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Abstract

Connectionism — the use of neural networks for knowledge representation
and inference — has profound implications for the representation and process-
ing of information because it provides a fundamentally new view of knowledge.
However, its progress is impeded by the lack of a unifying theoretical construct
corresponding to the idea of a calculus (or formal system) in traditional ap-
proaches to knowledge representation. Such a construct, called a simulacrum,
is proposed here, and its basic properties are explored. We find that although
exact classification is impossible, several other useful, robust kinds of classifi-
cation are permitted. The representation of structured information and con-
stituent structure are considered, and we find a basis for more flexible rule-like
processing than that permitted by conventional methods. We discuss briefly
logical issues such as decidability and computability and show that they require
reformulation in this new context. Throughout we discuss the implications for
artificial intelligence and cognitive science of this new theoretical framework.

1 The Importance of Connectionism

Our goal is to show that connectionist systems are not simply new techniques for
clustering data nor methods for constructing associative memories but rather
represent a fundamentally new concept of knowledge and of the representation
and processing of information. Traditional approaches to knowledge represen-
tation all make the formalist assumption: that knowledge may be represented
by finite structures composed of discrete atomic symbols arranged in accord
with a finite number of syntactic relations.!

!The implications of this assumption are explored in detail by Pepper (1942, Ch. VIII).



This assumption is related to a long-standing belief that the discrete is more
fundamental, primitive and basic than the continuous. This belief derives from
certain pragmatic invariants of discrete symbol systems, namely, that they are
definite, reliable, and reproducible (MacLennan, in press). By definite we mean
that all tokens have a determinate type and all formulas have a determinate
syntax; there are assumed to be no differences of opinion or difficulties of clas-
sification. By reliable we mean that small errors do not affect the use of a
calculus, since in each step tokens can be replaced by “clean copies” — assum-
ing that errors entering in a step are not so large as to change the type of a
token or formula. By reproducible we mean that errors do not accumulate with
successive copying of formulas, since each copy begins afresh with tokens that
are clear instances of their type. These invariants hold only under ideal circum-
stances, but reality is often sufficiently close to the ideal that it is frequently
useful to view certain systems as calculi (e.g., hand arithmetic algorithms, dig-
ital computers, formal reason, board games). These invariants also constitute
the principal advantages of digital over analog technology.

Connectionist knowledge representation challenges the assumed priority of
the discrete in several ways: First, it shows that continuous symbol systems
satisfy a different set of pragmaticinvariants, that in some contexts are more im-
portant than those of discrete symbol systems. Connectionist systems are char-
acteristically flexible, robust, adaptive, and responsive.? By flexible we mean
that connectionist representations are continuous, and — in simplest terms —
permit adjustment between too much and too little. They tend not to be brittle,
a common characteristic of calculi and traditional, discrete knowledge repre-
sentations. By robust we mean that since connectionist processing is defined in
terms of continuous functions, small errors tend to lead to small effects; connec-
tionist systems do not respond discontinuously (and perhaps catastrophically)
to errors. By adaptive we mean that, as a result of continuous representation,
connectionist systems are able to change their behavior gradually, in contrast
to calculi, which change their behavior discontinuously when rules are added
or deleted. Finally, connectionist systems that operate continuously in time
are responsive, because the solution to a problem is an asymptotic equilibrium,
and so a partially completed computation may be usable in a time-critical sit-
uation. In traditional systems, partial inferences are often useless for action.
For many applications flexibility, robustness, adaptivity, and responsiveness are
more important than definiteness, reliability and reproducibility, and for these
applications connectionist approaches may be more appropriate.

A second way in which connectionist knowledge representation challenges
traditional approaches is by showing that the continuousis just as fundamental,
primitive and basic as the discrete, and in fact that either may be defined in
terms of the other. We will further elaborate this theme later.

Thus one of the most important characteristics of connectionism is that

2We are not claiming that every connectionist system has these properties, or that every connec-
tionist researcher would agree to our characterization. We do claim, however, that the contribution
of connectionism lies in exactly these properties.



is gives a fundamentally different way of viewing the representation and pro-
cessing of knowledge. By forcing ourselves to view traditional problems from
the continuous, connectionist viewpoint, as opposed to the familiar discrete,
symbolic viewpoint, we will expand the universe of approaches to knowledge
representation. By this “phenomenological variation” (Ihde, 1977) we will dis-
cover the range of approaches to knowledge representation and processing.

In addition to this, connectionist knowledge representation promises to il-
luminate information processing in the brain. In particular it will explain how
human discrete (or approximately discrete) symbolic cognition can be imple-
mented in terms of the slow, low-precision analog processing of the neurons.
Connectionism also promises to provide a basis for flexible information process-
ing. It is apparent that people can handle discrete symbols more flexibly than
conventional computers. We hypothesize that this is because human symbolic
cognition is implemented in terms of continuous subsymbolic processes, and
so can partake of the flexibility of these processes when that is advantageous.
We expect connectionism to explain the grounding of symbolic processes in the
subsymbolic substrate (Smolensky, 1988).

2 Postulates of Simulacra

2.1 Introduction

Our understanding of connectionist knowledge representation is impeded by
the lack of a general theoretical framework analogous to the idea of a calculus
(or formal system) in traditional knowledge representation. In other words,
every discrete, symbolic knowledge representation system is a calculus of some
sort, and so by investigating the generic properties of calculi we come to under-
stand the range of possible discrete, symbolic knowledge representations. This
investigation has led to the important theorems of Turing, Godel, Lowenheim,
Skolem and others, which expose both the capabilities and limitations of dis-
crete information representation and processing. A major goal of our research
has been to identify a theoretical framework that similarly captures the ba-
sic assumptions of connectionism, nonpropositional-knowledge representation,
and image-based cognition (MacLennan, 1988, in press). It is our hope that
by outlining the range of possible connectionist knowledge representations, this
theory will lead to an understanding of continuous information representation
and processing that is comparable in depth to the theory of discrete formal
systems.

In this paper we investigate a mathematical object called a simulacrum,
which is proposed as the continuous analog of the discrete calculus.® Just as a

3The reader may wonder whether fuzzy logic or set theory (Zadeh, 1965, 1975) can provide the
necessary theoretical framework. It is inadequate for several reasons. First, connectionist knowledge
representation permits very flexible context sensitivity, which goes beyond the fixed membership
functions of fuzzy sets. Second, fuzzy logic continues to represent knowledge as discrete symbol



calculus defines a set of formulas (representations) and a set of rules for trans-
forming them (processes), so a simulacrum defines a space of images and a
space of processes for transforming the images.* Our goal is to characterize
these spaces mathematically, but before we can do so, it is necessary to deter-
mine the invariants that we want the mathematics to capture. This process is
described in detail elsewhere (MacLennan, in press), here we discuss only its
results, a set of postulates for simulacra.

2.2 Postulates

We have identified a number of postulates that we believe to be satisfied by
all or most simulacra. We will state each postulate formally, but also ex-
plain it in intuitive terms; a more detailed justification will be found elsewhere
(MacLennan, in press).

Just as a calculus is constructed around one or more formula spaces — rep-
resentational spaces of well-formed formulas — so a simulacrum is constructed
around one or more image spaces. The first two postulates characterize im-
age spaces (or continua), which are the basic representational resources of
> We explain briefly how these postulates follow from several rea-
sonable assumptions about images spaces.

The first such assumption is that image spaces are characterized by differing
degrees of similarity between the images. If we make the further assumption
that these degrees are quantifiable and that the quantification satisfies the for-
mal properties of a metric, then we can conclude that an image space is a metric
space.® Our second assumption gets at the essence of a continuum, for we as-
sume that every image in the space is reachable from every other by a continuous
process of transformation. Without this assumption, some regions of the image
space would be essentially unreachable from others; in topological terms, the
image space would be disconnected and hence not a continuum.” In contrast,
the discrete formula spaces of calculi are totally disconnected (Hausdorff, 1957,

simulacra.

structures (although they denote fuzzy objects); thus it is not suited to describing subsymbolic
knowledge. Third, fuzzy set theory does not facilitate topological reasoning about connectionist
systems, which is often more useful than numerical inference. Finally, fuzzy systems are particular
simulacra, and so the present theory is more general. See also MacLennan (1988) on the limitations
of fuzzy set theory.

4A stimulacrum can be defined as that which resembles something else, a likeness, an image, a
representation. By metonymy it refers to the entire system, as ‘calculus’ (pebble, token) does to the
entire discrete system.

SWe generally avoid using the obvious term ‘continuum’ for image spaces, because that term’s
usual meaning in topology — a nontrivial connected compact metric space — is not equivalent to
an image space. However, where confusion with topological usage is unlikely, ‘continuum’ is a useful
and suggestive synonym for ‘image space’.

6These assumptions are not entirely unproblematic; in particular it is not obvious that the triangle
postulate, d(z,y) + d(y, z) > d(z, z), can be taken for granted, and for some purposes a semimetric
space may be the most we can safely assume (MacLennan, 1988).

"Needless to say, separate image spaces need not be connected with one another.



p. 175), and this lack of connection is the essence of discreteness.

More formally, for any two images z and y, we require there to be a contin-
uous function p (representing the transformation process) such that at “time”
to, p(to) = @ and at time #, p(#r) = y. In topological terms, the points z and
y are path-connected, since p is a path from z to y.® Thus we have:

Postulate 1 Image spaces are path-connected metric spaces.

This postulate has several consequences that would be expected to hold for
continua and image spaces, and so these consequences increase our confidence
that this postulate is correct.

Proposition 1 For any two given images, there is always a third image closer
to the first given image. That is, given images x and y, we can always find an
image z such that d(z,z) < d(z,y).

This is a simple consequence of the continuity of any path connecting the given
images.? Its practical consequence is that arbitrarily small adjustments of im-
ages are possible, which supports the adaptability of connectionist systems.

The second implication of the postulate, which is proved in Hausdorff (1957,
p. 175), increases our confidence that image spaces are “big enough” to be
continua:

Proposition 2 Image spaces have at least the cardinality of the real numbers.

Our second postulate for image spaces is less intuitive and more problematic
than the first:

Postulate 2 Image spaces are separable and complete.

This means that we can construct convergent sequences of approximations to
images, and that the limits of these sequences belong to the image spaces. The
operational relevance of this postulate is not entirely clear, but it is mathemat-
ically convenient and a property expected of continua.

Additional support for this postulate is provided by a theorem of Urysohn,
which shows that any metric space with a countable base is homeomorphic (i.e.,
topologically equivalent) to a subset of the Hilbert space £; (Nemytskii and
Stepanov, 1989, p. 324). (Note, however, that the homeomorphism need not
preserve the metric.) Since any separable metric space has a countable base,
any image space (by Postulate 2) is homeomorphic to a subset of the Hilbert
space Lq. For these reasons we claim:

8We are being a bit informal here so that the intuitive justification of the postulates will be clear.
First, note that we are using the term “continuum” informally, not in any of its (several) technical
uses in topology. Second, there are spaces that are connected (in the topological sense), but not
path-connected. We do not consider settled the question whether image spaces should be assumed
to be path-connected or merely connected.

9That is, since the path p from z to y is continuous, for any ¢ > 0 we can pick a § > 0 such that
[t| < & implies d[z, p(t)] < €. Let € = d(z,y) and let z = p(t) to prove the proposition.



Proposition 3 Image spaces are Hilbert spaces.

Thus, for most purposes we can treat image spaces as Hilbert spaces, which
is very convenient, because Hilbert spaces have many useful properties and
have been extensively studied. In addition to being a common framework for
understanding vision and audition, Hilbert spaces seem to provide an attrac-
tive theoretical framework for neural computation (MacLennan, 1987, 1990;
Pribram, 1991).

The formulas of a calculus are characterized by syntactic relations, which
determine the types of formulas and part-whole relations between formulas,
upon which depend in turn the rules of derivation. These syntactic relations
can be expressed as maps between discrete spaces, either from the space of
WFFs (well-formed formulas) to itself, or from the space of WFF's to a space of
types. Analogously, the syntactic relations in simulacra are defined by maps, in
this case, by continuous functions between image spaces. (The functions must
be continuous if we are to preserve the pragmatic invariants.) Thus we have
the postulate:

Postulate 3 Maps between image spaces are continuous.

We will see that this intuitive postulate has a very important consequence:
exact classification is impossible in simulacra. That is, the “logic” of simulacra
is inherently fuzzy.

Calculi normally provide rules of derivation that define discrete-time pro-
cesses on the space of formulas. Analogously, simulacra normally provide
continuous-time processes on the space of images. We require that these pro-
cesses satisfy:

Postulate 4 Formal processes in simulacra are continuous functions of time
and process state.

Finally we consider the semantics of simulacra. The preceding postulates deal
with the formal properties of simulacra, those which depend on form but not
meaning, and thus these postulates provide a framework for understanding
uninterpreted simulacra (continuous formal systems). This is important for
both cognitive science and artificial intelligence, since it shows us what can be
computed without appeal to homunculi for interpreting the symbols. On the
other hand, since our goal is to understand knowledge representation, we must
also consider the relation between images and their meanings. This is addressed
by our last postulate.

Just as the domain of interpretation of a calculus is necessarily discrete (this
is the import of the Lowenheim-Skolem Theorem), so the domain of interpre-
tation of a simulacrum is inherently continuous, that is, it is an image space.
Further, just as the interpretation function of a calculus is required to be com-
positional, that is, to respect the constituent structure of the formulas, so we
impose an analogous requirement for simulacra, namely, that their interpreta-
tions be continuous (which would, in any case, be expected from Postulate 3).
Thus we have:



Postulate 5 Interpretations of simulacra are continuous.

It will be observed that not all connectionist and neural network systems sat-
isfy all of these postulates. For example, neural activity may be drawn from
a discrete space (typically binary or bipolar), or network activity may be up-
dated at discrete time intervals. Nevertheless, we claim that these postulates
capture the essence of connectionist knowledge representation and connection-
ist information processing. In any case, they are compatible with information
processing in the brain, since neural processes are continuous.'”

2.3 Idealization

In this connection it is important to observe that a simulacrum is an ideal, as is
a calculus. That is, when we interpret a real, physical system as a calculus, we
make certain idealizing assumptions that are not literally true. For example,
we may assume that the voltage across a device can assume only two values
(representing 0 and 1), whereas in fact the voltage must change continuously
between these extremes, and may vary somewhat in each state. For another
example, observe that when we interpret a system as a calculus we assume that
the tokens can be unambiguously separated from the background and that
they can be unambiguously classified as to syntactic type. The difficulties that
may arise in real-world signal detection and pattern classification reveal the
idealistic nature of these assumptions. There is nothing wrong with making
these assumptions, so long as we acknowledge that we are doing so, and take
care to ensure that the real system in question is sufficiently close to the ideal.

In an exactly analogous fashion, a simulacrum is an idealization of real,
physical embodiments of continuous systems, and this idealization is unprob-
lematic so long as the real and ideal are sufficiently close. Thus it matters little
whether the image space is in fact complete, or whether the maps and processes
are truly continuous, so long as these are good approximations. For example,
it may be perfectly proper to treat an artificial neural net as a simulacrum
even though activity levels are represented by either rational or floating point
numbers (which form a discrete space), or even though the state is updated at
discrete time intervals.

3 Classification

3.1 Disallowed Connectionist Categories

It is a simple theorem of topology that there cannot be a continuous map from
a connected space, such as an image space, into a nontrivial discrete space, such
as {0,1}. This result is of critical importance for the theory of connectionist
information processing, for it means that connectionist categories are inherently

10This includes even apparently discrete phenomena such as the generation of action potential,
since they result from the interaction of continuous physical laws.



fuzzy: their classification functions must pass continuously between 0 and 1.!!
The transition may be as sharp as we like, but it cannot be discontinuous. Thus
we have:

Proposition 4 Simulacra cannot classify exactly.

We believe that this property of simulacra is biologically and psychologically
very realistic, but several objections can be made to it:

Objection 1: It is factually incorrect, since humans and other animals do
in fact distinguish disjoint classes. For example, suppose we say to a person,
“I will show you a shape. If it looks more like a circle, then raise your hand; if
more like a square, then don’t.” It will be argued that even though there is a
continuum between circles and squares, the subject will either raise his hand or
not, and thus exhibit exact classification (a map into a discrete set). We answer
this objection as follows. Let C' (for circle) represent the decision to raise the
hand, and $ (for square) the decision not to do so. Then certain images will
be in the basin of attraction of C' and others in the basin of attraction of 5.
But the basins of attraction are disjoint open sets (Hirsch and Smale, 1974,
p. 190), and since a connected space cannot be the union of disjoint open sets,
there must be some images that do not lead to either outcome. These images
must either (1) lead to other equilibria, or (2) lead to periodic behavior, or (3)
be stationary points, or (4) be unstable. In behavioral terms, the subject will
either hover in a state of indecision or will act in an unpermitted way (e.g.,
run away). Of course, a real subject would not be permanently paralyzed by
indecision (i.e., be in a stationary state), since changes in the context will alter
the dynamics of the system and allow his state to change. Practically, the set
of images leading to such anomalous behaviors is usually very small, but the
mathematics tells us that it is nonempty.'?

Objection 2: The proposition is irrelevant, since it allows arbitrarily sharp
class borders, and so the categories are, from a practical standpoint, discrete.
This objection misses the point. Pragmatically, a discontinuous border is no
different from a continuous but arbitrarily sharp border: just as a calculus
may approximate arbitrarily closely a continuous transition, but still moves in
discrete steps, so a simulacrum may approximate arbitrarily closely a discontin-
uous transition, though it must still move in a continuous path. Mathematically,
on the other hand, the difference may be very important: just as certain funda-
mental results (such as the Lowenheim-Skolem Theorem and perhaps Godel’s
Theorem) follow from the inherent discreteness of calculi, so equally funda-
mental results may follow from the inherent continuity of simulacra. Such
results would help distinguish fundamental properties of any representation of
information, from those that are artifacts of our idealized models: calculi and

1By classification function we mean any map that reduces an image space to a linear continuum,
such as [0, 1]. This is equivalent to the characteristic function of a set in the case where the function
is identically 1 on the set and identically 0 on its complement.

12In many cases, such as gradient systems, the anomalous states will be so improbable that they
constitute a set of measure 0.



simulacra. For example, if both models were subject to something like Godel’s
incompleteness result, then we would have to take that to be a fundamental lim-
itation of all information representation and processing; if not, then we might
conclude that it is an artifact of an idealized model of discreteness, and of no
fundamental importance for biological cognition (which is not mathematically
discrete).

3.2 Allowed Connectionist Categories

Having found that simulacra do not permit exact categories, we must ask what
kinds they do permit. Several kinds, generally corresponding to topological
separation axioms, are easy to identify, and the resulting connectionist cate-
gories seem biologically and psychologically plausible. For example, for each
open set in a metric space there is a continuous function that is positive on the
set and nonpositive on its complement. This gives us a kind of fuzzy classifica-
tion, since as we approach the border the value of the function must approach
0 (representing indeterminate classification). Thus we claim:

Proposition 5 Any open set in an image space has a continuous classification
function that is positive on just that set, but this function must approach 0 at
the boundary of the set.

Another kind of classification is permitted by Urysohn’s Lemma, which says
that for any disjoint closed subsets A, B of a normal topological space, there
is a continuous function that is identically 0 on A and identically 1 on B.!3
Since metric spaces are normal, this result applies to image spaces, and gives
a useful kind of classification. For example, if A is the set of images of things
that are definitely artichokes and B is the images of definite bananas, then we
are allowed a classification function that distinguished definite artichokes from
definite bananas. On the other hand, since an image space cannot be the union
of two or more disjoint closed sets (since that is the definition of a disconnected
space), there must be other images in the space that belong to neither A nor
B. For these images the classification function may return values between 0
and 1, and thus classify them indefinitely. In general terms:

Proposition 6 For two disjoint closed subsets of an image space there is a
continuous classification function that is identically 0 on one set and identically
1 on the other, but the classification function must take on each value between
0 and 1 on some image not in either set.

Again we emphasize that the two closed sets could nearly exhaust the image
space, and thus very nearly correspond to A and non-A, but the mathematics
requires that there be an indefinite residuum between the definite categories.

13(Clearly, there is nothing special about the values (0 and 1; any two distinct points in a space
would do.



Finally, for completely regular spaces (such as a metric spaces, and hence
image spaces) we have this theorem: For every point and every open set con-
taining that point, there is a continuous classification function that is 1 at that
point and identically 0 outside the set. Thus we have the following classification
result:

Proposition 7 For every open set in an image space and for every fized image
(the exemplar) in that set, there is a continuous classification function that is
1 on the exemplar and identically 0 outside the set. However, the classification
function must take on each value between 0 and 1 on some image in the set.

We may interpret this kind of category as follows: We have an exemplar that is
a definite case of the class (so the classification function returns 1), and there are
images that are definitely excluded from the class (so the classification function
returns 0), but for other images the classification may be indefinite (between 0
and 1). Clearly this theorem also permits a category to be structured around
any finite number of exemplars.'4

4 Structured Information

Fodor and Pylyshyn (1988) identify two characteristics that distinguish “classi-
cal” (i.e., discrete, symbolic) cognitive theories from connectionist theories: (1)
combinatorial syntax and semantics for mental representations, and (2) struc-
ture sensitivity of process. In other words, in classical but not in connectionist
theories knowledge is represented by formulas with a complex constituent struc-
ture (as opposed to simple images) and is processed by rules sensitive to the
structure of these formulas (as opposed to simple association). They further
argue that since these characteristics are necessary for any adequate theory
of cognition, connectionism cannot be adequate.'® In this section we address
these issues and show that connectionist knowledge representation provides a
fundamentally different view of structured information and of its rule-like pro-

cessing.

4.1 Constituent Structure

Defenders of traditional approaches to knowledge representation and inference
have criticized connectionism for its inability to represent constituent structure
(e.g., Fodor and Pylyshyn, 1988; Pinker and Prince, 1988), and as a result
there has been considerable effort devoted to representing and processing trees
in connectionist systems (e.g., Pollack, 1988, 1989; Dolan and Dyer, 1989; Dolan

1 For an example, we may take Berlioz’ Symphonie Fantastique as an clear exemplar of “romantic
symphonies.” Conversely, while there are obviously innumerable musical compositions that are
definitely not romantic symphonies, there are many other compositions whose membership is not so
clear (such as Beethoven’s Ninth Symphony).

15We are of course grossly oversimplilying their 70 page argument.
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and Smolensky, 1989; Smolensky, 1987; MacLennan, in press). Although the
results of these investigation have some use — especially in answer to the critics
— we believe that connectionism has more to offer. In fact, we will go further,
and assert that a post-Chomskian linguistic theory will not be developed until we
learn to think of language in some terms other than trees. Unfortunately this
is very difficult. Nevertheless, we believe that by forgetting trees we will reveal
the possibility of non-graph-structured representations for linguistic structures
in particular, and for cognitive structures in general. Unfortunately, we can
only hint at what might be possible.

4.1.1 Decomposition of Images

To understand the nature of the connectionist representations of constituent
structure, it will be helpful to review some characteristics of traditional discrete
representations. First observe that discrete languages are defined generatively,
that is, by specifying a processes, expressed in rules, for the construction of
formulas from atomic constituents. Conversely in unambiguous languages (the
usual case), formulas can be uniquely analyzed into their constituents. This
means that the constructor functions are injective (one to one) and that their
ranges are disjoint. In this way the construction of a formula is always uniquely
determined.

In contrast, the definition of continuous languages (image spaces) is prob-
lematic. But if we consider some examples, such as defining a space of visual or
auditory images, then it seems that circumscribing a background is one part of
the definition. Thus we might specify a particular two-dimensional region for
visual images or a particular range of frequencies for auditory images. Another
part of the definition identifies the significant kinds and degrees of variation on
this background. For example, we might specify a range of colors and intensi-
ties for visual images and of amplitudes for auditory images. In mathematical
terms an image space is often simply a function space (e.g. L£2(£2)), and speci-
fying the background and range of variation amounts to specifying the domain
and range of the image functions. In general the problem of defining continuous
languages is open, but specific cases are easy.

The process we have outlined may seem informal, but it is no more so
than the definition of calculi. Observe that calculi are defined by example,
by exhibiting instances of the atomic types and by showing the outputs of the
formation and transformation rules when applied to formulas containing special
tokens (which we call variables). Such a process of ostensive definition must take
place upon a background of assumptions about what is relevant and irrelevant
to the definition. These assumptions are so familiar that they are no longer
visible to us; the background has receded and is hidden from criticism. The
ostensive definition of simulacra is also against a background of assumptions,
but in this case they are less familiar, so they are visible and hence exposed to
criticism.

Our discussion of the top-down definition of image spaces might seem to sup-
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port the critics’ contention that connectionist representations have no structure,
but in fact it only implies that their structure is not given. Unlike (unambigu-
ous) discrete formulas, continuous images need not have a unique structure.
Analysis is usually problematic for images, since there are usually many ways
in which they can be decomposed, and for some decompositions there may be
no “bottom” to the analysis. Consider some of the possible decompositions of a
visual image: pixels, edges, structural units, polygons, cylinders, etc. Consider
also the many suggested “primitives” for representing images in visual cortex
(oriented edges, differences of Gaussians, wavelets, Gabor elementary functions,
etc.). These examples show that many image spaces — far from having no con-
stituent structure — have an extremely rich constituent structure. We consider
briefly some decompositions of image spaces.

4.1.2 Nonrecursive Decomposition

A decomposition of an image space is an analysis of that space into compo-
nent spaces that are in some way more basic. The simplest case is when a
higher-dimensional space is expressed as a product of two or more spaces of
lower dimension. For example, the space of tongue positions in vowel artic-
ulation can be decomposed into a product of two linear continua (high/low,
front/back). Recall however that an image space is not simply a set of images,
it is also characterized by a metric; therefore it is not sufficient to express the
set of given images as a Cartesian product of sets of simpler images; it is also
necessary to show how the given metric can be expressed in terms of metrics on
the component spaces. Thus, decomposing the image space (X, d) into spaces
(X1,dy) and (X3, dz) entails showing the product decomposition of the set of
images, X' = A7 X X, but also entails establishing a relation between the metric
d and the component metrics dy and dy. This cannot be assumed to be the
obvious Euclidean (or {3) relation, d?[(z1, z2), (y1,92)] = d3(z1, y1) + d3(z2, y2).

For real perceptual and motor spaces the isometric decomposition into lower
dimensional spaces may be quite difficult to accomplish and often requires sta-
tistical techniques such as principal components analysis and multidimensional
scaling (Shepard, 1980). This difficulty illuminates an important distinction
between traditional and connectionist knowledge representation: In calculi the
structure of the formulas is manifest and unique; in simulacra it is hidden and
manifold. Although this can be interpreted as a disadvantage of connection-
ist knowledge representation, it is actually a source of useful representational
richness. Instead of having a single distinguished decomposition, images have
many decompositions, from which an appropriate analysis can be selected for
the information-processing purpose at hand.

We have seen that image spaces can often be expressed as a product of two
or more simpler image spaces. We turn our attention now to a special case,
the decomposition of an image space into an infinity of simple (real) continua.
One way to accomplish this follows from the Riesz-Fischer Theorem, which says
that any separable Hilbert space, such as the space £3(2) of square-integrable
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(or “finite energy”) functions on a domain 2, is isomorphic and isometric to
the Hilbert space {5 of square-summable sequences of real numbers. That is,
infinite-dimensional images, such as visual and auditory images, can be ana-
lyzed into infinite sequences of reals (zero-dimensional “images”). Further, the
L7 metric on images is equivalent to the Euclidean metric on the sequences.'®

The simplest example of such a decomposition is the familiar Fourier series
in which an image is represented as the coefficients of a linear superposition of

elementary images (sinusoids):
¢ = Z Ckek,
k

where ¢ is the given image, the e; are the elementary images, and the ¢
are the Fourier coefficients of ¢. More generally, if (eq, €1, €2,...) is any basis
(complete orthonormal system of images) for the image space, then an image
may be represented by its generalized Fourier coefficients with respect to this
basis. Moreover, the decomposition need not even be in terms of orthogonal
images; for example, it is quite possible that the elementary images of the visual
system are nonorthogonal Gabor wavelets (Daugman, 1988; MacLennan, 1991).

4.1.3 Recursive Decomposition

Supporters of traditional, discrete symbolic knowledge representation have crit-
icized connectionist knowledge representation for an inability to represent re-
cursive structures, such as trees (Fodor and Pylyshyn, 1988). Such structures
have been a mainstay of linguistic theory and are considered by some to be es-
sential to a theory of human cognition. Although, some cognitive scientists have
disagreed with this claim (Rumelhart, McClelland, et al., 1986, pp. 119-120)
and, as we have argued above, the pervasive appeal to recursive structures may
be more a limitation than a strength of traditional theories, it is nevertheless
worthwhile to investigate connectionist approaches to recursive structure.

The basic problem can be explained as follows. The generative rules of
most calculi are recursive, which means that the space of well-formed formulas
is closed under the construction operations. In contrast, the state spaces of
neural networks, which are usually taken to be finite-dimensional vector spaces,
are not closed under construction operations. In intuitive terms, if we combine
into a single vector two n-dimensional vectors we will get a 2n-dimensional
vector, not an n-dimensional vector. The impossibility of representing recursive
structures in finite-dimensional spaces is implied by an important theorem of
Brouwer’s, which states that Euclidean spaces of different dimension are not
homeomorphic. In other words, for finite n, we cannot have a continuous
constructor operation f: E*"X E™ — E" with a continuous inverse f~! : £ —

15The £ metric on functions over a domain €2 is given by d*(z, y) = [,[(s) —y(s)]*ds. Of course,
there is no requirement that the £5 metric be the metric on the image space, but if it is, then the
decomposition is straightforward.
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X E™. Thus we cannot continuously combine two finite-dimensional images
into another of the same dimension.

On the other hand, recursive construction is possible for infinite-dimensional
spaces (such as the Hilbert spaces L3 = £°°). We give one example. Suppose
that the images (eg,e1,€z,...) are a basis for an infinite-dimensional image
space; then the images ¢, 1 can be represented by their generalized Fourier

series:
o0 o0
p= cker, =y dpep.

We can then construct the pair x = (¢, ) by interleaving their Fourier coeffi-
cients:

o0
X = Z(Ckezk + dpegpi)-
k=0
It is easy to show that this construction operation is a homeomorphism, since
both it and its inverse are one-to-one and continuous (in fact, isometries).

If we consider the corresponding deconstruction operations (i.e., extracting
the odd or even Fourier coefficients of an image) then we see that there is no
“bottom” to the deconstruction of infinite dimensional images, a property we
saw to be characteristic of many continuous representations. In contrast, there
is always a bottom to the analysis of discrete formulas, namely, the atomic
tokens. We take this to be another argument in favor of infinite-dimensional
representations.

The representation of recursive structures is intimately related to the com-
petence/performance issue in cognitive science (Rumelhart, McClelland, et al.,
1986, pp. 119-120; Fodor and Pylyshyn, 1988) because it is apparent that hu-
man beings cannot handle arbitrarily deeply embedded structures. Thus cogni-
tive science has traditionally distinguished an idealized theoretical competence,
under which embedding is unlimited, from the observed performance, which
is limited — and uninteresting to the theoreticians. Connectionism, in con-
trast, has tried to include performance issues in its theories from the beginning
(Rumelhart, McClelland, et al., 1986, pp. 12, 130-131).

The competence/performance distinction appears very straight-forwardly in
the current model. In an ideal continuous medium, which supports images with
arbitrarily high-frequency components, trees of any depth can be constructed
and deconstructed. On the other hand, real, physical media have limitations
that interfere with the representation of higher frequency components, so we
find that in practice the more deeply nested components of trees are the more
degraded by noise and other mechanisms, and therefore are progressively less
accessible. Such graceful degradation is biologically more robust than a hard
limit imposed by, for example, a fixed stack depth.!”

1"What would be the behavioral effect of trying to comprehend a center-embedded sentence that
exceeds our hypothesized stack depth? Would the too-deeply nested clauses be discarded completely,
so that we would have no awareness of their content? Or would the outermost clauses be pushed
out of the bottom of the stack, and so become lost? The actual effect is not so catastrophic; instead
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Representations such as our Fourier construction and those developed by
other connectionist (e.g., Pollack, 1988, 1989; Dolan and Smolensky, 1989)
show that it is possible to do Lisp-style information processing (decomposing
and recomposing symbolic structures) in neural networks, but this is just try-
ing to patch up fundamentally inadequate theories. It would be better to avoid
decomposition of formulas altogether and to understand how images are pro-
cessed as wholes. A key problem is to show how such processing looks — to a
first approximation — like processing that operates in terms of constituents.'®

4.2 Rule-based Processing

Rules define structure-sensitive processes, that is, a rule applies to an image
or formula that is in a given configuration or pattern, and rearranges the con-
stituents of that pattern into a new configuration. We take a typical rule to
have the form

A(zq, . 2q) = S(21,...,25)

which means that an image constructed according to the pattern A(zq,...,z,)
should be rearranged into the pattern S(z1,...,2,). The rule is general, be-
cause it applies for any (legal) constituents (z1,...,2,), and it is structure-
sensttive because its applicability is conditional on the input matching the pat-
tern represented by the constructor A. We will consider the processes defined
by individual rules and finite rule-sets operating on image spaces.'?

We noted above that rules in calculi are specified in terms of general pattern
constructors, which are defined ostensively by exhibiting “templates,” instances
of formulas containing tokens of a special type that are interpreted to be “vari-
ables.” The convention for recognizing variables is part of the background
of assumptions for the process of ostensive definition. Continuous pattern con-
structors can be defined ostensively in an analogous way. For a simple example,
suppose the constructor A(¢) represents placing the image ¢ in a frame in a
black and white image a (see Fig. 1). For the sake of the example, we assume
that the only part of ¢ that will appear in the result is that part in the same
place as the frame. The constructor A can be defined ostensively by adopting
a convention for indicating the variable part of the image; for example it could
be marked by an otherwise unused color or texture.

So far the ostensive definition of constructors in simulacra has seemed sim-
ilar to that in calculi, but now we find some differences. Because images are
continuous, the variable portion of the template must blend continuously with
the fixed portion. Or, to put it another way, in constructing a pattern, we
must classify regions of the template as “variable” or “fixed,” but we have seen

we find our comprehension to be progressively impacted.

18For example, rule-based operation might be a discrete approximation to continuous operation
in terms of one of the classification propositions (e.g. Prop. 7).

19 A more characteristically connectionist view would be that “rules” themselves belong to (infinite)
continua and that they process information continuously, but we restrict our attention here to the
finite/discrete case to simplify the comparison with traditional approaches.
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Figure 1: Example of ostensive definition of continuous pattern by exhibiting a tem-
plate. The image A(¢) is constructed by blending the image ¢ into the variable region
of A, which is indicated by shading.

(Proposition 4) that exact classification is impossible. Therefore, let p repre-
sent a possible classification function (e.g., allowed by Propositions 5, 6 or 7)
which is 0 on the definitely fixed part of the template and 1 on the definitely
variable part, but between 0 and 1 on the indefinite parts. Then the constructor
A : £ — T can be defined by a formula such as this (there are of course many
others):

A(P) = (1 — p)a+ pe.
That is, if A(¢) =1 then

¥(p) = [1 — p(p)la(p) + 1(p)o(p).

Thus, although part of the result is fixed and comes from the template «, and
part is variable and comes from ¢, there is also a unavoidable boundary region
that blends a into ¢. It is easy to show (with the £, metric) that constructors
of this kind are continuous (and, indeed, satisfy a Lipschitz condition) and one-
to-one. Furthermore, if we assume that the allowable component images ¢ are
restricted so that they are nonzero only where that classification function p is
greater than some fixed threshold #, then we find that the inverse constructor
A~! is also continuous, and so A is a homeomorphism between & and A[€] =

{A(o)lo € £3.2°

20The requirement for the threshold # can be understood as follows. If ¢ is allowed to be nonzero
wherever 41 is nonzero, then as p(p) — 0 the product p(p)¢(p) in the definition of A allows arbitrarily
large changes in ¢ to be canceled by small values of p. Conversely, then, ¢ = A=1(3}) can magnify
small changes of ¥ into arbitrarily large changes in ¢.
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We have seen that a constructor for a complex image is a continuous injective
(one to one) mapping from one image space into another (possibly the same
as the first). For simplicity we restrict our attention to one-place constructors
(i.e., n = 1); the extension to more places is routine. So suppose A : & —
7 is a constructor defined on image space &; thus A(¢) is the image in 7
constructed from the image ¢ € £. As suggested above we also require A~ to

be continuous.?!

Now a rule A(z) == S(z), where S5 : & — J, defines a function R,
A[€] — J defined by R, = S o A=1. That is, if ¢ is an image in the range of
A, b = A(¢), then R,(v) = 5(¢). Smce S and A~! are both continuous and
one-to-one, so is the rule R,.?? Notice, however that since R, is defined only
on the patterns constructed by A, it is in general only partial on 7. Thus we
must extend R, to a (continuous) function R : 7 — J defined on the entire
image space.

There are many ways this extension may be accomplished — we give an
example below — but they all result in some ability to generalize. For example
if 1b € 7 is an image not constructed by A, and thus not strictly in the domain
of applicability of the rule, but if ¢ is close to A(¢) then the continuity of
R requires that R(7)) be close to S(¢). In other words, the apparently exact
rule has an inevitable penumbra of applicability to images that do not exactly
match its pattern.

Next consider the process defined by a rule-set comprising two rules:?3

A(z) = S(z), B(z)=T(z)

If this process is to be deterministic, then there must be no images to which
both rules are applicable; that is, there is no 1 such that A(¢) = ¢ = B(¢),
since otherwise we could have inconsistent results S(¢) and 7(¢’). Therefore we
assume that A[£] and B[] are disjoint. The rules individually define mappings
Ri=50A71t: Alf] = J and Ry = T o B~! : B[] — J. Therefore the rule
set defines a mapping R, = (S0 A7 UT o B71): (A[£]U B[€]) — J, which
must be extended continuously to R : 7 — [J.2* The effect of this continuous
extension is that as an image varies from one matching pattern A, say A(¢),
to one matching pattern B, say B(¢'), the output of the process will vary from
S(¢)toT(¢'). Thus the postulates of simulacra imply that any rule set provides
smooth transitions from the applicability of each rule to the applicability of the
others.

We consider briefly one specific kind of continuous extension. Suppose the
patterns A and B are continuously transformable into one another. For exam-

21Since A is a constructor, A~! is a deconstructor or decomposition. It performs an analysis com-
plementary to the synthesis performed by S. Thus, both analysis and synthesis must be continuous.

22In general a rule need not be one-to-one, since it may discard variables, for example, A(z,y) =
S(z). If a rule doesn’t discard variables, then it is a homeomorphism between A[£] and S[£].

23The extension to more then two rules is routine.

24For convenience of exposition we interpret the functions as sets of ordered pairs (i.e., we identify
the functions and their graphs).

17



ple, A(¢) might represent putting a circle around ¢ and B(¢) might represent
putting a square around it. Or A(¢) might represent putting a minus sign in
front of ¢ and B(¢) might represent putting a plus sign behind it. In both cases
it is clear that in general A(¢) is continuously transformable into B(¢), for any
¢. Therefore we introduce a real parameter # that represents the distance along
any fixed transformation so that § = 0 represents A and # = 1 represent B.
Specifically, we define a higher order pattern C : [0,1]XE — Z so that (0, ¢)
varies continuously from C'(0,¢) = A(¢) at § = 0 to C(1,¢) = B(¢) at § = 1.
For simplicity we assume C' is surjective (onto), so every ¢ € 7 can be written
1 = C(0,¢). Now the meaning of the rule set can be defined as a composition
R = D o C where D varies continuously between the patterns S and T, for
example,

D(8,9) = 05(¢) + (1 - 0)T(0).

(This presumes that the image space J is a linear space, for example a Hilbert
space.) Thus an input of the form A(¢) will lead to an output of the form
S(¢), and an input B(¢) will lead to T'(¢), but other images in 7 will lead to
some mixture of the S and 7" patterns. In particular, if ©» = C'(6,¢) € Z, then
R(1) = 85(6) + (1 - O)T(&).

More generally, we draw the parameter  from a continuum H (with metric

d) so that C': HXZ — J is surjective. If, without loss of generality, we assume
that A(¢) = C(a, ¢), B(¢) = C(5,¢), d(a, 3) = 1, then an appropriate D is:

D(8,6) = d(8,5)5(¢) + d(8, )T(9).

The result is that the rule set is applicable to all images in Z, and the result
of applying it to an image not strictly in the domain of any rule will be a
kind of interpolation of rule outputs for nearby images. The quality of the
generalization depends, of course, on the continuous extension that is chosen.

The connectionist rules we have described are defined analogously to discrete
rules. In this sense they are not consistently connectionist. More typically in
a connectionist system individual rules are not glued together to form a rule
set; instead the “rule set” emerges from a uniform background transformation
by some adaptive process (e.g. learning). Thus in some cases approximately
discrete rules may emerge from this process, but connectionism also permits
the inferential processes to take the form of a continuum that is not expressible
as rules. This is a significant strength of connectionism both for cognitive
modeling and for implementing flexible information processing.

5 Decidability

Since simulacra provide a fundamentally different framework for computation
from calculi, the question naturally arises of whether they are subject to the
corresponding undecidability and noncomputability results (e.g., Gddel’s and
Turing’s). There is reason to believe that they are not, since simulacra permit
inference rules that are effectively infinite, and some systems with inference
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rules of this kind are both w-consistent and complete (Heijenoort, 1967, p. 355).
This question deserves further investigation.

Although decidability questions of this kind have been addressed by others
who have investigated various forms of continuous computation (e.g., Blum,
1989; Blum, Shub and Smale, 1989; Stannett, 1990), we believe that their ap-
proach has not taken a fully consistent continuous perspective, for they have
approached the problems of continuous computation from the perspective of
discrete symbol systems. That is, they have asked what a calculus can decide
or compute about a continuous computational system. To ask questions corre-
sponding to Godel’s and Turing’s, we must ask what a simulacrum can decide
or compute about simulacra.

When we take a fully consistent continuous perspective, then we find that
we cannot even ask the same questions. In particular, since a simulacrum can-
not do exact classification, it @ priori cannot answer a yes-or-no decidability or
computability question. Thus the questions must be reformulated before they
can be addressed. For example, we could ask about the existence of a simu-
lacrum that classifies a certain subset of the images as definitely decidable and
another subset as definitely undecidable, so long as these subsets do not ex-
haust the space (i.e., answer in accord with Proposition 6; see also MacLennan,
in press).

Although Proposition 6 permits simulacra that answer “fuzzy” decidabil-
ity questions, it does not guarantee that they exist. Such existence questions
must be answered in the context of specific models of continuous computation.
This is the same situation found in the familiar theory of (discrete) computabil-
ity. There we have many models of computation such as finite-state machines,
primitive recursive functions, Turing machines, Markov algorithms, Post pro-
ductions and the lambda calculus. Although these are all calculi, they formalize
different models of computation, and could be expected to imply different no-
tions of computability. It is therefore all the more remarkable that exactly
the same set of computable functions is defined by several of these models,
specifically, those that are idealizations of large digital computers. In this way
the computational capabilities of calculi are somewhat independent of specific
models.

We expect an analogous situation for simulacra. Many models of continuous
computation can be defined within the general category of simulacra, and each
will imply a corresponding notion of computability. We anticipate that many of
these models will define the same class of computable functions, and therefore
that there will be a notion of continuous computability that is relatively model-
independent. However, a definite result of this kind will require the definition
of specific models of continuous computation, a task just barely begun (Blum,
Shub and Smale, 1989; (MacLennan, 1987); Stannett, 1990).
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6 Conclusions

We don’t claim this is the definitive and final statement of the properties of
simulacra or of connectionist knowledge representation systems. First, it is un-
likely that there is one set of postulates that applies to all systems, just as there
is not a single characterization of calculi (some are deterministic, others nonde-
terministic; some have a finite number of atomic types, others an uncountable
infinity of them; etc.). Second, we have much less experience with simulacra —
as a class — than with calculi, so it is to be expected that our first enumeration
of postulates will require revision.

Nevertheless we think that it is clear that connectionism provides a fun-
damentally new view of knowledge and of information representation and pro-
cessing. This will extend the range of our theories of both natural and artificial
intelligence, and open new possibilities in classification, linguistics, structured
knowledge representation, rule-like processing and decidability. Our intent is
not to claim that the continuous perspective is better or more fundamental
than the discrete, or that the discrete view should be abandoned. Rather it is
to argue that the continuous be given equal time. Over the past 2500 years
we have identified knowledge and cognition with calculi. Connectionism offers
an essentially different perspective, the view that knowledge and cognition are
simulacra.
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