one feasible
molecular implementation. The two principal problems are: (1) How are the com-
binator networks represented molecularly? (2) How are the substitution operations
implemented molecularly?

4.1 Combinator Networks
4.1.1 Requirements

Combinatory computing proceeds by making substitutions in networks of intercon-
nected nodes. These networks constitute both the medium in which computation
takes place and the nanostructure created by the computational process. Therefore it
is necessary to consider the molecular implementation of these networks as well as the
processes by which they may be transformed according to the rules of combinatory
computing.

The first requirement is that nodes and linking groups need to be stable in them-
selves, but the interconnections between them need to be sufficiently labile to permit
the substitutions. Second, the node types (A, K, S, etc.) need to identifiable, so
that the correct substitutions take place. In addition, for more secure matching of
structures, the link (L) groups should be identifiable. Further, it is necessary to be
able to distinguish the various binding sites on a node. For example, an A node has
three distinct sites: the result site, an operator argument, and an operand argument
[Mac02d].

4.1.2 Hydrogen-Bonded Covalent Subunits

Our current approach is to implement the nodes and linking groups by covalently-
structured molecular building blocks (MBBs) and to interconnect them by hydrogen

19

bonds. We use a covalent framework for the nodes and links because they provide
a comparatively rigid framework in which to embed hydrogen bonding sites, and
because there is an extensive synthetic precedent for engineering molecules of the
required shape and with appropriately located hydrogen bonding sites [AS03]. This
is in fact the structural basis of both DNA and proteins (hydrogen bonding as a
means of connecting and identifying covalently-bonded subunits).

Hydrogen bonds are used to interconnect the MBBs because they are labile in
aqueous solution, permitting continual disassembly and re-assembly of structures.
(H-bond strengths are 2-40 kJ/mol.) Further, other laboratories have demonstrated
the synthesis and manipulation of large hydrogen-bonded tree-like structures (den-
drimers) [SSW91, ZZRK96]. Nevertheless, hydrogen bonds are not very stable in
aqueous solution, so there may be a delicate balance between stability and lability.

It is necessary to be able to distinguish the “head” and “tail” ends [Mac02d] of
the L groups (i.e., our graph edges are directed), and we estimate that two or three
H-bonds are required to do this securely. (For comparison, thymine and adenine have
two H-bonds, cytosine and guanine have three.) Therefore, if we take 20 kJ/mol as
the strength of a typical H-bond, then the total connection strength of a link will be
about 50 kJ/mol.

Hydrogen bonding can also be used for recognizing different kinds of nodes by
synthesizing them with unique arrangements of donor and acceptor regions. Currently
[Mac02d], we are using eleven different node types (A, D, K, L, P, Q, R, S, S, V., Y),
so it would seem that arrangements of five H-bonds would be sufficient (since they
accommodate 16 complementary pairs of bond patterns). (Actually, linear patterns
of from one to four bonds are sufficient — 15 complementary pairs — but the slight
savings does not seem worth the risk of less secure identification.)

As previously remarked, it is necessary to be able to distinguish the three binding
sites of an A node. However, since the “tail” of any L group must be able to bind to
either of the A’s argument sites, they must use the same H-bond pattern. Therefore,
at least part of the discrimination of the A’s binding sites must be on the basis of the
orientation of the A node. Fortunately, the orientation specificity of H-bonds allows
this.

A number of hydrogen-bonding sites can be located in a small area. For example,
thymine (23 atoms) and adenine (26 atoms) have two H-bonds; amino acids are
also small, on the order of 30 atoms and as few as 10. On the basis of the above
considerations, we estimate — very roughly! — that our primitive combinators (K,
S, S, Y) might be 90 atoms in size, L groups about 120, and ternary groups (A, V, R)
about 150.

1A

4.2 Substitution Reactions

4.2.1 Requirements

We state briefly the requirements on a molecular implementation of the primitive
combinator substitutions.

First, there must be a way of matching the network configurations that enable the
substitution reactions. For example, a K-substitution (Eq. 1) is enabled by a leftward-
branching tree of the form ((KX)Y'), and an S-substitution (Eq. 2) is enabled by a
leftward-branching tree of the form (((SX)Y)Z) (see Figs. 1 and 2). So also for the
other primitive combinators (D, R, S, Y).

Second, the variable parts of the matched structures (represented in the substi-
tution rules by italic variables such as X and Y'), which may be arbitrarily large
supramolecular networks, must be bound in some way. Third, a new molecular struc-
ture must be constructed, incorporating some or all of these variable parts.

Further, reaction waste products must be recycled or eliminated from the system,
for several reasons. An obvious one is efficiency; another is to avoid the reaction
space becoming clogged with waste. Less obvious is the fact that discarded molec-
ular networks (such as Y in Eq. 1) may contain large executable structures; by the
laws of combinatory logic, computation in these discarded networks cannot affect the
computational result, but they can consume resources.

Finally, there are energetic constraints on the substitution reactions, to which we
now turn.

4.2.2 Fundamental Energetic Constraints

On the one hand, any system that is computationally universal (i.e., equivalent to a
Turing machine in power) must permit nonterminating computations. On the other,
a spontaneous chemical reaction will take place only if it decreases Gibbs free energy;
spontaneous reactions tend to an equilibrium state. Therefore, molecular combinatory
computing will require an external source of energy or reaction resources; it cannot
continue indefinitely in a closed system.

Fortunately we have several recent concrete examples of how such nonterminating
processes may be fueled. For example, Koumura et al. [KZvD"99] have demonstrated
continuous (nonterminating) unidirectional rotary motion driven by ultraviolet light.
In the four-phase rotation, alternating phases are by photochemical reaction (uphill)
and by thermal relaxation (downhill). Also, Yurke et al. [YTM100] have demon-
strated DNA “tweezers,” which can be cycled between their open and closed states so
long as an appropriate “DNA fuel” is provided. Both of these provide plausible mod-
els of how molecular combinatory computation might be powered. We can conclude
that the individual steps of a combinator substitution must be either energetically
“downhill” or fueled by external energy or reactions resources. In our case, the most
likely sources of fuel are the various species of “substitutase” molecules (see next).

15

4.2.3 Use of Synthetic Substitutase Molecules

To implement the substitution processes we are investigating the use of enzyme-like
covalently-structured molecules to recognize network sites at which substitutions are
allowed, and (through graded electrostatic interactions) to rearrange the hydrogen
bonds to effect the substitutions. Again, the rich synthetic precedent for covalently-
structured molecules makes it likely that the required enzyme-like compounds, which
we call substitutase molecules, can be engineered. We anticipate the use of three kinds
of substitutase molecules for each primitive combinator; they implement three stages
in each substitution operation.

The first of these molecules, which we call analysase, is intended to recognize
the pattern enabling the operation and to bind to the components of the matching
subtree. For example, K-analysase binds to a structure of the form ((KX)Y) (see
Fig. 1), in particular to links to the variable components U, X, and Y.

The second stage, which is implemented by a permutase molecule, physically relo-
cates some of the components to prepare them for the last stage. To this end, we are
investigating the use of graded electrostatic interactions to move the bound variable
parts into position for the correct substitution product. The permutase molecule also
includes any fixed combinators (e.g., R, V) that are required for the product, and
are bound to other product components at this time. At the end of this stage, the
product network is essentially complete, but still bound to the permutase molecule.

The final molecule, a synthesase, recognizes the configuration created by the per-
mutase, and binds to the waste structures, displacing and releasing the desired prod-
uct from the permutase. For example, S- or S-synthesase will remove the (S- or S-)
permutase and release the structure shown on the right in Fig. 2.

4.2.4 Discussion

Finally, we will review some of the issues that must be resolved and problems that
must be solved before molecular combinatory computing can be applied to nanotech-
nology.

First, of course, it will be necessary to synthesize the required MBBs for the
nodes, and links; fortunately, there is every reason to believe that this is well within
the capabilities of the state of the art of synthetic chemistry [AS03]. Also, it will
be necessary to synthesize the required substitutase molecules; again, there is every
reason to believe that this is well within the capabilities of the state of the art of
synthetic chemistry.

A second problem is error control: substitutions will not take place with perfect
accuracy, and we know that some substitution errors can result in runaway reactions
[Mac97, Yar00]. Therefore we must develop means to prevent errors or to correct
them soon after they occur.

A third issue is that the supramolecular networks may get quite dense during
computation, and we are concerned about the ability, and probability, of the substi-

102

tutase molecules reaching the sites to which they should bind (i.e., what are the steric
constraints on the processes?).

Nevertheless, the enormous potential of molecular combinatory computing makes
these problems worth solving.

5 Conclusions

After briefly reviewing the concept of molecular combinatory computing, we displayed
several simulated applications to nanostructure synthesis. We also indicated how it
may be applied to the assembly of large, active, heterogeneous structures. Finally,
we discussed a possible molecular implementation based on networks of covalently-
structured MBBs connected by H-bonds, and substitution operations implemented
by endothermic reactions with synthetic “substitutase” molecules. Unfortunately, we
have had to omit much explanation, discussion, and analysis, but it can be found in
other publications from our project [Mac02a, Mac02c, Mac02d, Mac02e], archived at
the project website: http://www.cs.utk.edu/ "mclennan/UPIM.

6 Acknowledgments

This research is supported by Nanoscale Exploratory Research grant CCR-0210094
from the National Science Foundation. It has been facilitated by a grant from the
University of Tennessee, Knoxville, Center for Information Technology Research. The
author’s research in this area was initiated when he was a Fellow of the Institute for
Advanced Studies of the Collegium Budapest (1997).

b Rd

A Definitions

For completeness, we include the definitions of all combinators used in this report
(except the primitives K, N, S, S, and Y). For additional explanation, see the combi-
natory logic literature [CFC58, e.g.] as well as our previous reports [Mac02b, Mac02c,
Mac02e]. For convenience, the composition operator may be used as an abbreviation
for the B combinator: X oY = BXY. In combinatory logic, omitted parentheses are

assumed to nest to the left, so for example S(KS)K = ((S(KS))K).

For any X,

I | | |
o

= @
=X

= XoBxM

10

[e S e T)
S O 00 ~J O Ot i W N

AN N AN AN AN AN N N /N /N
e e e e e N N N N S

[\]
—_

A~ N N N /N S/~
N NN NN N
0o ~J O Ot = W N

— N N N N N N N

[\V)
Ne

References

[AS03]

[CFC58]

[KZvD+99)

[Mac97]

[Mac02a)

[Mac02b]

[Mac02c]

[Mac02d]

[Mac02e]

Damian G. Allis and James T. Spencer. Nanostructural architectures
from molecular building blocks. In William A. Goddard, Donald W. Bren-
ner, Sergey Edward Lyshevski, and Gerald J. Iafrate, editors, Handbook
of Nanoscience, Engineering, and Technology, chapter 16. CRC Press,
2003.

H. B. Curry, R. Feys, and W. Craig. Combinatory Logic, Volume I
North-Holland, Amsterdam, 1958.

Nagatoshi Koumura, Robert W. J. Zijlstra, Richard A. van Delden,
Nobuyuki Harada, and Ben L. Feringa. Light-driven monodirectional
molecular rotor. Nature, 401:152-5, 1999.

Bruce J. MacLennan. Preliminary investigation of random SKI-
combinator trees. Technical Report CS-97-370, Dept. of Computer
Science, University of Tennessee, Knoxville, 1997. Available at
http://www.cs.utk.edu/~library /TechReports/ 1997 /ut-cs-97-370.ps.Z.

Bruce J. MacLennan. Membranes and nanotubes: Progress on universally
programmable intelligent matter — UPIM report 4. Technical Report CS-
02-495, Dept. of Computer Science, University of Tennessee, Knoxville,
2002. Available at http://www.cs.utk.edu/ ~library/TechReports/
2002 /ut-cs-02-495.ps.

Bruce J. MacLennan. Molecular combinator reference manual. Tech-
nical report, Dept. of Computer Science, University of Tennessee,
Knoxville, 2002. Latest edition available at http://www.cs.utk.edu/
~mclennan/UPIM/CombRef.ps.

Bruce J. MacLennan. Molecular combinator reference manual —
UPIM report 2. Technical Report CS-02-489, Dept. of Computer
Science, University of Tennessee, Knoxville, 2002. Available at
http://www.cs.utk.edu/ ~library/TechReports/ 2002/ut-cs-02-489.ps.

Bruce J. MacLennan. Replication, sharing, deletion, lists, and numerals:
Progress on universally programmable intelligent matter — UPIM re-
port 3. Technical Report CS-02-493, Dept. of Computer Science, Univer-
sity of Tennessee, Knoxville, 2002. Available at http://www.cs.utk.edu/
~library/TechReports/ 2002/ut-cs-02-493.ps.

Bruce J. MacLennan. Universally programmable intelligent matter (ex-
ploratory research proposal) — UPIM report 1. Technical Report CS-02-
486, Dept. of Computer Science, University of Tennessee, Knoxville, 2002.

10

[Mac02f]

[Mac03al

[Mac03b]

[Mac03c]

[SSWO1]

[Yar00]

[YTM+00]

[ZZRK96]

Available at http://www.cs.utk.edu/ ~library/TechReports/ 2002/ut-cs-
02-486.ps.

Bruce J. MacLennan. Universally programmable intelligent matter: Sum-
mary. In IEEE Nano 2002, pages 405-8. IEEE Press, 2002.

Bruce J. MacLennan. Sensors, patches, pores, and channels: Progress on
universally programmable intelligent matter — UPIM report 5. Technical
Report forthcoming, Dept. of Computer Science, University of Tennessee,
Knoxville, 2003.

Bruce J. MacLennan. Combinatory logic for autonomous molecular com-
putation. In Proceedings, 7th Joint Conference on Information Sciences,
in press, 2003.

Bruce J. MacLennan. Molecular combinatory computing for nanostruc-
ture synthesis and control. In IEEE Nano 2003. IEEE Press, in press,
2003.

Michel Simard, Dan Su, and James D. Wuest. Use of hydrogen bonds to
control molecular aggregation. Self-assembly of three-dimensional net-

works with large chambers. Journal of American Chemical Society,
113(12):4696-4698, 1991.

Asim YarKhan. An investigation of random combinator soups. Technical
report, Dept. of Computer Science, University of Tennessee, Knoxville,
2000. Unpublished report.

Bernard Yurke, Andrew J. Turberfield, Allen P. Mills Jr, Friedrich C.
Simmel, and Jennifer L. Neumann. A DNA-fuelled molecular machine
made of DNA. Nature, 406:605-8, 2000.

S. C. Zimmerman, F. W. Zeng, D. E. C. Reichert, and S. V. Kolotuchin.
Self-assembling dendrimers. Science, 271:1095, 1996.

N

