
A Morphogenetic Program for Path Formation by
Continuous Flocking

BRUCE J. MACLENNAN?

Department of Electrical Engineering and Computer Science,
University of Tennessee, Knoxville, USA

Received 11 June 2018

Artificial morphogenesis uses processes inspired by embryol-
ogy to control massive swarms of microscopic agents to assem-
ble complex physical structures, but this requires new means
for describing these processes. Here we use an example mor-
phogenetic program to illustrate a prototype implementation of
morphgen, a morphogenetic programming language. The syntax
and semantics are described informally and illustrated by the ex-
ample program, which is included in its entirety in an appendix.
Another appendix includes a complete formal grammar for the
current version of the language. Next, we describe the results
of a series of experiments with the program, which simulates a
continuous swarm of microscopic agents creating paths from an
origin to a destination while avoiding obstacles. We present the
effects of various parameters and of alternative ways of accom-
plishing particular purposes.

Key words: artificial morphogenesis, continuous flocking, morphgen,
morphogenetic engineering, swarm robotics

1 INTRODUCTION

Artificial morphogenesis uses processes inspired by embryology to control
massive swarms of robots to assemble complex physical structures. It is

? email: maclennan@utk.edu

1

inspired by the observation that in embryological development trillions of
microscopic cells self-organize and coordinate with each other to assemble
complex, hierarchically structured three-dimensional forms; it is a variety of
morphogenetic engineering [6, 20, 21]. Our approach uses partial differential
equations (PDEs) to describe massive swarms of microscopic agents (e.g.,
microscopic robots or genetically engineered motile cells). PDEs are the lan-
guage preferred by embryologists for describing morphogenesis [2, 5, 19, 24],
but PDEs also extrapolate the number and smallness of the agents to the con-
tinuum limit, which leads to algorithms that scale to very large numbers of
very small agents. Artificial morphogenesis is one approach toward general
programmable matter [15] and has some similarities to amorphous comput-
ing [1], at least in the early stages of morphogenesis when the mass may be
relatively unstructured.

In this article we use a simple example of artificial morphogenesis and
massive swarm robotics to illustrate a morphogenetic programming language.
The concept of artificial morphogenesis and the morphogenetic programming
notation on which this language is based are described in more detail in a
number of previous papers and reports [7, 8, 9, 11, 12, 13, 14, 15, 16].

The purpose of our example morphogenetic program is to lay down path
material from a starting location to a destination while avoiding collisions
with already created paths. A typical application would be routing dense bun-
dles of nerve-like fibers between regions of an artificial brain [10]. The path
is laid down by a massive swarm of microscopic robots following a chemical
attractant diffusing from the destination. Bird flocking and fish schooling are
familiar self-organizing processes (e.g., [22, 23]), and there has been some re-
search into continuous flocking, which treats the agent swarm as a continuum
[3, 4, 25]. We have used a modified flocking algorithm to control simulated
agents creating paths between designated origins and positions while avoiding
collisions with existing paths [13, 14, 16]. Here we use two-dimensional con-
tinuous flocking to create paths from an origin to a destination while avoiding
obstacles.

The morphogenetic programming language, tentatively named morphgen,
adheres fairly closely to the mathematical notation used in publications. The
prototype translator illustrated in this report is implemented by a syntax macro-
processor (tentatively named “synmac”) [18]. Like more familiar macropro-
cessors, it uses a set of macro definitions to translate a source language into
a target language. In this case, the source language is morphgen and the tar-
get language is MATLAB R© or compatible GNU Octave. Although synmac
is quite flexible, it does not include a full parser, and so some syntactic con-

2

cessions must be made in this prototype implementation. They will be men-
tioned in the appropriate places below. There are two very similar dialects of
morphgen, morphgen2D for two-dimensional simulations and morphgen3D
for three-dimensional simulations. The grammar for the current version of
morphgen2D is given in Appendix B.

2 DESCRIPTION OF THE MORPHOGENETIC PROGRAM

The complete morphogenetic program is shown in Appendix A. Much of the
program is relatively self-explanatory, at least in the context of the artificial
morphogenetic programming notation described in previous publications. A
few particular features will be explained here.

The program begins with a specification of the simulation parameters (lines
8–13 in Appendix A):

s i m u l a t i o n parameters :
space : −1 < x < 1 , −1 < y < 1
durat ion = 6 . 7 5
s p a t i a l r e s o l u t i o n = 0 . 0 1
temporal r e s o l u t i o n = 0 .001

end

The space specification defines the 2D space in which the simulation takes
place, and the duration specification defines its length (both specifications in
arbitrary units). The final two lines define the spatial and temporal resolutions
of the simulation, which are easily changed. Therefore, in this case the spatial
mesh is 200× 200 and the simulation runs for 6750 iterations.

After the simulation specification comes the morphogenetic program proper.
In this case it begins with the definition of four substances, a morphogen,
the path material, the swarm, and the goal material. In the morphogenetic
programming language, a substance is somewhat analogous to a class in an
object-oriented programming language in that it defines a set of things with
related properties and behaviors. Substances can be instantiated in particular
bodies (analogous to objects in an object-oriented language). The definition
of the morphogen substance (lines 15–21) is perhaps most illustrative:

subs tance morphogen :
s c a l a r f i e l d A

behavior :
param d A = 0 . 0 3 /∗ d i f f u s i o n c o n s t a n t ∗ /

3

param t au A = 100 /∗ decay t i m e c o n s t a n t ∗ /
D A += d A ∗ d e l ˆ2 A − A/ tau A

end

The first line after the header declares that the substance is characterized by a
scalar fieldA, which represents the concentration of the attractant morphogen
at every location is the two-dimensional space. The first two lines after be-
havior simply define constants. The last line, which begins with D, is an
approximation to the usual morphogenetic programming notation, which we
have used in previous publications:

–DA = dA∇2A−A/τA + · · · . (1)

This is an example of a change equation, which can be interpreted ambigu-
ously as a partial differential equation or a finite difference equation. The
lefthand side –DA represents either a temporal partial derivative (∂tA, Ȧ) or a
temporal finite difference (∆A/∆t). The first term on the righthand side,
dA∇2A, describes the diffusion of the morphogen A. The second term,
−A/τA, describes decay of the morphogen so that it doesn’t saturate the
space. The notation “+ · · ·” in Eq. 1 implies the other substances may ex-
tend this equations with additional terms (e.g., sources and sinks).

The equation is expressed in the morphgen programming language as fol-
lows:

D A += d A ∗ d e l ˆ2 A − A/ tau A

The notational change is due primarily to the syntactic limitations of the syn-
tax macroprocessor and the fact that it is translating into MATLAB/Octave.
Addition and subtraction of scalar and vector fields can be written normally,
as in the above example. Multiplication and division of fields by scalars can
be written with the multiplication and division operators (“∗” and “/”); for
example “A/tau A” in the above example. The “+=” operator indicates that
this is a partial change equation, and that other terms may be added in other
substances (indicated by “+ · · ·” in Eq. 1).

In the absence of obstacles, the steady-state concentration of morphogen
at a distance r from the goal, which produces it at a rate kG, is given by

A(r) = kG exp

(
− r√

dAτA

)
that is, the characteristic length constant is

√
dAτA.

4

The goal material, which is static (–DG = 0), has a slightly more compli-
cated definition (lines 54–60):

subs tance g o a l m a t e r i a l :
s c a l a r f i e l d G

behavior :
param k G = 100 /∗ a t t r a c t . r e l e a s e r a t e ∗ /
D G = 0 /∗G f i e l d i s f i x e d ∗ /
D A += k G ∗ [G∗(1−A)] /∗ goa l e m i t s a t t r a c t . ∗ /

end

The last line of the behavior definition is an extension to the definition of –DA
in the definition of the morphogen substance. It adds to Eq. 1 an additional
source term kGG(1−A), which describes production of morphogen A in the
goal region (where G = 1) up to saturation (A = 1). Therefore the attractant
diffuses continuously from the goal throughout the space.

Equation 1 in the definition of the morphogen subtance represents the in-
herent physical properties of the attractant and the medium through which it is
diffusing, including the diffusion and decay constants. In contrast, the partial
equation –DA += kGG(1 − A) in the definition of goal material represents
the controlled production of attractant by the goal agents. Partial equations
are often used to separate the physical properties of a substance from effects
that are controlled by the agents, as in this example.

This attractant emission equation illustrates another restriction of the pro-
totype implementation: multiplication of two scalar fields or of a scalar field
by a vector field must be surrounded by square brackets; for example, “[G∗(1−A)]”
is a product of scalar fields. Similarly the quotient of a vector field by a scalar
field and powers of scalar fields must be surrounded by brackets.

The definition of the path substance (lines 23–29), represents material be-
ing laid down by the swarm as well any previously created paths, which are
obstacles to be avoided:

subs tance p a t h m a t e r i a l :
s c a l a r f i e l d P

behavior :
param t a u P = 0 . 2 /∗ a b s o r p t i o n t i m e c o n s t . ∗ /
D P += 0 /∗ p a s s i v e pa th m a t e r i a l ∗ /
D A −= [P∗A] / t a u P /∗ pa th a b s o r b s a t t r a c t a n t ∗ /

end

The concentration of path material is represented by the scalar P field, which

5

does not change on its own, as indicated by –DP += 0. The partial equa-
tion –DA −= PA/τP describes rapid decay or absorption of the morphogen
where there is path material (P > 0); in effect, existing path material sucks
up attractant, which steers the swarm away from these obstacles. The three
partial equations together define the dynamics of the A field:

–DA = dA∇2A−A/τA + kGG(1−A)− PA/τP . (2)

The swarm substance (lines 31–52) is the most complicated, for it de-
scribes how a continuous mass of agents follows the morphogen gradient.
The first part of the definition declares two scalar fields and two vector fields:

subs tance swarm :
s c a l a r f i e l d s :

C /∗ swarm c o n c e n t r a t i o n ∗ /
S /∗ magni tude o f morphogen g r a d i e n t ∗ /

end
v e c t o r f i e l d s :

U /∗ morphogen g r a d i e n t ∗ /
V /∗ swarm v e l o c i t y ∗ /

end

TheC field, which represents the concentration of agents, is the principal field
in the morphogenetic process since the agents lay down the path material, as
just explained. The behavior part of the substance definition begins with five
parameter definitions:

behavior :
param v = 1 /∗ base swarm speed ∗ /
param lambda = 0 . 1 /∗ d e n s i t y r e g u l a t i o n ∗ /
param eps = 1e−100 /∗ minimum g r a d i e n t norm ∗ /
param k W = 0 . 1 /∗ d eg re e o f random mot ion ∗ /
param k P = 30 /∗ pa th d e p o s i t i o n r a t e ∗ /

The parameter v defines the swarm speed, lambda (λ) controls the tradeoff
between following the gradient and controlling the swarm density, eps (ε) is a
small number to avoid division by zero, and k W (kW) controls randomness,
explained below.

The next three equations define the vector field that directs the swarm’s
movement:

6

l e t U = d e l A
l e t S = | |U | |
l e t V = [(v∗U) / (S+ eps)] − lambda∗ d e l [(C−1) ˆ2] . . .

+ [k W DWˆ 2]

The first line gives a name to the morphogen gradient (U = ∇A). Since the
gradient may vary greatly in magnitude, we normalize it, and to this end, the
scalar field S is defined S = ‖U‖. The final equation, which uses “. . . ” for
line continuation, defines the directive vector field:

V = vU/(S + ε)− λ∇(C − 1)2 + kW –DW 2. (3)

The attractant versor, or normalized vector, is U/S, but we must avoid divi-
sion where S = 0, so we use U/(S+ε). The first term, then, of the definition
of the velocity vector field V is the base speed times the gradient versor, that
is, vU/(S + ε), or “ [(v∗U)/(S+eps)]” in the programming language. The
second term, −λ∇(C − 1)2, written “−lambda∗del[(C−1)ˆ2],” controls the
density of the swarm to keep it compact but not too dense. This term (con-
trolled by λ) directs motion in a direction that minimizes |C−1| and therefore
strives to keep the density near 1. The last term introduces some randomness
into the swarm’s movement to be more physically realistic and to help break
symmetry. The programming notation “[k W DWˆ2]” represents kW –DW 2,
a two-dimensional normally-distributed random vector [7, 8, 9, 12].

The next equation in the behavior of the swarm substance describes the
change in swarm concentration as a physical result of its velocity (which is
controlled by the swarm agents):

D C = [t >5] −div [C∗V]

The change in swarm concentration C is given by the negative divergence of
the agent flux, −div(CV) = −∇ · CV. The conditional factor [t>5] has
the value 1 when time t > 5 and 0 otherwise; mathematically it is a Heaviside
step function. This has the effect of suppressing movement for the first five
time units in order to let the morphogen gradient stabilize before the swarm
begins to move.

The final (partial) equation extends the definition of –DP to describe the
deposition of path material:

D P += [t >5] k P ∗ [C∗(1−P)] /∗ pa th d e p o s i t i o n ∗ /

The source term “k P ∗ [C ∗(1−P)],” that is, kPC(1−P), describes how the
swarm (C > 0) lays down path material at a rate kP up to saturation (P = 1).

7

The [t>5] factor suppresses deposition for the first five time units so that the
morphogen gradient can stabilize.

After the substance definitions comes the initialization of the various bod-
ies involved in the simulation; they define the initial preparation of the mor-
phogenetic process. The simplest body definition is the Goal (lines 62–64),
which defines the small region of goal material from which the attractant dif-
fuses and which the swarm will seek:

body Goal of g o a l m a t e r i a l :
f o r −0.05 < x < 0 . 0 5 , 0 . 9 < y < 0 . 9 5 : G = 1

end

The Goal is on the x axis at y = 0.925 near the far limit of the space. Outside
the initialized body,G = 0, because regions of any field that are not initialized
are by default zero.

The swarm Cohort (lines 73–75) is initially at the origin of the path, which
is on the x axis near the opposite side of the space from the Goal (y =

−0.925):

body Cohor t of swarm :
f o r −0.05 < x < 0 . 0 5 , −0.95 < y < −0.9: C = 1

end

The path material P is laid down, of course, by the moving swarm, but we
want it to avoid any paths that already exist. Therefore, for test purposes we
define several pre-existing concentrations of path material to represent them
(lines 66–71); since this is a 2D simulation, they are simply circular regions
where P = 1:

body O b s t a c l e s of p a t h m a t e r i a l :
f o r (x , y) wi th in 0 . 0 6 of (−0.1 , 0 . 2 2 5) : P = 1
f o r (x , y) wi th in 0 . 0 6 of (0 . 1 , −0 .225) : P = 1
f o r (x , y) wi th in 0 . 0 6 of (0 , −0 .5) : P = 1
f o r (x , y) wi th in 0 . 0 6 of (0 , 0 . 5) : P = 1

end

The final block in the program (lines 77–83) defines the visualization op-
tions:

v i s u a l i z a t i o n :
d i s p l a y i n t e r v a l = 0 . 0 5
d i s p l a y f i n a l P as c o l o r s l i m i t s (0 , 0 . 5)

8

final C

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

(a) colors (heatmap) (b) mesh

final C

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

(c) contours

FIGURE 1: Example displays of swarm density (at time t = 5.5). The swarm
is splitting into two sub-swarms to go around an obstacle.

d i s p l a y running C as c o l o r s l i m i t s (0 , 0 . 5)
d i s p l a y f i n a l P as mesh
r ep or t Courant number f o r V

end

Fields can be displayed either at the end of the simulation, indicated by the
keyword final, or while the simulation is executing, indicated by running.
The fields are displayed at every time step unless a different display interval
is defined, as in this example. In this case, the running display of C allows
us to watch the movement of the swarm around obstacles toward the goal.
The colors option displays a scalar field as a heat map (e.g., Figure 1a); mesh
displays a scalar field as a 3D surface (e.g., Figure 1b), and contours displays
a scalar field as a contour map (e.g., Figure 1c). The limits option clips values
between the specified limits to ensure a consistent representation, especially
for running displays. Vector fields can be displayed as quivers (little arrows,
e.g., Figure 2). The report command, described later, allows useful numerical
condition numbers to be monitored. A running display can be made into an
mp4 movie with a command such as this:

make movie PathGrow of P as c o l o r s l i m i t s (0 , 0 . 5)

This creates a movie file called “PathGrow.mp4” from a running display of P
displayed as colors.

3 CONTINUOUS FLOCKING PATH FORMATION EXPERIMENTS

In this section we present the results of a series of experiments with the 2D
continuous flocking approach to path creation, both to explore variations of

9

-1.5 -1 -0.5 0 0.5 1 1.5
x

-1.5

-1

-0.5

0

0.5

1

1.5
y

final V

FIGURE 2: Vector field V (λ = 0, t = 6) displayed as quivers (50×50 grid).

the algorithm and to further illustrate the morphgen2D language. It is ap-
parent that the algorithm involves many parameters, and so it is necessary to
explore their effect on the outcome in order to adjust them to achieve particu-
lar purposes. Moreover, as in any algorithm, we may entertain different ways
of accomplishing various purposes, which might work better or worse. The
basis for these experiments is the algorithm presented in Appendix A and de-
scribed in the preceding section. The path material deposited in a typical run
is shown in Figure 3. Nominal parameters for the simulations are summarized
in Table 1.

Figure 4 shows the effect of λ, which controls the relative importance of
maintaining a density C ≈ 1, on the structure of the paths. Figure 4a shows
the case λ = 0, that is, there is no constraint on the density, and the swarm

10

final P

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

(a) colors plot (b) mesh plot

FIGURE 3: Final concentration of path material.

Param. Value Meaning
T 6.75 duration

∆s 0.01 spatial resolution
∆t 0.001 temporal resolution
dA 0.03 attractant diffusion constant
τA 100 attractant decay time constant
τP 0.2 attractant absorption time constant
kG 100 attractant release rate from goal substance
v 1 base swarm speed
λ 0.03 importance of swarm density
ε 10−100 minimum attractant gradient magnitude
kW 0.3 amount of random motion
kP 30 path deposition rate

TABLE 1: Nominal Parameter Values

11

final P

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

(a) λ = 0

final P

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

(b) λ = 0.005
final P

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

(c) λ = 0.01

final P

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

(d) λ = 0.02

FIGURE 4: Effects of λ on path structure (kP = 30, t = 6.75, color limits =
[0, 0.5]).

12

final P

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

(a) λ = 10−8

final P

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

(b) λ = 10−10

FIGURE 5: Path densities resulting from normalizing sum of morphogen and
density gradients (color limits = [0, 0.5]).

is moving entirely under the influence of the morphogen gradient. Figures 4b
to 4d show the paths created with successively larger values of λ, and it is
apparent that they create narrower and better defined paths.

The simulation becomes numerically unstable for λ ≥ 0.05, probably be-
cause the density-driven gradient is causing the total velocity to become too
great. The morphgen language includes visualization commands to report
various numerical condition numbers. In this case we used the morphgen
statement

r ep or t Courant number f o r V

to display at every display interval the Courant number

Cr = (max
x,y
|Vx(x, y)|+ |Vy(x, y)|)∆t/∆s

(for time step size ∆t and mesh spacing ∆s). Stable simulations had Courant
numbers Cr ≤ 0.54, but for λ = 0.05 the simulation was unstable with Cr >

0.59. Halving the time step to ∆t = 0.0005 resulted in a stable λ = 0.05

simulation with Cr ≤ 0.33.
Since the density gradient is added to the normalized morphogen gradient

(Eq. 3), a large density gradient can result in a high velocity, causing numeri-
cal instability and possibly physically impossible behavior. We can compare
the magnitude of the morphogen gradient, constrained to the speed v, with

13

the magnitude of the density-driven gradient, ‖∇(C − 1)2‖:

‖∇(C − 1)2‖2 =

[
∂(C − 1)2

∂x

]2
+

[
∂(C − 1)2

∂y

]2
=

(
2
∂C

∂x

)2

+

(
2
∂C

∂y

)2

= 4∇2C.

Hence, the relative magnitudes of the morphogen and density components of
the velocity are v and 2λ

√
∇2C respectively, and therefore large density gra-

dients might lead to excessive velocities. An alternative is to add the density
gradient to the morphogen gradient before normalization, so that the resulting
total velocity is limited. This is accomplished by changing the definition of
the U and V vector fields as follows:

l e t U = d e l A − lambda∗ d e l [(C−1) ˆ2]
l e t S = | |U | |
l e t V = [(v∗U) / (S+ eps)] + [k W DWˆ 2]

Figure 5 shows two typical runs for λ values that showed some evidence of
density control. It can be seen that initially the swarm divided into several
well-defined streams, but that these soon spread out and became diffuse. The
explanation seems to be that the morphogen gradient at a distance r from the
goal is

dA(r)

dr
=

d

dr
kG exp

(
− r√

dAτA

)
= − kG√

dAτA
exp

(
− r√

dAτA

)
.

Therefore the gradient varies with distance from the goal, and so the rela-
tive contributions of the morphogen and density gradients to the velocity will
vary with location. This seems to be why the density limit is effective near
the origin, that is, far from the goal, and becomes ineffective as the goal is ap-
proached. In conclusion, including the density gradient before normalization
does not appear to be a useful strategy.

The preceding problem can be avoided by normalizing the morphogen and
density gradients separately before combining them; in this way there is a
consistent balance between the two gradients throughout the space. We let
W = ∇(C − 1)2 be the density gradient and T = ‖W‖ be its magnitude.
Then,

V = v[(1− λ)U/(S + ε)− λW/(T + ε) + kW –DW 2] (4)

averages the versors of the morphogen and density gradients, with the weight
controlled by λ. This is accomplished by the following morphgen code:

14

final P

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

(a) λ = 0

final P

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

(b) λ = 0.25
final P

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

(c) λ = 0.35

final P

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

(d) λ = 0.5

FIGURE 6: Path densities resulting from normalizing morphogen and density
gradients before combination (T = 14, color limits =[0, 1]).

15

l e t U = d e l A
l e t S = | |U | |
l e t W = d e l [(C−1) ˆ2]
l e t T = | |W| |
l e t V = v ∗ ((1 − lambda) ∗ [U / (S+ eps)] . . .

− lambda ∗ [W/ (T+ eps)] + [k W DWˆ 2])

With this change, λ > 0 values do control the density, causing the swarm to
break up into small compact groups and lay down paths of relatively constant
width (Figure 6). This also delays arrival at the destination, since the effective
speed of following the morphogen is v(1 − λ), so the simulations were run
longer, T = 14 time units.

Equation 3 for V (p. 7) includes a random element kW –DW 2, the purpose
of which is to be physically realistic (motion cannot be controlled perfectly)
and to break a symmetry that otherwise leads to unrealistic results. The prob-
lem with symmetry is that on the “downwind” side of obstacles there are re-
gions where the gradients resulting from morphogen diffusing around the left
and right sides balance each other, so the resulting velocity vector is aimed
directly at the obstacle. (This can be seen clearly in the velocity vector field,
Figure 2.) Therefore, instead of going around the obstacles, a small part of
the swarm “tunnels” through it (since the simulation does not model the fact
that the obstacles are solid and therefore impenetrable). This can be seen in
Figure 7a, in which kW = 0 and therefore there is no randomness: narrow
streams drive directly into the obstacles and emerge on the other sides. Pro-
gressively larger amounts of randomness (kW = 0.1, 0.2, 0.3) decrease and
ultimately eliminate the tunneling (Figures 7b–7d). The value kW = 0.3 is
used in subsequent experiments.

In many of the simulations, the swarms pass very close to the obstacles,
and so we have conducted several experiments to control the margins around
the obstacles. The principal mechanism for obstacle avoidance is the absorp-
tion or degradation of attractant morphogen by path material, represented by
the −PA/τP term in Eq. 2. Smaller values of the time constant τP lead to
quicker elimination of attractant, which does indeed lead to larger margins.
Figure 8 shows path densities resulting from several different values of τP ,
and it is apparent that smaller time constants lead to larger margins. In addi-
tion to larger margins, it is also apparent that small time constants lead to a
larger spread in the path material, resulting from an increasing spread in the
swarm. We conjecture that this is because the obstacles are absorbing attrac-

16

final P

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

(a) kW = 0

final P

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

(b) kW = 0.1
final P

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

(c) kW = 0.2

final P

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

(d) kW = 0.3

FIGURE 7: Effect of randomness on path formation. Sufficient randomness
eliminates “tunneling” through obstacles.

17

final P

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

(a) τP = 0.02

final P

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

(b) τP = 0.01
final P

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

(c) τP = 0.005

final P

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

(d) τP = 0.0025

FIGURE 8: Margins around obstacles resulting from various time constants
τP for attractant elimination (λ = 0.02).

18

final P

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

(a) P path density field

-1.5 -1 -0.5 0 0.5 1 1.5
x

-1.5

-1

-0.5

0

0.5

1

1.5

y

final V

(b) V velocity vector field

FIGURE 9: Path density and velocity field with rapid attractant elimination
(τP = 0.025, λ = 0.02).

tant from all directions equally, and that this generally steers the swarm away
from them. This can be seen in Figure 9, which shows the path density and
the velocity field that produced it.

In the morphogenetic process as programmed, the swarm will continue
to flow into the goal region, limited only by the back pressure caused by
a density C > 1. At this point the velocity becomes unstable, since the
morphogen gradient is effectively zero and the swarm clusters in and around
the goal region, laying down more path material all the time, until it reaches
saturation, as can be seen in Figure 10a. (Recall that the equation for –DP
causes it to saturate at P = 1.) This accumulation in the goal region may be
undesirable, and one solution is to have the goal material G rapidly absorb
the swarm C, which we can accomplish by adding a partial equation –DC −=

kCGC to the goal substance (since it represents action by the goal agents):

19

(a) kC = 0 (b) kC = 100

FIGURE 10: Effect of swarm absorption by goal material (t = 10). (a)
No absorption: the path material saturates at P = 1 in the goal region. (b)
Absorption limits path density in the goal region to P ≈ 0.8.

param k C = 100 /∗ swarm a b s o r p t i o n r a t e ∗ /
D C −= k C ∗ [G∗C] /∗ absorb swarm a t goa l ∗ /

Notice that in Figure 10a the path density at the goal has saturated at its max-
imum value P = 1, whereas in Figure 10b with absorption (kC = 100) it
reached only P ≈ 0.8.

It is apparent that the paths laid down are not of uniform density (e.g.,
Figures 3, 4, 10). Since the paths represent bundles of fibers, some variation in
density across the width of a path is unproblematic, but we expect consistent
density along the trajectory from the origin to the destination. One solution is
to make the path material autocatalytic; that is, the presence of path material
catalyzes the creation of new path material at a rate aP up to a maximum.
To avoid very low densities of path material triggering autocatalysis, which
fills a lot of the space with path material, autocatalysis is triggered by path
material only above a specified threshold θP . Autocatalysis is accomplished
by adding the partial equation –DP += [P > θP]P (1−P) to the behavior of
the path substance. By itself, this leaves the low density path material in the
environment (Figure 11a), but it can be eliminated by a decay term −P/tP
operative for below-threshold densities. The autocatalysis and decay terms
are combined in the partial equation:

–DP += aP [P > θP]P (1− P)− [P ≤ θP]P/tP . (5)

The program code to accomplish this is:

20

final P

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

(a) θP = 0.2, no decay

final P

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

(b) θP = 0.3, with decay (tP = 1)

FIGURE 11: Use of autocatalysis and decay to control path density.

param t h e t a P = 0 . 3 /∗ a u t o c a t a l y t i c t h r e s h o l d ∗ /
param a P = 20 /∗ a u t o c a t a l y t i c r a t e ∗ /
param t P = 1 /∗ pa th decay t i m e c o n s t . ∗ /
/ / a u t o c a t a l y s i s :

D P += [t >5](a P ∗ [P>t h e t a P] [P∗(1−P)] . . .
− [P<=t h e t a P] P / t P)

Figure 11b shows an example with both autocatalysis and decay; the simula-
tion was run for 10 time units to allow the processes to complete. The path is
quite wide, there are a few isolated islands of path material, and there seems
to be no gap between the path and the first obstacle.

An alternative approach to controlling path density is to have the swarm
do quorum sensing and only lay down path material if the swarm density
is above a threshold; in this way, low density areas of the swarm will not
produce path material. Adding a swarm threshold [C > θC] governing path
deposition to the –DP equation produces well-defined paths, but the density
is variable (Figure 12a). This can be avoided by combining quorum sensing
for path deposition with autocatalysis and decay of the path material (Eq. 5)
to obtain:

–DP += aP [P > θP]P (1− P)− [P ≤ θP]P/tP ,

–DP += [t > 5] kP [C > θC]C(1− P).

The first partial equation becomes part of the path substance, since it is part of
its behavior; the second partial equation becomes part of the swarm behavior,

21

final P

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

(a) θC = 0.25, without autocatalysis or de-
cay

final P

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

(b) θC = 0.25, aP = 20, τP = 0.25

final P

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

(c) θC = 0.05, aP = 20, τP = 0.25

final P

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

(d) θC = 0.02, aP = 20, τP = 0.25

FIGURE 12: Path formation with swarm quorum sensing.

22

Param. Value Meaning
T 10 duration

∆s 0.01 spatial resolution
∆t 0.001 temporal resolution
dA 0.03 attractant diffusion constant
τA 100 attractant decay time constant
τP 0.1 attractant absorption time constant
kG 100 attractant release rate from goal substance
v 1 base swarm speed
λ 0.5 importance of swarm density
ε 10−100 minimum attractant gradient magnitude
kW 0.7 amount of random motion
kP 30 path deposition rate
aP 20 path autocatalysis rate
θP 0.3 path autocatalysis threshold
tP 1 path decay time constant
kC 100 swarm absorption rate

TABLE 2: Revised Parameter Values

since the agents control path deposition by quorum sensing [C > θC]. In
above-quorum regions, the path material will increase to saturation through
autocatalysis (Figs. 12b–12d). Lower quorum thresholds θC produce thicker
paths. These simulations were run for a duration T = 10 to allow the pro-
cesses to complete. In general, quorum sensing with autocatalysis seems to
produce discontinuous and irregular paths.

4 REVISED NOMINAL PARAMETERS

Drawing on the preceding experiments, we collect in Table 2 the parameters
that give good results. By default, we use prenormalization of the morphogen
and density-control gradients (Eq. 4, p. 14), and to promote uniform path
density, we use autocatalysis with decay (Eqs. 5, p. 20), but not quorum sens-
ing. Figure 13 shows two simulations: Figure 13a has τP = 0.2, which has
tunneling through the first obstacle, and Figure 13b has a quicker τP = 0.1,
which eliminates the tunneling.

To see how well these parameters generalize, we ran simulations with addi-
tional obstacles and different origin and destination (Figure 14). These simu-
lations were also run at higher resolution: ∆s = 0.005,∆t = 0.0005. Figure

23

final P

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

(a) τP = 0.2

final P

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

(b) τP = 0.1

FIGURE 13: Simulations based on revised parameter values (Table 2). The
smaller τP eliminates tunneling.

14a uses the parameters in Table 2; the paths are largely continuous, but the
high λ = 0.5 has caused the streams to separate a little. Therefore, Figure 14b
shows the result with a smaller λ = 0.4; it has fewer gaps, but the leftmost
path is quite thin. A further decrease to λ = 0.3 does lead to more complete
paths, except for the path on the left, which is broken (Figure 14c). Figure
14d shows that this can be filled in by lowering the autocatalysis threshold θP
from 0.3 to 0.25 (which is perhaps a better default value).

5 THREE-DIMENSIONAL SIMULATION

Finally, we illustrate a three-dimensional artificial morphogenesis simulation.
The 3D program is essentially the same as the 2D version (Sec. 2); it is written
in morphgen3D, which is nearly identical to morphgen2D. Figure 15 shows
the path created by a simulation with the parameters shown and using this
version of the velocity equation:

l e t V = [(v∗U) / (S+ eps)] − lambda∗ d e l [(C−1) ˆ2]

The near identity of the 2D and 3D programs allows experience with the 2D
simulations to be transferred to the more realistic 3D simulations.

6 CONCLUSIONS

We have illustrated morphgen2D, an artificial morphogenesis programming
language, by explaining a continuous flocking algorithm to control extremely

24

final P

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

(a) λ = 0.5, θP = 0.3

final P

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

(b) λ = 0.4, θP = 0.3

final P

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

(c) λ = 0.3, θP = 0.3

final P

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

(d) λ = 0.3, θP = 0.25

FIGURE 14: Simulations at higher resolution (∆s = 0.005,∆t = 0.0005)
with different obstacles, origin (lower right), and destination (upper left).

25

(a) final P > 0.5 (b) final P density

FIGURE 15: 3D simulation of path formation (dA = 0.03, τA = 100, kG =

100, τP = 0.2, v = 1, λ = 0.03, ε = 10−100, τC = 0.01, kP = 30, T =

6.5,∆s = 0.01,∆t = 0.001).

large swarms of agents creating paths (such as artificial nerve fibers) between
designated locations. We then described a series of experiments exploring
the parameter space and algorithm variants in order to produce acceptable
paths. We found that attractant and density-control gradients should be nor-
malized before combination, the relative weights of these gradients can be
used to control path definition, autocatalysis and decay can be used to ensure
uniform path density, swarm absorption by the goal region avoids saturation,
and moderate randomness can break undesirable symmetries. Quorum sens-
ing, rapid attractant absorption by path material to increase margins, and al-
ternative gradient normalization approaches were less successful. Finally, we
showed that the 2D simulation could be converted to a 3D simulation with
minimal changes. More generally, we showed how an artificial morphogene-
sis process, expressed as partial differential equations, could be expressed in a
formal morphogenetic programming language and compiled into simulation
software that could be used to refine the process.

7 ACKNOWLEDGEMENTS

I am grateful to Allen McBride for suggesting normalization of the mor-
phogen and density gradients separately before combining them (Eq. 4). This
article is a revision of a previous technical report [17].

26

A 2D CONTINUOUS FLOCKING PROGRAM

1 # i n c l u d e "morphgen2D.smac"

2 \ a l p h a "_." / / a l l o w i n v a r i a b l e names and numbers
3

4 / / C o n t i n u o u s F l o c k i n g Path G e n e r a t i o n
5

6 morphogenetic program c o n t f l o c k :
7

8 s i m u l a t i o n parameters :
9 space : −1 < x < 1 , −1 < y < 1

10 durat ion = 6 . 7 5
11 s p a t i a l r e s o l u t i o n = 0 . 0 1
12 temporal r e s o l u t i o n = 0 .001
13 end
14

15 subs tance morphogen :
16 s c a l a r f i e l d A
17 behavior :
18 param d A = 0 . 0 3 /∗ a t t r a c t a n t d i f f u s i o n c o n s t a n t ∗ /
19 param t au A = 100 /∗ a t t r a c t a n t decay t i m e c o n s t a n t ∗ /
20 D A += d A ∗ d e l ˆ2 A − A/ tau A
21 end
22

23 subs tance p a t h m a t e r i a l :
24 s c a l a r f i e l d P
25 behavior :
26 param t a u P = 0 . 2 /∗ a t t r a c t a n t a b s o r p t i o n t i m e c o n s t a n t ∗ /
27 D P += 0 /∗ p a s s i v e pa th m a t e r i a l ∗ /
28 D A −= [P∗A] / t a u P /∗ pa th a b s o r b s a t t r a c t a n t ∗ /
29 end
30

31 subs tance swarm :
32 s c a l a r f i e l d s :
33 C /∗ swarm c o n c e n t r a t i o n ∗ /
34 S /∗ magni tude o f morphogen g r a d i e n t ∗ /
35 end
36 v e c t o r f i e l d s :
37 U /∗ morphogen g r a d i e n t ∗ /

27

38 V /∗ swarm v e l o c i t y ∗ /
39 end
40 behavior :
41 param v = 1 /∗ base swarm speed ∗ /
42 param lambda = 0 . 0 3 /∗ d e n s i t y r e g u l a t i o n ∗ /
43 param eps = 1e−100 /∗ minimum g r a d i e n t norm ∗ /
44 param k W = 0 . 1 /∗ d eg re e o f random mot ion ∗ /
45 param k P = 30 /∗ pa th d e p o s i t i o n r a t e ∗ /
46 l e t U = d e l A
47 l e t S = | |U | |
48 l e t V = [(v∗U) / (S+ eps)] − lambda∗ d e l [(C−1) ˆ2] . . .
49 + [k W DWˆ 2]
50 D C = [t >5] −div [C∗V]
51 D P += [t >5] k P ∗ [C∗(1−P)] /∗ pa th d e p o s i t i o n ∗ /
52 end
53

54 subs tance g o a l m a t e r i a l :
55 s c a l a r f i e l d G
56 behavior :
57 param k G = 100 /∗ a t t r a c t a n t r e l e a s e r a t e ∗ /
58 D G = 0 /∗ G f i e l d i s f i x e d ∗ /
59 D A += k G ∗ [G∗(1−A)] /∗ goa l e m i t s a t t r a c t a n t ∗ /
60 end
61

62 body Goal of g o a l m a t e r i a l :
63 f o r −0.05 < x < 0 . 0 5 , 0 . 9 < y < 0 . 9 5 : G = 1
64 end
65

66 body O b s t a c l e s of p a t h m a t e r i a l :
67 f o r (x , y) wi th in 0 . 0 6 of (−0.1 , 0 . 2 2 5) : P = 1
68 f o r (x , y) wi th in 0 . 0 6 of (0 . 1 , −0 .225) : P = 1
69 f o r (x , y) wi th in 0 . 0 6 of (0 , −0 .5) : P = 1
70 f o r (x , y) wi th in 0 . 0 6 of (0 , 0 . 5) : P = 1
71 end
72

73 body Cohor t of swarm :
74 f o r −0.05 < x < 0 . 0 5 , −0.95 < y < −0.9: C = 1
75 end
76

28

77 v i s u a l i z a t i o n :
78 d i s p l a y i n t e r v a l = 0 . 0 5
79 d i s p l a y f i n a l P as c o l o r s l i m i t s (0 , 0 . 5)
80 d i s p l a y running C as c o l o r s l i m i t s (0 , 0 . 5)
81 d i s p l a y f i n a l P as mesh
82 r ep or t Courant number f o r V
83 end
84

85 end program

B MORPHGEN2D SYNTAX

Notation: Square brackets surround optional items; curly braces group items.
(When brackets are terminal symbols, they are in boldface.) Superscript *
means zero or more repetitions, superscript + means one or more repetitions.
〈comment〉s can appear anywhere whitespace is allowed (generally, between
tokens). Line continuation of an expression is indicated by “ ... ”, which is
treated as whitespace.

〈program〉 ::= morphogenetic program 〈name〉 :

〈sim params〉
〈substance〉∗

〈body〉∗

〈visualization〉
end program

〈sim params〉 ::= simulation parameters : 〈param〉∗ end

〈param〉 ::= duration = 〈num〉〈newline〉
| temporal resolution = 〈num〉〈newline〉
| space 〈num〉 < x < 〈num〉, 〈num〉 < y < 〈num〉〈newline〉
| spatial resolution = 〈num〉〈newline〉
| save 〈name〉+ to 〈filename〉〈newline〉
| load 〈name〉+ from 〈filename〉〈newline〉
| 〈log params〉

〈substance〉 ::= substance 〈name〉 :

〈variable〉∗

behavior :

29

〈equation〉∗

end

〈variable〉 ::= scalar field 〈name〉〈newline〉
| vector field 〈name〉〈newline〉
| scalar fields : 〈newline〉〈name list〉 end

| vector fields : 〈newline〉〈name list〉 end

〈name list〉 ::= {〈name〉〈newline〉}+

〈equation〉 ::= D 〈name〉 [+|−] = 〈expr〉〈newline〉
| let 〈name〉 = 〈expr〉〈newline〉
| param 〈name〉 = 〈expr〉〈newline〉
| 〈log params〉

〈expr〉 ::= 〈primitive〉[〈operator〉〈primitive〉]∗

〈operator〉 ::= + | − | ∗ | / | ˆ̂̂
〈primitive〉 ::= 〈name〉 | 〈num〉 | (〈expr〉) | 〈special〉
〈special〉 ::= del 〈primitive〉

| del̂̂̂ 2 〈primitive〉
| div 〈primitive〉
| ||〈expr〉||
| [[[〈primitive〉 > 〈primitive〉]]] 〈primitive〉
| [[[〈primitive〉 >= 〈primitive〉]]] 〈primitive〉
| [[[〈primitive〉 < 〈primitive〉]]] 〈primitive〉
| [[[〈primitive〉 <= 〈primitive〉]]] 〈primitive〉
| [[[〈primitive〉 ∗ 〈primitive〉]]]
| [[[〈primitive〉 / 〈primitive〉]]]
| [[[〈primitive〉 ˆ̂̂ 〈primitive〉]]]
| [[[〈primitive〉DW ˆ̂̂ 〈primitive〉]]]

〈body〉 ::= body 〈name〉 of 〈name〉 : 〈definition〉∗ end

〈definition〉 ::= for 〈region〉 : 〈name〉 = 〈expr〉〈newline〉
| for 〈region〉 : 〈newline〉〈init〉∗ end

〈region〉 ::= 〈expr〉 < 〈name〉 < 〈expr〉, 〈expr〉 < 〈name〉 < 〈expr〉
| (〈name〉, 〈name〉) within 〈expr〉 of (〈expr〉, 〈expr〉)

30

〈init〉 ::= 〈name〉 = 〈expr〉〈newline〉
〈visualization〉 ::= visualization 〈vis command〉+ end

〈vis command〉 ::= display 〈time〉 〈primitive〉 as 〈kind〉
| display running code 〈target code〉 end code

| make movie 〈filename〉 of 〈primitive〉 as 〈kind〉〈newline〉
| record parameters in 〈filename〉〈newline〉
| 〈stability report〉

〈time〉 ::= running | final

〈kind〉 ::= {mesh | contours | colors} [limits (〈expr〉, 〈expr〉)]
| quivers [grid (〈expr〉, 〈expr〉)]

〈stability report〉 ::= report diffusion number for 〈primitive〉
| report Courant number for 〈primitive〉
| report Peclet number for 〈primitive〉 and 〈primitive〉

〈log params〉 ::= log params 〈name〉 [, 〈name〉]∗ 〈newline〉
〈name〉 ::= 〈letter〉 [〈letter〉 | 〈digit〉 |]∗

〈num〉 ::= [−]〈digit〉∗[.〈digit〉∗]

〈comment〉 ::= /∗ 〈characters〉 ∗/
| // 〈characters〉〈newline〉

REFERENCES

[1] Harold Abelson, Don Allen, Daniel Coore, Chris Hanson, George Homsy, Thomas F.
Knight, Jr., Radhika Nagpal, Erik Rauch, Gerald Jay Sussman, and Ron Weiss. (May
2000). Amorphous computing. Commun. ACM, 43(5):74–82.

[2] D. A. Beysens, G. Forgacs, and J. A. Glazier. (2000). Cell sorting is analogous to phase
ordering in fluids. Proc. Nat. Acad. Sci. USA, 97:9467–9471.

[3] J. A. Carrillo, M. Fornasier, G. Toscani, and F. Vecil. (2010). Particle, kinetic, and hydro-
dynamic models of swarming. In G. Naldi, L. Pareschi, and G. Toscani, editors, Mathemat-
ical Modeling of Collective Behavior in Socio-Economic and Life Sciences, pages 297–336.
Birkhāuser, Boston.

[4] Y.-L. Chuang, M. R. D’Orsogna, D. Marthaler, A. L. Bertozzi, and L. S. Chayes. (2007).
State transitions and the continuum limit for a 2d interacting, self-propelled particle system.
Physica D, 232:33–47.

[5] Gabor Forgacs and Stuart A. Newman. (2005). Biological Physics of the Developing
Embryo. Cambridge University Press, Cambridge, UK.

[6] S. C. Goldstein, J. D. Campbell, and T. C. Mowry. (June 2005). Programmable matter.
Computer, 38(6):99–101.

31

[7] Bruce J. MacLennan. (2009). Preliminary development of a formalism for embodied com-
putation and morphogenesis. Technical Report UT-CS-09-644, Department of Electrical
Engineering and Computer Science, University of Tennessee, Knoxville, TN.

[8] Bruce J. MacLennan. (2010). Models and mechanisms for artificial morphogenesis.
In F. Peper, H. Umeo, N. Matsui, and T. Isokawa, editors, Natural Computing, Springer
series, Proceedings in Information and Communications Technology (PICT) 2, pages 23–
33, Tokyo. Springer.

[9] Bruce J. MacLennan. (2010). Morphogenesis as a model for nano communication. Nano
Communication Networks., 1(3):199–208.

[10] Bruce J. MacLennan. (2010). The U-machine: A model of generalized computation.
International Journal of Unconventional Computing, 6(3–4):265–283.

[11] Bruce J. MacLennan. (2011). Artificial morphogenesis as an example of embodied
computation. International Journal of Unconventional Computing., 7(1–2):3–23.

[12] Bruce J. MacLennan. (2012). Embodied computation: Applying the physics of computa-
tion to artificial morphogenesis. Parallel Processing Letters, 22(3):1240013.

[13] Bruce J. MacLennan. (June 2012). Molecular coordination of hierarchical self-assembly.
Nano Communication Networks, 3(2):116–128.

[14] Bruce J. MacLennan. (2014). Coordinating massive robot swarms. International Journal
of Robotics Applications and Technologies, 2(2):1–19.

[15] Bruce J. MacLennan. (2015). The morphogenetic path to programmable matter. Proceed-
ings of the IEEE, 103(7):1226–1232.

[16] Bruce J. MacLennan. (2018). Coordinating swarms of microscopic agents to assemble
complex structures. In Ying Tan, editor, Swarm Intelligence, Vol. 1: Principles, Current
Algorithms and Methods, PBCE 119, chapter 20, pages 583–612. Institution of Engineer-
ing and Technology.

[17] Bruce J. MacLennan. (2018). Path creation by continuous flocking as an example of a
morphogenetic programming language. Faculty Publications and Other Works — EECS.
http://trace.tennessee.edu/utk elecpubs/24, University of Tennessee Department of Electri-
cal Engineering and Computer Science.

[18] Bruce J. MacLennan. (2018). The Synmac syntax macroprocessor: Introduction and man-
ual, version 5. Faculty Publications and Other Works — EECS. http://trace.tennessee.edu/utk elecpubs/23,
University of Tennessee Department of Electrical Engineering and Computer Science.

[19] Hans Meinhardt. (1982). Models of Biological Pattern Formation. Academic Press,
London.

[20] S. Murata and H. Kurokawa. (March 2007). Self-reconfigurable robots: Shape-changing
cellular robots can exceed conventional robot flexibility. IEEE Robotics & Automation
Magazine, pages 71–78.

[21] Radhika Nagpal, Attila Kondacs, and Catherine Chang. (March 2003). Programming
methodology for biologically-inspired self-assembling systems. In AAAI Spring Sympo-
sium on Computational Synthesis: From Basic Building Blocks to High Level Functional-
ity.

[22] C. W. Reynolds. (1987). Flocks, herds and schools: A distributed behavioral model. ACM
SIGGRAPH Computer Graphics, 21(4):25–34.

[23] L. Spector, J. Klein, C. Perry, and M. Feinstein. (2005). Emergence of collective behavior
in evolving populations of flying agents. Genetic Programming and Evolvable Machines,
6(1):111–125.

32

[24] Larry A. Taber. (2004). Nonlinear Theory of Elasticity: Applications in Biomechanics.
World Scientific, Singapore.

[25] C. M. Topaz, A. L. Bertozzi, and M. A. Lewis. (2006). A nonlocal continuum model for
biological aggregation. Bulletin of Mathematical Biology, 68:1601–1623.

33

