Continuous Computation:
Taking Massive Parallelism Seriously!

B. J. MacLennan
Department of Computer Science
University of Tennessee
Knoxville, TN 37996-1301
mclennan@utkes2.cs.utk.edu

1 Discrete vs. Continuous Computation

Modern computation is rooted in the discrete. This is most obvious in the
digital (especially binary) representation of data. At a higher level, data
is usually organized into structures with a finite number of discrete-valued
features. The same characteristics also appear in the process of computation
itself, which proceeds by discrete steps and must be completed in a finite
number of steps. The discrete and the finite are the hallmarks of traditional
computer science.

Recently there has been a rebirth of interest in analog computation,
since for many applications it’s convenient for each component of the data
representation to take on one of a continuum of values, rather than one of
a finite set of discrete values. However, this is just a part of what we mean
by continuous computation.

The subject of this conference is emergent computation. It’s based on
the observation that when very large numbers of elements interact new and
unexpected phenomena may emerge from their collective behavior. We hy-
pothesize that many of these phenomena result from the fact that a large
number of elements is an approximation to an infinite number of elements.
To test this hypothesis we’ve been investigating continuously parallel analog
computation [3, 4, 6, 7]. By ‘continuously parallel” we mean the limit of
‘massively parallel” as the number of processing elements becomes infinite
(and in fact a continuum). In this computational paradigm representations
do not have a finite number of discrete-valued features. Rather, they have
a continuum of continuous-valued (i.e. analog) features. The processing
elements also form a continuum — thus there is an uncountable infinity of

'Poster presentation at Los Alamos National Laboratory Center for Nonlinear Studies
9th Annual International Conference, Fmergent Computation, Los Alamos, NM, May 22-
26, 1989.

processors. Qur motto has been, “If you can count them, you don’t have
enough.”

2 Reasoning About Continuous Computation

Of course our postulation of a continuum of processors operating on con-
tinuous data structures is an idealization (just as there is a mathematically
idealized theory of discrete computation). Actual implementations will often
have only a (large) finite number of processors, and (large) finite numbers of
elements in the data structures. Even the continuous values of the elements
may be represented digitally. However, these are all considered discrete ap-
proximations to the idealized continuous computer. The requirement is that
the number of elements be sufficiently large that continuous mathematics
can be reliably applied. It has often been observed that the mathemat-
ics of the infinite and the infinitesmal (i.e. analysis) is simpler than the
mathematics of the finite (i.e. combinatorics).

The traditional theory of computation is sequential, and parallel com-
putation is often understood in terms of sequential computation (e.g., we
imagine the operations of the processing units interleaved so that they take
place sequentially). It is our hypothesis that this style of reasoning, which
we call covert sequentialism, will not scale up. It may be adequate when
there are a few hundreds or perhaps even a few thousands of processors, but
it will be incapable of helping us to understand machines with millions of
processors. Continuous parallelism is one way to fight covert sequentialism;
since the points of a continuum cannot be processed sequentially, at dis-
crete points in time, continuous parallelism forces us to adopt a new theory
of computation.? Therefore, even though the number of processors may in
facts be finite, we expect that it will be useful to think of them as forming
a continuum.

Part of this wholesale adoption of the continuous is the assumption of
continuous rather than discrete state transitions. In practice, of course,
continuous state transitions may be approximated by discrete transitions in
sufficiently small steps. The implications of assuming continuous transfor-
mation in the temporal domain are not clear. Although some differential
equations may defy analytic solution, difference equations seem to be at

20f course, a linear continuum can be sequentially processed providing the elements
are processed at a finite rate, that is, provided the infinitesmal elements are processed in
infinitesmal time intervals.

least as bad. Our guess is that, as usual, continuous mathematics will be
more tractable than discrete.

In many cases we may be able to reason qualitatively about continuous
computation; an example would be reasoning in terms of inequalities. This
may provide a capability analogous to that which logic provides for discrete
systems.®> A tool for qualitative reasoning is desirable, since quantitative
reasoning will prove too difficult in many cases. In other words, in many
cases, the best source of a quantitative answer will be to run the compu-
tation. Qualitative reasoning will help by showing us how to design the
program, and, for example, convince ourselves of convergence. The goal is
to increase the rigor of the back-of-the-envelope reasoning that we currently
do about energy surfaces and the like.

3 An Overview of Continuous Computation

What would a continuously parallel computer be like? For several years now
we’ve been investigating a class of continuously parallel computers which we
call field computers [3, 4, 6, 7]; this name is explained below.

We’ve said that in continuous computation, data are represented as con-
tinua of continuous-valued elements. Thus, if ¢ is such a data structure, it
will have a value ¢; for each ¢ in some continuum €2. These continua are
typically closed and bounded subspaces of a Euclidean space, since these are
easiest to represent physically. (Other topologies are possible; e.g., we could
have a continuum with the topology of a Mdbius strip.) We further require
that the values ¢; of the data structure be drawn from some continuum I,
which is typically a closed interval of the reals, although finite dimensional
vector spaces are also useful. Finally we require that data structures be
continuous, and in fact that they be uniformly continuous (since physical
media cannot sustain an infinite gradient). Thus they belong to a space
¢ () of continuous functions — I. In practice we require that ®(€2) be
a subspace of Ly(f2), that is, functions with finite Ly (Euclidean) norms.
Physically realizable structures have additional useful properties, such as
bounded domain and range.

It will be apparent that the data structure described above is very much
like the fields that are employed in science and engineering. Thus we may
have scalar fields (such as potential fields) and vector fields (such as gradient

®For an example of a qualitative logic of the continuous, see [5].

fields). It is on this basis that we’ve chosen the name field computer for our
class of computers.

Field computer may have a number of field storage units capable of hold-
ing fields of compatible type for as long as is required by the computation.
These are analogous to the registers and memory cells of a digital computer.
For concrete examples, think of a charge distribution on a plate, a light
intensity distribution across an optical device, or the volume distribution of
a chemical’s concentration.

Computation on a field computer is required to be continuously parallel:
an operation is applied to an entire field to yield another entire field. (Scalars
are treated as zero-dimensional fields.) Thus computation proceeds by the
application of various linear and nonlinear operators. We call an operator
T a field transformation if

T: ®(Q) — ().

Thus field transformations are operators between function spaces.

4 General Purpose Field Computers

An interesting question is whether there’s a set of field transformations that’s
“universal” in the sense of allowing the computation of any field transfor-
mation in a large class. Such a universal set of operations would provide a
theoretical basis for designing a general purpose (i.e. programmable) field
computer (in much the same way that the universal Turing machine pro-
vides a theoretical basis for designing general purpose digital computers).
We have shown [3, 7] that there is such a set of operations, namely these
three:

e local addition: (¢ + ¥)¢ = ¢ + 4.
e outer product: (¢ AY)s = sty

o general product: (¢9)sy = [PettPrudp(t).

As is shown in the next section, these operations can be combined to ap-
proximate, to a desired degree of accuracy, most any field transformation
(linear or nonlinear).*

“There are no doubt other sets of universal operations, but for theoretical purposes
this set is sufficient.

It is of course to be expected that practical general-purpose field com-
puters will have additional built in operations (e.g., convolution and cor-
relation, integration, differentiation, gradient, scaling, thresholding, Fourier
transformation). Further, we expect that the routing of fields through trans-
formational units and to and from storage units will be under the control
of something like a program. The principal difference is that the primitive
operations will be field transformations rather than the usual simple digital
operations on words and bytes.

Although many general purpose field computers will execute field trans-
formations at discrete time intervals, there is no reason why we cannot design
a field computer to operate with continuous state transitions (like the old
analog computers). Unlike the old analog computers, the program for such a
computer will be a set of differential equations that define the instantaneous
transformation of fields (rather than scalars).

5 Polynomial Approximation of Field Transfor-
mations

The problem of approximating a desired transformation is that of finding
a formula (in terms of field sums and products) that minimizes the error
in some appropriate sense. The theory is much like the familiar theory
of polynomial approximation, except that instead of scalar multiplication
(and powers) we have field products (outer and general). For example, the
Taylor theorem from functional analysis may be used to find locally good
approximating series [3, 7]. To see this, note that the derivatives® of a
field transformation, evaluated on a fixed field, are multilinear operators;
therefore they can be computed by field product with a fixed field (see [7]
for details). We call these fields the gradients of the transformation, and
write VFT(¢) for the kth gradient of T evaluated at ¢. If the first n gradients
of T are defined, then its Taylor expansion is:

k alk)
T(6+a) = T(6) + Z -V T 4 Ru(6.0)

where by (%) we mean the k-fold outer product a AawA---Aa and R, (¢, @)
is an appropriate error term.

®Given our realizability constraints, the Fréchet and Gateaux derivatives are the same.
5Some of these fields may be “generalized functions” (e.g., Dirac deltas). Physical
realizability requires that they be approximated.

The Taylor series expansion gives “polynomial” approximations which
are locally good around the expansion point. This suggests that the more
general problem is finding polynomials

T(¢) ~ Ko+ K16+ K36 + - -+ K,

that satisfy other, perhaps global, definitions of goodness. Our research is
addressing this issue.

The compound outer products o*) that occur in these “polynomials”
can be eliminated by writing the polynomial in “Horner’s Rule” form:

T(¢) = ((++ (Knd+ Kno1)o+ -+ K2)o+ Ki)¢ + Ko

This form is especially useful for implementation by neural networks with
conjunctive synapses (sigma-pi units), since each term of the polynomial is
computed by a layer of the network.

6 Learning and Training

The problem of learning is that of finding a “polynomial” that either “passes
through” the sample fields, or that minimizes an appropriate error measure.
Although there is much to be done in the theory of learning in field comput-
ers, it appears so far that many of the neural network learning algorithms
(e.g., outer product) generalize in the obvious way to the continuous dimen-
sional case.

For a simple example, suppose that we have a finite set of sample input-
output pairs (¢, %) and that these fields are band limited. Specifically,
assume that only the first M generalized Fourier coeflicients of the ¢ are
nonzero, and only the first N of the coefficients of the 1. Let ¢ and 1 be
the sample averages of the ¢, and 1. Now suppose we want to approximate
(in a least-squares sense) the mapping ¢ — 1 by a first-degree polynomial

=K+ L(¢—9)

The fields K and L can be determined by linear regression. Therefore let
K = 1; it remains to determine L.
Since the fields are band limited, we can write

L=Fy'AFy

where the field vectors Fjs and F];,l perform direct and inverse discrete
generalized Fourier transforms:

€1
FM: 3 F];flz(fh"ﬁf]\f)
EM

(The ey and fi are orthonormal basis fields for the domain and range.)
Since A is an N x M matrix, the problem is now finite dimensional. A
is the solution to the equation

P=AR

where R,,, is the correlation coefficient between the m™ and n'* Fourier
coefficients of the ¢, — ¢, and P,,, is the correlation coefficient between the
nt* Fourier coeflicients of the 13 — ¥ and the m*" Fourier coefficients of the
¢ — ¢. The matrix equation can be solved by any of the usual methods.

7 The Problem of Fields of High Dimension

If you look carefully at the “polynomials” in Section 5, you will see that if

T: &(Q) — ®(Q), then Ky is a field in
(Y x QF).

For example, if Q@ = Q' = [0, 1] then K}, is a k£ 4+ 1 dimensional unit hyper-
cube. Although this is not a problem in the mathematics, it does create
an implementation problem. Space is three dimensional, so fields of greater
than three dimensions cannot be represented by spatial distributions. There
are several solutions to this problem. First, we can often “buy” an extra
dimension by representing it through temporal extension (thus the field is
represented by a space-time distribution). This however sequentializes some
of the computation, and in any case represents only one additional dimen-
sion. Second, in many practical cases we find that the fields Ky are sparse;
that is they are approximately zero except over a lower-dimensional sub-
space T C €. In this case we can approximately represent K} using fields in
¢ (7). Third, we may discretize the field, that is, replace it by a field over a
finite set. This has two problems. The obvious problem is that it introduces
sampling or averaging error. The less obvious problem is that unless the K}
become smoother with increasing k, we will find that the number of points

increases exponentially (N*). Finally, we can perform a partial discretiza-
tion, by dividing one or more of the dimensions up into a finite number of
regions, and hence reducing the field to one of lower dimension. For example,
we can reduce a three dimensional field to a two dimensional field by slicing
it into a finite number of layers and averaging across the thickness of each
layer. This has two problems: it deviates from continuous parallelism, and
it introduces error since the pieces must be joined continuously. All of these
solutions are probably workable in different situations, but the problem of
dimension has not been eliminated. We plan empirical studies to determine
the practical significance of the problem.

8 Representation of Constituent Structure

In most cases it is clear (at least in principle) how field computers can be
made or programmed to perform many sensorimotor and perceptual tasks.
Associative memory and pattern recognition in these domains are also un-
derstandable. It is much less clear how field computers can be made to
process higher-level, apparently more structured information, such as lin-
guistic structures. In particular, the constituent structure of natural lan-
guage seems to allow — syntactically — the nesting of structures to any
depth. Of course, there are pragmatic limitations to the depth that actually
occurs, no doubt due to neuropsychological limitations. Representations
of constituent structure proposed to date, for example, in neural networks,
have been ad hoc and unconvincing. We discuss briefly one way that field
computers can represent constituent structure.

Call a space self-similar if it’s homeomorphic to a proper subspace of
itself. Furthermore, call it twice self-similar if there are two proper closed
subspaces of the space that can be separated by open sets (this will be the
case if the space is T4, i.e. satisfies Tietze’s first axiom), and that are each
homeomorphic to the superspace. N-times self-similar spaces are defined in
the obvious way.

If a space €2 is twice self-similar, then it can be embedded in itself in two
different ways. This allows the representation of binary trees of any size in
these spaces. To see how, note that if A and P are disjoint closed subsets in
a T4 space then there is a continuous function f into [0, 1] that’s identically
1 on A and identically 0 on P. Suppose that A and P are homeomorphic to
Q and that A is the homeomorphism of @ into A, and p that of € into P.
Let [: Q@ = Qand r: Q — Q be any continuous extensions of A~! and

p~ 1. Define the “construction” (as in LISP ‘cons’) of the fields ¢ and ¥ as
follows:

[C(o,)]s = frdn, + (1 = fi)vr,

If x = C(¢,7) then we can recover the left and right components by y o A
and yop. Since ' is a homeomorphism C': Q% — Q, we can construct trees
arbitrarily deep, for example,

ClC(e, 5), C(v,0)]

and later recover their components.

We must point out that the foregoing analysis depends on idealized fields
(no noise, etc.). Physically realizable fields, which are subject to noise and
unable to sustain infinite gradients, will not permit unlimited nesting. The
most deeply nested subtrees will become degraded to the point that eventu-
ally they cannot be recovered at all. This is very attractive, however, since
the pragmatic limitation on nesting emerges in a natural way from the prop-
erties of the representing medium. The result has an obvious application to
neural networks.

9 Field Computation of Simulated Annealing

In simulated annealing we are trying to find the best field according to
some evaluation operator [2]. This is done by making random perturba-
tions in the field. If a perturbation improves our evaluation of the field,
then it’s accepted. If it doesn’t improve it, then with some probability it
may be accepted anyway. This probability is an increasing function of a
parameter called the “computational temperature” of the system. During
the optimization process this parameter is gradually decreased according to
an “annealing schedule.” The necessity of processing the entire field makes
simulated annealing an ideal application of field computation. To find the
field ¢ that minimizes the evaluation functional F the following steps are
iterated:

1. Evaluate the current field:

e = E(9)

By field computation F operates on the entire field in parallel.

2. Randomly perturb the field to get a new guess:

The perturbation is typically small so that we don’t “overshoot” good
solutions. There are many ways of computing the perturbation, but
perhaps the easiest is to let P(¢) = ¢+ p where p is random and small
(Ilpll < €). There are several possible sources for such a random field.
One is to obtain it from a generator of true random fields. Another is
to generate N pseudorandom numbers and to use them as the first N
Fourier coefficients of a field. Thus,

p = ¢ normalize(o)
where ¢ = rgeg + - - - + rNEN

and normalize o = ||o|| ™o

Here the ¢, are the basis fields and the r; are random numbers.

3. Evaluate the perturbed field. If the perturbed field decreases F, then
it’s accepted:

e = E(¢)
Ae=¢ —e

if Ae < 0 then ¢ := ¢’

4. If the perturbation increases F, it is still accepted with a probability
depending on the “temperature” 7T:

if Ae > 0 and ran > exp(—Ae/kT) then ¢ := ¢’
where ran is a random number and k adjusts the overall algorithm.

5. Finally, the temperature 7" may or may not be decreased, as deter-
mined by the annealing schedule.

Notice that in this field computation algorithm the perturbation operator
may alter any or all of the field ¢. This differs from typical implementations
of simulated annealing, which update one “atom” at a time. Such serializa-
tion may be approximated in field computation, but parallel perturbation
agrees more closely with real annealing.

10

10 Field Computation of Genetic Algorithm

To further illustrate field computation, we show how a field computer might
be used to implement a variant of the genetic algorithm [1]. We let Q be
the “genetic space”; it has the form:

9291X92X"'XQN

where the ©Q,, are the sets of alleles for each gene (note that the space of
alleles may be a continuum). The state of the simulation is represented by
a population density field 7 : © — [0, 1]. We simulate the evolution of 7 by
iterating the following steps:

1. Compute the fitness of the population:
¢ = F(r)

Notice that the fitness may depend on the population density; this is
more general than the most common genetic algorithms, in which the
fitness is a constant field over the genetic space.

2. Compute the population-weighted fitness and normalize it to get the
probability of breeding:

§ = normalize(¢ X) (X denotes local, i.e. pointwise, product)

3. Compute genotype population density after crossover:

v=X(BAB)

Since the crossover operation is bilinear there is a field X that permits
the crossover to be computed as a general product.

4. Compute the new population density after random mutation:
T=pey

where @ represents convolution. Here p is a probability density field
representing the probability of mutation; p, is the probability of a
mutation vector v, and pg is the probability of no mutation.

11

There is an important difference between this algorithm and the usual ge-
netic algorithms. The fields involved (7, ¢ etc.) have as their domains
the entire genetic space . Thus the algorithm is evaluating in parallel all
possible genotypes, not just those represented in the population. It thus is
explicitly parallel where traditional genetic algorithms are implicitly parallel
[1, p. 20]. The trouble with such explicit parallelism is that the genetic
space may be very “big,” that is, of high cardinality if the €2, are discrete,
or of high dimension if the €2, are continuous. Therefore, we expect this
algorithm to work best where we are trying to optimize in a space defined
by a modest number of continuous-valued parameters.

11 Conclusions

Emergent computation depends on massive parallelism. We have argued
that truly massive parallelism occurs when the processing and data ele-
ments are sufficiently numerous that they can be treated as a continuum, a
situation we call continuous parallelism. We have sketched a theory of con-
tinuously parallel analog computation, called field computation, and have
shown a theoretical basis for a universal field computer. We have shown
how constituent structure, simulated annealing, and a variant of genetic al-
gorithms can be implemented on field computers. The theoretical basis for
field computation is now mostly complete. The next step is to investigate
practical issues in the architecture of general-purpose field computers, and
in their implementation in electronic, optical and molecular technologies.

12 Bibliography

1. Goldberg, D. E., Genetic Algorithms in Search, Optimization, and
Machine Learning, Addison-Wesley, Reading, 1988.

2. Kirkpatrick, S., Gelatt, C. D., Jr., and Vecchi, M. P., “Optimization
by Simulated Annealing,” Science, Vol. 220, No. 4598 (13 May 1983),
pp. 671-679.

3. MacLennan, B. J., “Technology-Independent Design of Neurocomput-
ers: The Universal Field Computer,” Proceedings, IFEFE First Inter-
national Conference on Neural Networks (June 21-24, 1987), Vol. 111,
pp- 39-49.

12

. MacLennan, “Field Computation and Nonpropositional Knowledge,”
Naval Postgraduate School Technical Report NPS552-87-040, Septem-
ber 1987.

. MacLennan, “Logic for the New AL” Aspects of Artificial Intelligence,
J. H. Fetzer (ed.), Kluwer, Dordrecht, 1988, pp. 163-192.

. MacLennan, “Field Computation: A Model of Massively Parallel Com-
putation in Electronic, Optical, Molecular and Biological Systems,”
extended abstract in Proceedings of AAAI Spring Symposium, Paral-
lel Models of Intelligence: How Can Slow Components Think So Fast?,
Stanford, March 22-24, 1988, pp. 180-183.

. MacLennan, “Outline of a Theory of Massively Parallel Analog Com-
putation,” International Joint Conference on Neural Networks (June
18-22, 1989), accepted for poster presentation, abstract to appear in
proceedings.

13

