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Abstract

It has been long assumed that knowledge and thought are most
naturally represented as discrete symbol systems (calculi). Thus a
major contribution of connectionism is that it provides an alternative
model of knowledge and cognition that avoids many of the limitations
of the traditional approach. But what idea serves for connectionism
the same unifying role that the idea of a calculus served for the tradi-
tional theories? We claim it is the idea of a continuous symbol system.

This paper presents a preliminary formulation of continuous sym-
bol systems and indicates how they may aid the understanding and
development of connectionist theories. It begins with a brief phe-
nomenological analysis of the discrete and continuous; the aim of this
analysis is to directly contrast the two kinds of symbols systems and
identify their distinguishing characteristics. Next, based on the phe-
nomenological analysis and on other observations of existing continu-
ous symbol systems and connectionist models, I sketch a mathemati-
cal characterization of these systems. Finally the paper turns to some
applications of the theory and to its implications for knowledge rep-
resentation and the theory of computation in a connectionist context.
Specific problems addressed include decomposition of connectionist
spaces, representation of recursive structures, properties of connec-
tionist categories, and decidability in continuous formal systems.



Our present knowledge of human perception leaves no doubt
as to the general form of any theory which is to do justice to
such knowledge: a theory of perception must be a field the-
ory. By this we mean that neural functions and processes
with which the perceptual facts are associated in each case
are located in a continuous medium; and that the events
in one part of this medium influence the events in other
regions in a way that depends directly of the properties of
both in their relation to each other.

— W. Kohler, Dynamics in Psychology (p. 55)
Nothing is more practical than a good theory.

— Kurt Lewin (Marrow, 1969)

The disadvantage of regarding things in separate parts is
that when one begins to cut up and analyze, each one tries
to be exhaustive. The disadvantage of trying to be exhaus-
tive is that it is consciously (mechanically) exhaustive. ..
Only one who can imagine the formless in the formed can
arrive at the truth.

— Chuang-tzu (Soshi)

Symbolic representation of qualitative entities is doomed
to its rightful place of minor importance in a world where
flowers and beautiful women abound.

— Einstein, “Hyperbolic Aesthetic” (1937)

1 Need for a Theory of Continuous
Symbol Systems

1.1 Human Symbolic Cognition

It is now widely recognized that human symbolic cognition, by which
we mean the use of language, logic and explicit reasoning, is much
more flexible than symbolic Al systems. If an expert system has too
few rules, then it exhibits brittle behavior, failing in catastrophic ways
when faced with novel situations or minor exceptions to the rules. On



the other hand, trying to anticipate all the situations and exceptions
that may occur leads to a proliferation of rules and an exponential
explosion in the machine resources required. Human cognition does
not have these limitations. When people reason explicitly, their use
of categories is sensitive to the context of the problem, and their in-
ferential processes are generated from and constrained by relevance to
the situation. This seems to be a natural result of the implementa-
tion of these processes, rather than a result of special context rules or
relevance rules. Human language use has similar characteristics: it is
flexible, context-sensitive and controlled by relevance. Further, flexi-
bility and “softness” is the natural state of both reason and language;
“hard” logic and precise language use are skills that are not easily
acquired, and they are special tools used by the expert when they are
called for, but not otherwise. How can we achieve similar flexibility
in connectionist symbol processing?

It is not sufficient to replace categories with hard boundaries by
categories with fuzzy boundaries (as is done in fuzzy set theory). Al-
though fuzzy categories do eliminate some sources of brittleness, they
do not address the complex processes by which categories may be
sensitive to the global context. To achieve the flexibility of human
cognition and true context-sensitive symbol use, a more radical rein-
terpretation of symbolic processing is necessary. We must see context-
sensitive holistic processes as the normal mode of operation, and see
context-free discrete symbol manipulation as a specialized modifica-
tion of this norm.!

These observations have practical implications, for they mean human-
like flexibility and competence is unlikely to result from a simple
hybrid of neural network technology and expert systems technology.
Wherever it appears in a hybrid system, discrete, formal, context-free
symbol manipulation will be a source of brittleness and other forms of
unskillful behavior (see also Sun, Chapter ?? in this volume). If we
want implementations of symbolic cognition that exhibit the flexibility
and competence of people’s, then they must be built on a foundation
that is fundamentally continuous, holistic and context-sensitive.

I'We use the term ‘holistic’ in spite of some of its unfortunate connotations; it is the
only term that correctly denotes systems whose structures are misrepresented by being
analyzed into independent parts.



1.2 Emergence of the Discrete

Human symbolic cognition is built upon a subsymbolic substrate, which
is continuous in its principles of operation, and is the ultimate source
of the flexibility of human symbol use. To see this, observe that the
basic neural processes are best described as continuous, since informa-
tion is represented by continuous quantities such as spiking frequency
and membrane potential. Most neurons seem to operate as low preci-
sion analog devices. Furthermore, the large number of neurons found
in the brains of the higher animals implies that functional areas can
often be viewed as spatially continuous. That is, we can view such
an area as a continuum of neurons, rather than as a large number of
discrete neurons. This view is even more appropriate if, as some sug-
gest, the basic computational unit is not the neuron, but the synapse
(Shepherd, 1978). Thus the basic neural processes are both tempo-
rally and spatially continuous. This is important from a theoretical
perspective, because it means that powerful mathematical tools may
be brought to bear on the problem of mental representation.

In addition, many of the most basic cognitive processes, such as
perception, association, sensory-motor coordination, and judgement
of similarity, are by their nature continuous. We share these faculties
with the lower animals, and we observe that they show the same flex-
ibility in their use as we do. Discreteness is most apparent when we
come to higher cognitive processes, such as language use and explicit
reason, but these faculties partake of the flexibility of the underlying
continuous processes.?

These considerations suggest that a critical research goal is to un-
derstand the processes by which discrete and approximately discrete
symbols can emerge from continuous processes. Of course this is an
inversion of the usual situation in computer science and even logic,
where discrete symbols are taken as given, and continuous quantities
are approximated by discrete structures. We must understand how
the discrete structures found in logic and language can emerge from
continuous representations and processes.

2Nalimov (1981, Ch. 8) uses continuous semantic fields as a basis for discrete language
and thought. Lakoff (1988) discusses the grounding of linguistic structures in continuous
sensory-motor processes, and the relation between cognitive linguistics and connectionism.



1.3 Goals

Our goal is to develop a theoretical framework for connectionist knowl-
edge representation that fills a role analogous to the theory of for-
mal systems in symbolic knowledge representation. The properties
we expect of this theory include formality, idealization, qualitative
inference, and elucidation of the emergence of the discrete from the
continuous. I discuss each in turn.

First observe that ‘formal’ is used in two distinct but related ways.
In the first case, form is contrasted with meaning, or equivalently,
syntax with semantics. In this sense a system is formal if its inferen-
tial processes depend only on the “shapes” of symbols, not on their
meanings. Therefore, we distinguish formal systems, which are purely
syntactic, from symbol systems, in which the symbols have meanings;
a symbol system is a formal system together with an interpretation or
a semantics, which assigns the meanings.

In the second case form is contrasted with matter (as in Plato),
and formal means that the system’s information processing capaci-
ties depend only on abstract relationships rather than on their ma-
terial embodiment. It is in this sense that computer programs are
formal, since they define the same computations whether they are
implemented electronically or in some other way. It is this kind of
formality that allows calculi (discrete formal systems) to be imple-
mented in any medium that is sufficiently close to the discrete ideal.
Analogously we expect a theory of continuous formal systems to be
independent of material embodiment and to depend only on idealized
properties of continuous media.

Both notions of formality are important for connectionist theories
of knowledge representation. First, by their being purely syntactic
we are confident that our definitions of cognitive processes do not ap-
peal to homunculi.> Second, by their being abstract we know that
our theories have captured the essential characteristics of cognition,
as opposed to the accidents of its biological or electronic implementa-
tion. The syntactic kind of formality ensures that the theory is self-
contained; the abstract kind ensures that it contains no more than is
necessary.

3This approach in effect reduces semantics to syntax, which seems necessary to under-
standing the mechanisms of cognition. This contentious issue cannot be addressed further
here.



It will be worthwhile to say a few words about “idealization.” The
familiar theory of discrete formal systems makes a number of ideal-
izing assumptions (detailed below, Section 2.2), which are only ap-
proximately realized in physical implementations. An example of an
idealizing assumption is that there are only two atomic symbols, ‘0’
and ‘1’, and that there is nothing “between” them. In reality these
symbols might be represented by two voltage levels between which
there is a continuum of levels. However, many implementations are
a good approximation to the ideal, and this is the reason that dis-
crete formal systems provide a useful theoretical framework for un-
derstanding digital computers. We expect an analogous situation in
the theory of continuous formal systems. We will make certain ide-
alizing assumptions, such as that all functions are continuous, and
the success of our theory will depend on the extent to which these
assumptions approximate well the physical embodiments of connec-
tionist knowledge representation. For example, we will assume that
there is always an analog value between two given analog values, even
though in some implementations analog values might be represented
by electric charge, which is quantized.

Connectionist models are typically continuous nonlinear dynami-
cal systems with very large numbers of variables. Analytic prediction
of the behavior of these systems is usually impossible, so it is often
necessary to resort to simulation. However, such systems may be very
sensitive to inaccuracies of the simulation. These considerations sug-
gest that we need qualitative tools for understanding connectionist
models, since qualitative prediction may be possible even when de-
tailed quantitative analysis is not. For example, the existence of a
Lyapunov function allows us to predict that the system will approach
an asymptotically stable equilibrium, even though we may not be able
to describe its exact trajectory. More generally, we expect the theory
of continuous formal systems to be a topological theory rather than a
numerical theory.

As argued above, a central problem of connectionist knowledge
representation is the emergence of symbolic cognitive processes from
subsymbolic processes. Therefore, a principal goal of the theory of con-
tinuous formal systems is that it should elucidate the relation between
continuous and discrete knowledge representation, and in particular
should show how continuous connectionist systems can approximate
idealized discrete cognition. Some preliminary results will be found in



Section 5.2.

2 Phenomenological Analysis

2.1 Introduction

All mathematical theories are idealizing; that is, they select out cer-
tain properties in their domain and ignore the remainder so that they
permit rigorous reasoning about the phenomena that depend on the
selected properties. A mathematical theory is useful to the extent
that it selects properties that are relevant to central phenomena of the
domain, and to the extent that it ignores those that are peripheral.
Unfortunately, when we are investigating a new domain of phenom-
ena, it may not be obvious which phenomena are central and which
peripheral; as a result idealization is problematic. In these cases a
phenomenological analysis may help to identify the central phenom-
ena and relevant properties.

This is the basic procedure we will follow: First we identify a
domain of interest, such as connectionist systems or continuous symbol
systems. The domain cannot be defined, because the identification of
characteristic properties is the very problem to be solved; instead the
domain must be indicated, largely through examples. Once the domain
has been grasped we look for invariances, properties that hold always
or for the most part. These invariances are the elements around which
a mathematical theory can be constructed.

Since this kind of phenomenological analysis will be unfamiliar to
many readers, we illustrate it first for the familiar discrete symbol
systems (calculi), before applying it to the less familiar continuous
symbol systems (image systems). This twofold analysis will also bring
into the foreground the similarities and differences between the two
kinds of systems.

2.2 Discrete Symbol Systems
2.2.1 Indication of the Domain

As discussed above, our phenomenological analysis begins by indicat-
ing the domain of phenomena to be analyzed. In this case we are aided
by the fact that (discrete) formal systems, digital systems and calculi



are all recognized categories. Therefore the identification of invari-
ances can begin with an analysis of the reasons that people find these
to be useful categories; these are the pragmatic invariances. First,
however, we indicate the domain by asking, “What sorts of things are
seen as calculi (discrete symbol systems)?”

The most familiar and characteristic example of a discrete sym-
bol system is written language, and in this example we can see many
of their invariances. First, discrete symbols have a hierarchical con-
stituent structure: sentences composed of words, and words of letters.
Second, the lowest level components, the letters, are considered atomic
(indivisible), and these atomic components (tokens) belong to a finite
number of types. Finally, sentences are finite assemblages of tokens
obeying a finite number of syntactic rules.

Real written natural language is more complicated than implied
here; for example real languages may not be characterized by a finite
number of syntactic rules. Thus, although they are the main inspi-
ration for discrete symbol systems, written languages may not be the
best examples. Closer to the ideal are artificial languages such as the
formulas of algebra and symbolic logic. Here the syntactic rules are
finite and explicit, as are the rules for calculating with the symbols.

Less obvious, but equally familiar examples of discrete symbol sys-
tems are board games, such as checkers, chess, and go. Again, there is
a finite set of rules defining the allowable configurations of tokens, and
there are explicit rules defining the allowable “moves” (manipulations
of the tokens).

The most complex and sophisticated discrete symbol systems are
found in computer science, especially in artificial intelligence, where
powerful knowledge representation languages permit the mechaniza-
tion of some inferential processes (Fig. 1). The limitations of these sys-
tems has been a major motivation for the exploration of connectionist
alternatives to conventional knowledge representation (Dreyfus, 1979;
MacLennan, 1988a).

2.2.2 Pragmatic Invariances

Having indicated the domain of calculi (discrete symbol systems), we
can begin the phenomenological analysis. Our goal is to find out why
calculi are what they are. To discover this we must first ask how the
phenomena seen as calculi are perceived. In this way we investigate
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Figure 1: Example of a semantic net. Knowledge is represented by a set of
atomic tokens connected by atomic relations. English-language labels make
the nodes and links comprehensible to people, but are irrelevant to computer
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why is it important to people to recognize some phenomena as calculi.
This will form a basis for identifying the other invariances of this
domain.

The first characteristic of calculi is that they are definite. Ide-
ally, we know exactly what we have got: what letter or symbol, what
grammatical relation, what piece (white king, black rook), what board
position, and so forth. Second, calculi are reliable. Frrors, so long as
they are not too large, do not affect the use of the calculus. For ex-
ample, in transmitting binary information, there can be considerable
variation in the signal representing a one, and it can still be decoded
correctly, so long as it doesn’t change so much that it looks more like a
zero. Similarly, we can tolerate noise or other degradation in the form
or position of printed symbols so long as it isn’t so much as to make
one symbol or spatial relation look like another. In general, all ob-
servers agree on the types of the tokens and the syntax of the formulas.
Third, the discrete symbols are reproducible. Repeated reproduction
does not result in cumulative error; the syntax of structures is not
changed by copying.

Most of the characteristics of calculi result from their being finitely
specifiable. That is, against an appropriate background of assump-
tions, we can completely describe a calculus, its syntax, semantics
and rules of calculation, in a finite number of words. (Think of formal
logic, board games and computer programs.)

These pragmatic invariances of calculi account for much of the suc-
cess of digital computers and other digital technologies (such as digital
audio). For some applications, however, other properties are more im-
portant, and it is in these applications that connectionist approaches
are most promising.

2.2.3 Syntactic Invariances

Next I will outline the background assumptions we routinely make
about the syntax of discrete formal systems. By making these as-
sumptions explicit we will be better able to see the possibilities of
other kinds of formal systems.

A syntactic type is one that can be determined by perception (for
natural systems) or by a simple mechanism (for artificial systems).
For examples, we may think of recognition of letters by a person, or
recognition of bits by an electronic device. Types depend on the form
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Figure 2: Discrete types are determined against a background of assumptions
about what constitutes significant and insignificant variation in the tokens.
For example, features of tokens that are assumed to be irrelevant to deter-
mining the type of the token might include not only size and font, but also
marks considered “noise.” These assumptions are usually unstated (i.e., in

the background).

or “shape” of tokens, not on their meaning, but, as Fig. 2 illustrates,
certain aspects of the shape are considered significant to a calculus
while others (such as size or font) are not, and this set of assumptions
varies from calculus to calculus. For mathematical purposes, ‘A’ and
‘A’ might be considered different types; for other purposes they would
be insignificant variants of a single type. Further, we always assume

for calculi that tokens can be correctly classified — an idealizing as-
sumption that of course ignores the difficulties of real-world pattern
classification.

We also assume that a calculus has a finite number of (atomic)
syntactic types. This is implied by the condition that a calculus be
finitely specified, since an infinite set of types could be finitely specified
only by giving some general rule for their generation, in which case
they are not atomic, but defined in terms of some more primitive
types.

Finally, we assume that in a calculus the tokens can be unambigu-
ously separated from the background, that is, that we always know
whether or not a token is actually present (Fig. 3). This again is an
idealization, since in real-world symbol processing the separation of
signal from noise may be a difficult problem.

We have considered the assumed properties of the atomic tokens
and types of calculi; now we turn to the relations by which they are

11



Figure 3: Discrete formal systems assume that it can be unambiguously de-
termined whether or not a token is present, that is, it is assumed that a token
can always be separated from the background. This idealizing assumption
ignores the complexities of real-world signal detection. In this case, is the
second number 35 or 3.57 Is there a decimal point after the 67 Is the symbol
before the slash ‘17, ‘i’ or ‘I’? Is the second operator a minus sign or an equal
sign?
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Figure 4: Discrete relations. Certain features of the arrangement are con-
sidered relevant to syntactic relations, other are not. For example, (a) one
symbol being to the right of another may be significant, but the actual dis-
tance may not be. (b) Analogously, one symbol being a superscript of another
is what is significant here.

assembled into composite symbol structures.

A syntactic relation is one that can also be detected by a simple
perceptual or mechanical process. (Thus types are single-place per-
ceptual predicates, whereas relations are multiplace perceptual predi-
cates.) Once again, this classification process is assumed to be perfect,
so we can always determine whether or not a relation holds (Fig. 4).
Also, in a given calculus some characteristics are considered significant
to the relationships (e.g. vertical displacement) while other are not
(e.g., horizontal displacement; see Fig. 4).

Finite specifiability again dictates that there be a finite number
of syntactic relationships (otherwise they are not primitive and can
be specified in terms of more basic relations). The formation rules of
most calculi can be applied recursively to build up composite formulas
of arbitrary size, but the resulting formulas are required to be finite
in size (number of tokens). Thus the formation rules can be applied
only a finite number of times.

Most calculi are not static, that is, in addition to defining a set of
symbolic structures, they define syntactic processes (rules of calcula-
tion) by which these structures are transformed. Finite specifiability
determines many of the properties of processes. First, the number of
rules is assumed to be finite. Second, the rules are assumed to be ap-
plied in discrete steps, so that in a finite amount of time only a finite
number of rules may be applied. Further, the rules must be syntac-

13



tic (formal), which means that determining the applicability of a rule
depends only on the types of the tokens and their syntactic relations.
Finally, application of a rule generates only a finite number of tokens
and produces or changes only a finite number of relations. Thus rules
are finite in their effects.

A very important property of calculi may be called syntactic inde-
pendence: the actual syntactic types and relations used are arbitrary;
they can be replaced by others with the same formal properties. This is
the basis of digital computation, in which physical properties (charge,
current, magnetic flux) replace other, sometimes abstract, properties
(being an ‘A’, being immediately to the left of, etc.).

2.2.4 Semantic Invariances

Two assumptions are typically made about the semantics of discrete
symbol systems. First, the operation of a calculus is formal or syn-
tactic, that is, it is independent of any meaning that may be attached
to the formulas. As far as calculation is concerned, the symbols have
no meaning. Second, the semantics is compositional. That is, formu-
las are interpreted — given a meaning — recursively, by attaching
meaning to the atomic types and to the syntactic rules of composi-
tion. Composite formulas are thus interpreted implicitly and there
is a regular (finitely specifiable) relation between formulas and their
meanings.

2.2.5 Idealization

Finally, it is important to observe that real (physical) discrete symbol
systems are only approximations to this ideal (although often quite
good approximations). For example, types may be confused (‘O’ vs.
‘0%, ‘1’ vs. ‘I’). Manuscripts and even digital signals do get corrupted.
Signal is sometimes taken for noise, and vice versa. In the theoretical
characterization of discrete symbol systems we ignore this practical
fuzziness and intrusion of the continuous into the idealized world of
the discrete.

14



2.3 Continuous Symbol Systems
2.3.1 Indication of the Domain

Now that we have had some practice with phenomenological analysis
in a familiar domain, we turn to continuous symbol systems, which
have been investigated much less.

Spoken language provides the most familiar example of a contin-
uous symbol system. Here we find significance conveyed by continu-
ously variable and continuously varying parameters, including loud-
ness, pitch, tone, tempo and rhythm.* The nonspoken components of
everyday communication, such as body language, are also examples,
and they remind us of gestural languages such as American Sign Lan-
guage (ASL). Another informative example is the language of musical
conducting: it clearly has a grammar, yet its communicative efficacy
depends on continuous variation in a number of dimensions. Indeed,
we can see that music and visual arts derive much of their commu-
nicative power from continuous variation (Arnheim, 1971; Goodman,
1966, 1968; Nalimov, 1981).

Of course all these continuous languages also have discrete ele-
ments, but the important point here is that they have a significant
admixture of the continuous that is treated as a valuable represen-
tational resource, rather than as an interfering source of noise and
error.

Many familiar devices are controlled through continuous symbol
systems: musical instruments, of course, but also automobiles and
aircraft, cameras and stereos. The steering wheel and brake both make
significant use of continuous variation: how much to turn and how
quickly to stop. The piano keyboard may seem to be a clear case of
a discrete symbol system, but it permits continuous variation in both
the time and intensity of impact.® We observe also that many devices,
including stereos and lights, are controlled by rheostats.® Finally, the

4Thde (1986, Ch. 1) provides an insightful analysis of the phenomenology of voice,
including the contrast between the continuous and the discrete as exemplified by speech

and writing.

> A commonplace of piano instruction is to stress legato playing, thus making the sound
more continuous (e.g. Lhevinne, 1972, pp. 37-39). Conversely, violinists are encouraged
to stress articulation. “Play the piano as though it were a violin, and the violin as though

it were a piano” expresses the necessity of balancing the discrete and continuous.

5 Apparently reflecting the view that “if it’s digital it must be better,” some stereos
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mouse and high-resolution screens have made even our interaction
with computers more continuous. Continuous symbol systems are an
ubiquitous and natural aspect of our interaction with the world.

Finally, we mention briefly the most obvious examples of continu-
ous symbol systems. Analog recording devices (both audio and video)
provide examples of analog representational systems with limited com-
putational ability. Analog computers are better examples of contin-
uous information processing. Of course, analog computers have been
out of favor for several decades, and analog audio and video equip-
ment seem headed that way. There are good technological reasons for
this move away from analog technology, and some of them have been
already mentioned (Section 2.2); nevertheless, analog representational
and computational systems have their own advantages, to which we
now turn.

2.3.2 Pragmatic Invariances

In performing a phenomenological analysis of continuous symbol sys-
tems, we face the problem that they have not been generally recog-
nized or studied as a class. (Indeed that is a principal goal of this
paper.) Therefore we cannot analyze the class of continuous symbol
systems, asking why certain things are seen as continuous symbol sys-
tems, because in fact they generally aren’t so seen. Instead, we must
take a synthetic approach, identifying common reasons for the use of
continuous symbol systems, and thereby creating a category of con-
tinuous symbol systems. By way of analogy, we are not here trying to
explain why some figure stands out from the background. Rather we
are pointing out features of the background, with the intent that the
set of features become figural. Once I've pointed out the face in the
clouds, then you can see it too.

What then are the reasons for using continuous symbol systems?
First, they are flexible. This means that, in the simplest terms, there is
always another choice between too much and too little, there is always
an opportunity for adjustment. Aristotle recognized the utility of such
flexibility to biological systems in his doctrine of the “relative mean”
(Eth. Nic. 1. vi. 4-17): there is a “right amount,” between excess and
deficiency, that is appropriate for a given organism at a given time.

now have digital volume controls that have a discrete set of positions. It is often observed
that the volume one wants is between the allowed positions.

16



In other words, optimal operating points are in principle achievable
by continuous variation between excess and deficiency.

A second invariance of continuous symbol systems is that they are
robust. Small errors (noise or malfunctions) generally lead to small
effects; such systems degrade gracefully. The general absence of this
property from discrete systems is in fact the root of the “software
crisis” that plagues digital computer programming. In traditional en-
gineering disciplines design is simplified by approximation, since con-
tinuity permits low-level effects to be ignored. Software engineering
does not have this characteristic, since even one incorrect bit can lead
to the catastrophic failure of a software system. In discrete symbol
systems we typically have no bound on the effects of even the smallest
changes.”

Third, because continuous structures can change gradually over
time, they can be more easily made adaptive. In contrast, for a dis-
crete symbol system to adapt, it is necessary to add or delete rules,
which results in abrupt behavioral changes. A discrete symbol system
cannot change its behavior gradually, but adaptability is common in
continuous symbol systems.

Finally, we note that continuous symbol systems may have signifi-
cant advantages in the time-critical situations often faced by animals
and machines. For example, a continuous process converging to an
asymptotically stable equilibrium permits the use of preliminary re-
sults, if they are needed before convergence occurs. Here we use a
partial result when the “correct” answer cannot be obtained in time.
Continuity also permits extrapolating to likely future states, thus al-
lowing limited anticipation, which can improve the efficiency of future
computations.

Continuous symbol systems no doubt have other pragmatic in-
variances, but the ones listed above will serve to contrast them with
discrete symbol systems.

2.3.3 Syntactic Invariances

There is nothing in the definition of the word ‘symbol’ that requires
symbols to be discrete; for example, we find ‘symbol’ defined as “some-
thing that represents something else by association, resemblance, or

7Of course specific discrete systems can be designed that are insensitive to fixed errors;
an example is an error-correcting code.
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convention; especially, a material object used to represent something
invisible” (Morris, 1981, s.v. symbol). That is why we have spoken of
discrete symbol systems versus continuous symbol systems.® Never-
theless, the word connotes discreteness and atomicity, a tendency re-
inforced by terms such as ‘symbolic AI’. Therefore we prefer to speak
of images rather than continuous symbols; this is consistent with the
term’s use in cognitive science, as well as in common usage:?

A reproduction of the appearance of someone or something. . .
A mental picture of something not real or present... A rep-
resentation to the mind by speech or writing. (Morris, 1981,
s.v. image)

The images of a continuous formal system are drawn from one or more
image spaces or continua.

The syntar of continuous symbol systems is concerned with the
formal properties of images, which can be described by continuous
formal systems. The semantics of continuous symbol systems is con-
cerned with the representative properties of images.

Semantics is considered in the next section; in this section we will
identify some of the syntactic invariances of continuous symbol sys-
tems. These are the properties that we will want to capture in our
theory of continuous formal systems. Thus we begin our investigation
with the formal or syntactic properties of uninterpreted images. In
the course of identifying invariances it will be helpful to look back at
the examples we have collected of continuous symbol systems (Sec-
tion 2.3.1). However, to convince ourselves that they are genuine in-
variances, we must use the procedure of phenomenological variation,
that is, exploring the the range of systems (phenomena) in the indi-
cated domain (Ihde, 1977). Unfortunately, space limitations force us
to leave this process to the reader’s imagination.

Our examples of continuous symbol systems show that similarity
of images is a matter of degree. Further, the flexibility of continuous

8We have previously suggested simulacrum as a term for the continuous analog of the
discrete calculus, that is, for what is here called a continuous symbol system (MacLennan,
1991b).

A comprehensive terminology is sadly lacking. C. S. Peirce did pioneering work in
this area, but his terms are not widely known, and would be confusing in this context.
What we are calling a symbol seems to correspond to Peirce’s icon, which has subtypes
which he calls images, diagrams and metaphors (Coll. Papers, 2.274-304; Buchler, 1955,
pp. 99-107).
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symbol systems results from the fact that for any two images there is
always a third image that is closer to either of the first two. For linear
(one-dimensional) continua we may say that there is always an image
between any two other images.

It is often convenient to assume that similarity is measured by a
metric, but this is not always the case, and the choice of metric may
be problematic. For example, the Ly (Euclidean) metric is often used
to measure the distance between images, but this is more through
habit and mathematical convenience than principled choice. An L,
metric (p > 2) would accord greater significance to differences between
the images, with L., (maximum deviation) being the extreme case;
conversely, L; tends to devalue differences. For another example, it is
not obvious how differences in orientation or size should be combined
with differences in color.

Processes in discrete formal systems are sensitive to the types of
the tokens, and analogously we expect continuous formal systems to
be sensitive to the forms of images, that is, to their syntactic type
or category. The nature of these syntactic categories is different from
those in discrete formal systems, since the pragmatic invariances of
robustness and adaptability both imply that infinitesmal changes of
an image not result in discontinuous changes of behavior. Therefore,
category membership must vary continuously with changes in the im-
ages, which means that all syntactic categories must be in some way
fuzzy. (See also Section 5.2.)

Next we consider the syntactic relationships that may obtain in
continuous formal systems. Discrete formulas are constructed from
atomic parts. In continuous systems, in contrast, the images are usu-
ally given as wholes, and their division into parts is problematic. This
is illustrated in Fig. 5. What are the “parts” of the image of the frog?
Since this image is represented as a bit map, the obvious answer is
that the elementary parts are the pixels illustrated in the upper-right
corner. This might be appropriate for some purposes, but for others a
different decomposition would be more appropriate; we illustrate anal-
yses into anatomical “parts,” elementary splines, elementary polygons,
and a stick-figure representation. There is no unique decomposition,
as there would be for a formula in an (unambiguous) discrete formal
system. Furthermore, in many cases there is no natural end to the
analysis. For example, the anatomical analysis can be continued to
arbitrarily smaller parts of the image.
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Figure 5: Decomposition of images. Images do not have a unique decomposi-
tion into elementary “parts.” The kind and degree of decomposition depends
on the purpose to which it will be put. (a) The original image. Example de-
compositions: (b) pixels (only the eye is shown); (¢) anatomical components;
(d) elementary splines (of thresholded image); (e) elementary polygons (of
thresholded image); (f) stick-figure analysis.
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Finally we turn to computation in continuous formal systems. The
adaptability and time-criticality invariances suggest that processes in
continuous formal systems be assumed to progress continuously in
time. Thus we take images to be transformed continuously (although
we often use discrete-time approximations). See Fig. 6. Also note that
there may be a number of paths by which one image may be reached
from another by a process of continuous transformation.

The foregoing are the syntactic invariances that we will attempt
to capture in a mathematical theory of continuous formal systems.

2.3.4 Semantic Invariances

We expect the semantics of continuous symbol systems to be an in-
teresting topic of study, for corresponding to the compositionality of
discrete semantics we have the continuity of continuous semantics;
in other words, the pragmatic invariances all require a continuous
function mapping images onto their interpretations (meanings). One
implication of this requirement is that although continuous symbol
systems may be completely formal, they are nevertheless not com-
pletely independent of their interpretations. This is familiar from the
idea of analog computing: there must be some analogy between the
symbol (image) and what it represents.

2.3.5 Idealization

As for discrete symbol systems, our characterization of continuous
symbol systems is idealized. Apparently continuous processes may in
fact be discrete (e.g. accumulation of charge in terms of electrons);
images may be composed of discrete parts (atoms, electrons, silver
grains); processes may progress in tiny finite steps. In perception
there are “just noticeable differences.” These all may be viewed as
incursions of the discrete into the continuous. In both the discrete
and continuous case, the relevant questions are: Which model is most
useful? Which idealization does less violence to the phenomena?
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Figure 6: Continuous transformation of images. Any image in the space
can be transformed into any other by one or more processes of continuous
transformation.
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3 Postulates of Continuous Symbol Sys-
tems

Based on the foregoing phenomenological analysis we can now propose
a candidate set of properties possessed by any continuous symbol sys-
tem. In later sections we explore particular classes of such systems
that have properties in addition to those enumerated here.

We begin with the syntax of continuous symbol systems. We have
seen that in discrete symbol systems tokens are either of the same type
or they are not, whereas in continuous symbol systems similarity is a
matter of degree. It is generally unproblematic to assume that this
degree of similarity is quantifiable and that the quantification has the
properties of a metric, that is, a measure of distance, which is a binary
function p from a space X to the real numbers, p: X x X — R, that
satisfies these identities:

plz,2)=0 Self-identity,
plz,y) = ply,z) Symmetry,
plz,y)+ p(y,z) > p(x,z) Triangle Inequality.

Therefore, unless stated otherwise, we assume that an image space is
a metric space.!?

The second syntactic invariance we address is that any image in
the space may be continuously transformed into any other, which is
expressed mathematically as follows. Let a,b € X be any two im-
ages in the space. We require that there be a continuous, one-to-one
function P : R — X such that for some ¢,,t; € R (think of them as
times) we have P(t,) = a and P(ts) = b. The function P represents a
continuous transformation of @ into b. Without loss of generality we
require ¢, = 0 and ¢{; = 1. In topological terms P is a path or arc
from a to b, and since we require there to be a path between any two
images, the space is path-connected (arcwise-connected).!!

Another invariance of continuous symbol systems is that for any
two images a,b we can always find a third ¢ closer to either (but not
necessarily to both); that is, we can pick a ¢ such that p(a,c¢) < p(a,b)

10Section 4.1.4 considers cases in which this assumption may be too strong.
1'More carefully, P is a homeomorphism because [0, 1] is compact and X is Hausdor({T
(since all metric spaces are Hausdorff). Therefore P is a homeomorphism between [0, 1]

and P[0, 1], which makes it a path (Moore, 1964, pp. 68, 71, 161).
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and we can pick a ¢’ such that p(b,¢’) < p(a,b). However, we do
not have to postulate this property, since it follows from image spaces
being path connected: For example, since ¢ = P(f) — bast — 1, ¢
will eventually be in an arbitrarily small neighborhood of b, and thus
can be made as close as we like to b.

A path-connected space is also connected in the more general sense,
that is, it is not a union of separated sets. There is good evidence that
image spaces are connected metric spaces, including;:

1. A nontrivial'? connected metric space has at least the cardinality
of the real numbers (Hausdorff, 1957, p. 175).

2. In topology a continuum is defined to be a closed connected
metric space (Hausdorff, 1957, p. 173).13

3. A finite or countable set is totally disconnected; therefore dis-
crete symbol systems are totally disconnected (Hausdorff, 1957,
p. 175).

On the other hand, we believe that image spaces must satisfy the
stronger condition of being path-connected, since otherwise images
would not necessarily be reachable by a finite process of continuous
transformation.

The foregoing considerations lead us to propose:

Postulate 1 Image spaces are path-connected metric spaces.

Next we turn to a complex of properties that is at the heart of the
continuity of image spaces: completeness and separability. A space
is complete if all its Cauchy sequences have limits in the space. A
space is separable if it has a countable dense subset, roughly, if all
its images can be approximated by sequences of images with rational
coordinates. The phenomenological analysis does not seem to require
either property, and one can imagine image spaces that don’t sat-
isfy one or the other (for example, a disk missing its central point is
not complete). Nevertheless, we tentatively assume both properties,
because they are mathematically important and because most image
spaces satisfy them. In particular, if a metric space is compact (per-

I2Here ‘nontrivial’ means that it has more than one point.
13Sometimes a continuum is defined as a nontrivial compact connected space; the issue
of compactness is addressed later.
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haps the closest analog to the finiteness and definiteness of discrete
formal systems), then it is both separable and complete.!* Therefore:

Postulate 2 Image spaces are separable and complete.

Next we characterize mathematically the syntactic categories and
syntactic relations of continuous symbol systems. From our phe-
nomenological analysis (Section 2.2.3) we know that formal properties
must vary continuously with changes in the images. Thus we propose:

Postulate 3 Maps on image spaces are continuous.

We take this to be the case for the syntactic maps upon which formal
relations depend, but also for semantic maps between image spaces
and their domains of interpretation (which thus must be continua).®

Finally, our phenomenological analysis has shown that processes
in continuous formal system proceed continuously in time, and that
infinitesmal changes in the state image do not result in behavioral
discontinuities. This is formalized as follows.

In mathematical terms, a process is a continuous function p :
X x R — X satisfying p(s,0) = s and p[p(s,t1),t2] = p(s,t1 + £2)
(the group property). Here X is the state space of the process and
p(s,t) is the state of the process time ¢ after starting in state s. In
addition, we allow the possibility that some processes are defined over
only an interval of time, bounded or unbounded. For a fixed s, the
function m(t) = p(s,t) is called a motion and defines a continuous
curve (Moore, 1964, p. 156). A trajectory is the set of images pro-
duced by a motion over an interval I of time, m[[].

Given these definitions we propose:

Postulate 4 A process in a continuous formal system is a continuous
function of time and process state.

4Indeed, many mathematicians define a continuum to be a nontrivial connected compact

metric space.

150ne consequence of this semantic rule is that exact interpretations of continuous sym-
bol systems are inherently continuous; discrete interpretations can only be approximated.
The situation is analogous for discrete symbol systems, the interpretations of which are in-
herently discrete, and for which continuous interpretations can only be approximated. We
take this to be the import of the Lowenheim-Skolem Theorem, which states that any for-
mal system (with a countable number of symbols) has a countable model. Therefore, any
axiomatization of the real continuum cannot exclude countable, discrete interpretations

(the Lowenheim-Skolem Paradox).
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Figure 7: Continuous space of low dimension. The diagram shows the ap-
proximate location of the tongue when articulating the indicated vowels.

We take these postulates to be satisfied by any continuous symbol
system. In the remainder of this paper we present a number of con-
clusions that can be drawn from these postulates as well as additional
results for more specific classes of continuous symbol systems.

4 Connectionist Spaces

4.1 Topology

Although we have identified path-connected metric spaces with the
general class of connectionist spaces, many of the latter have addi-
tional useful structure. Therefore, in this section we consider several
important classes of connectionist spaces.

4.1.1 Finite-dimensional Euclidean Spaces

One common class of connectionist spaces is the class of continua that
was the historically first to be recognized: finite-dimensional Fuclidean
spaces, F™. This is the natural choice when images are defined by a

few real parameters (Fig. 7), and it has been the mathematical context
of most neural network theory.
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frequency

Figure 8: Continuous space of high or infinite dimension. The diagram
represents the instantaneous power spectrum of a sound. Even though the
number of dimensions may be finite, it is so large that the image is most
usefully considered a continuous function (infinite-dimensional).

4.1.2 Hilbert Spaces

The use of finite-dimensional Euclidean spaces is less obvious when
the number of dimensions is very large. Consider auditory images rep-
resented by instantaneous power spectra (Fig. 8). We can, of course,
view these as members of a finite-dimensional space E™, but in the case
of human auditory images n ~ 20000 (Shepherd, 1988, p. 315). The
situation is even worse for visual images (Fig. 9), where n ~ 1.3 x 10®
(the number of receptors; even the number of ganglion cells ~ 10°)
(McFarland, 1987, p. 588). Although from a mathematical standpoint
n = 1.3 x 10% is just as finite as n = 2, there are practical differences.
At very least, it seems more natural to think of these images as con-
tinuous functions; their discreteness in fact is a physical detail that
can often be ignored, like the discreteness of fluids in hydrodynamics.

For this reason we suggest that many connectionist spaces are
best treated as infinite-dimensional Euclidean spaces, in other words,
Hilbert spaces (see also Pribram, Chapter ?? in this volume).16 Cer-
tainly they already provide the context for much of the theoretical
work in vision, signal processing and image analysis, but in neural
network research, finite dimensional vectors are still the norm. We
have argued elsewhere that the most interesting neural networks —

16To be precise: The set of infinite-dimensional vectors of finite length are a Hilbert
space, namely [s.
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Figure 9: Continuous space of very high dimension. A visual image such as
this may have a dimension of 10° or even 10®. It is much more reasonable to
consider it a continuous function (infinite dimensional).

those with a large number of neurons — are best treated as having an
infinite number of neurons (MacLennan, 1987a; 1987b; 1989a; 1989b;
1990). Such an approach abstracts away from the details of the neu-
ral fabric, which works well so long as the number of neurons is large
enough.!”

Another argument for Hilbert spaces is that they are — mathe-
matically — where the continuous meets the discrete. The reason is
the Riesz-Fischer Theorem, which is certainly one of the most pro-
found in mathematics: L is isomorphic and isometric to [, the set of
square-integrable functions is isomorphic and isometric to the set of
square-summable sequences of reals. This is the basis for expansions
of functions as infinite series, including the Fourier. In particular,
this shows how a discontinuous function, such as a step function, can
emerge from a superposition of continuous functions, such as sinusoids.
Thus we may hope that Hilbert spaces may provide a mathematical
context for understanding the emergence of discrete (or nearly dis-
crete) symbols from the subsymbolic continuum. Further evidence of
the relevance of Hilbert spaces to the relation between continuous and
discrete representations can be found in MacLennan (1991a).18

17Pribram (1991, 1992) has also argued for the use of Hilbert spaces as a framework in
which to define the “neural wave equation.”

18Indeed, the central importance of Hilbert spaces is shown by a theorem of Urysohn’s
which states that any metric space with a countable base is homeomorphic to some subset
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4.1.3 Metric Spaces

Even with a low-dimensional space like that in Fig. 7, there is lit-
tle reason to suppose that the Euclidean metric is always appropriate.
For example, it is quite possible that perceptual similarity is more sen-
sitive to high/low position than to front/back position, or vice versa.
Further, this sensitivity difference might vary over the space. In other
words, there is no guarantee that the equal-similarity contours around
a sound are the circles that are defined by the Euclidean metric; they
could be ellipses or even less regular curves. Thus, connectionist spaces
need not be isotropic (the same in all directions). Isotropy is even less
likely when we consider higher dimensional spaces such those indicated
in Figs. 8 and 9, since similarity is unlikely to be equally sensitive to
differences throughout the function’s domain.

One simple improvement is to attach a weight function to the Fu-
clidean metric. This allows differing sensitivities across the image, so
that, for example, visual similarity may depend more on the centers
of images than their peripheries, and auditory similarity may depend
more on the midband (if that is what we want).

Since the provision of a fixed weight function still restricts the set
of possible metrics more than we would like, a still more general notion
of distance if often useful. In fact, we often do not know or care how
the similarity of images depends on their microfeatures. In this case
it is better to assume only that some quantifiable measure of distance
holds among the images, that is, that they belong to a metric space.
However, as we saw before (Section 3), it is also necessary to assume
that the space is path-connected.

4.1.4 Semimetric Spaces

In some cases even a metric space may imply too much structure; cer-
tainly the triangle inequality (see Section 3) is problematic for some
cognitive images. Fortunately, some results are obtainable even for
semimetric spaces, which have a distance measure that need not sat-
isfy the triangle inequality (MacLennan, 1988a). Nevertheless, in this
paper we assume that all connectionist spaces are metric spaces.

of the Hilbert space F°° (Nemytskii & Stepanov, 1989, p. 324). Note however that the
homeomorphism need not preserve the metric.
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4.2 Finite Decomposition of Spaces

We have seen (Section 2) that discrete and continuous formal systems
differ in what is taken as unproblematic givens. In a discrete system,
the atomic components are given, and these are assembled into more
complex formulas through the use of syntactic relationships. If these
relations are unambiguous, as is usually the case, then any formula
can be decomposed in a unique way into its atomic components. On
the other hand, in continuous formal systems, whole images are usu-
ally the unproblematic givens. Further, it is normal that there are
many competing decompositions into lower-level images, and the ap-
propriate decomposition often depends on the use to which it will be
put. Finally, there is often no “bottom” to the decomposition; that
is, there is no natural notion of atomic components.

It is important to realize that this problem is not just theoret-
ical; it pervades empirical investigations into the “representational
primitives” of sensory and motor systems. This is apparent in early
vision research, where there is ongoing debate about whether im-
ages in the visual cortex have as elementary components oriented
edges, wavelets, radial basis functions, two-dimensional Gabor func-
tions, three-dimensional Gabor functions, etc. (MacLennan, 1991a).
Sometimes it is not even obvious what are the representational alter-
natives, and techniques such as multidimensional scaling have been
used in an attempt to find possible decompositions of a space into
subspaces (Shepard, 1980). The continuous formal system viewpoint
suggests that in some cases images may be processed holistically, that
is, without decomposition, and in other cases by simultaneously using
several incompatible decompositions.

Before discussing the mathematical decomposition of continua, it
is necessary to say a few words about the suggestive but misleading
terms analytic and synthetic. Perhaps because of their association with
analytic and synthetic cognitive styles (e.g., Churchland, 1986, p. 199;
Gregory, 1987, p. 744; Vernon, 1962, pp. 221-224), there is a natural
tendency to consider discrete systems analytic and continuous systems
synthetic. Unfortunately, there is another perspective on these terms
that would use them in exactly the opposite way, for we have seen that
discrete formulas are usually seen as being built up — synthesized —
from atomic components, and continuous images are seen as being
decomposed — analyzed — into simpler images. From this viewpoint,
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discrete systems are synthetic and continuous systems analytic.

Perhaps we can understand this paradox as follows. Since in a
discrete symbol system the decomposition of a formula into its con-
stituents is generally unproblematic, it it natural for discrete processes
to be defined in terms of processes operating on the constituents, which
is consistent with one definition of analytic: “Reasoning from a per-
ception of the parts and interrelationships of a subject” (Morris, 1981,
s.v. analytic). In other words, the process operates on the analysis,
the separation of the whole into its constituents (Morris, 1981, s.v.
analysis). Conversely, since in continuous systems decomposition is
often problematic, it is natural for these processes to operate directly
on the synthesis, the coherent whole resulting from a combination of
elements (Morris, 1981, s.vv. synthetic, synthesis). Although this is
perhaps the explanation of the paradoxical use of these terms, for the
sake of clarity I avoid them whenever possible.

In the simplest case a set of images can be expressed as a Cartesian
product of two or more other sets of images, X = Y x Z. We have
an example of this in Fig. 7, which shows the decomposition of the
set of vowel sounds into the sets of front/back position and high/low
position. In general, such decompositions are not obvious, and may
require extensive experiments for their discovery.

Decomposition of a space involves more than simply expressing
its set of images as a Cartesian product of other sets of images,
for we must also show how the topology of the composite space re-
sults from the topologies of the constituent spaces. For example,
in Fig. 7 we need to know how similarity or distance between vow-
els relates to similarity or distance in each of the two dimensions of
tongue position. We cannot assume the obvious Euclidean relation-

ship, p*[(z1,22), (y1,92)] = pi(@1, 91) + pi(23,92). At very least, the
component distances might have different weights,

,02[(9617 z2), (y1,y2)] = wlP%(ﬂﬁly )+ wng(%y Y2)-

Further, the decomposition need not even be Euclidean (I3), for we
could have a different [, (p # 2) decomposition rule:

PP, 22), (1, y2)] = wipi (21, 1) + weph(z2, ¥2),

or even an [., decomposition:

,0[(961, 962), (3/17 3/2)] = maX[wl,Ol(ﬂCh 3/1), w2,02(9€27 3/2)]
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Figure 10: Alternate decomposition of a low dimensional space. The dia-
gram indicates how a different set of axes might better decompose the two-
dimensional metric (indicated by equal-distance contours). (Contours are for
the sake of the example and do not represent the actual range of the vowels.)

No doubt more complex decompositions may also occur, and for some
metric spaces there may be no practical decomposition.

It is also possible that we might find that a different choice of
axes effects a better decomposition of the metric (which is the point
of multidimensional scaling and many other statistical techniques).
Figure 10 shows a case in which an alternative decomposition is more
consistent with the equal-similarity contours around a set of points in
vowel space.

4.3 Recursive Decomposition of Spaces

Recursive structures, which allow finite but unlimited nesting, such as
trees, have been a mainstay of the analysis of linguistic structures since
at least the time of Chomsky. The very flexibility of recursive struc-
tures has brought with it a problem: actual linguistic performance
does have its limits, whereas the theory demands no limits. This has
led to a central dogma, the competence/performance distinction, that
is, our theoretical (but never observed) linguistic competence is dis-
tinguished from our actual linguistic performance. Linguists in the
Chomskian tradition have tended to concentrate on the ideal — com-
petence, and have mostly ignored the real — performance.

In contrast, from its beginnings connectionism has taken perfor-
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mance into account; witness the “100 step rule.” Thus we may hope

that connectionism will provide a model of recursive nesting that ef-
fects a better reconciliation between competence and performance.
This may follow from the theory of continuous formal systems, as I
indicate below.

Consider a simple example, a space X of binary trees. We must
have a construction operation ¢ : X x X — X that joins two binary
trees z,y € X into a larger tree © & y € X. Conversely, we also need
operations to extract the left and right subtrees of a composite tree,
left(z & y) = z, right(z & y) = y. Finally, we require the operations &,
left and right to all be continuous, since that is an axiom of continuous
formal system theory. This means that there is a homeomorphism
(one-to-one, continuous map) between the space X of binary trees
and its possible decompositions: the space L of leaves and the space
X x X of pairs of trees. Thus,

X2LUXxX,

where = represents homeomorphism and U represents disjoint union.

With this background, we can now address the question of the
continuous recursive decomposition of a space. Qur first result is
that this is impossible for finite-dimensional Euclidean spaces, since
Brouwer’s theorem of the Invariance of Dimensionality shows that Eu-
clidean spaces E™ and E™ are not homeomorphic if m # n (Hausdorff,
1957, p. 232); indeed even subsets of these spaces cannot be home-
omorphic (provided the subset of the higher dimensional space has
interior points). In other words, finite-dimensional Euclidean spaces
are characterized by their dimension. Therefore E” x E™ = E?" and
is not homeomorphic to any subspace of E”. Thus arbitrary trees
or sequences cannot be represented continuously in finite-dimensional
Fuclidean spaces; we must turn to richer spaces.

We have already seen that images are often conveniently repre-
sented as continuous functions, which belong to infinite-dimensional
Fuclidean spaces, so they are the next candidates we consider.

We also observe that many infinite spaces are homeomorphic to
two or more disjoint subspaces of themselves. For example, the unit
interval [0, 1] is homeomorphic to the one-third intervals [0,1/3] and
[2/3,1] as well as to many others. The unit square [0,1]? can also
be embedded in itself in many different ways. Self-embeddable spaces
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such as these suggest one mechanism for the continuous recursive com-
position and decomposition of spaces.

Suppose images are represented by continuous functions f : @ — Y
in some function space ®(£). Most of the domains €2 in which we are
interested can be homeomorphically embedded in themselves in two
or more different ways, so suppose h : Q — A[Q], ' : Q@ — K'[Q] are
homeomorphisms such that ~[2] and A'[{2] are separated subsets of ().
We now define the construction of f and g, f& g, to be any continuous
¢c:Q — Y such that f = co h and ¢ = ¢ o h’, where o indicates
composition. The selection operations are simply left(¢) = ¢ o h and
right(¢) = co /.

To make these ideas clearer we present a concrete example, bi-
nary trees of one-dimensional images represented as continuous func-
tions over [0, 1]. Let = [0, 1]; there are homeomorphisms h, k' such
that A[[0,1]] = [0,1/3] and A'[[0,1]] = [2/3,1], namely h(z) = /3,
W(xz) = (24 2)/3. For the construction z & y we take any contin-
uous interpolation between z(1/3) and y(2/3); see Fig. 11. Clearly
the same kind of construction could be used for images over the unit
square. In this case we can map [0, 1] x [0, 1] into [0,1/3] x [0,1] and
[2/3,1] x [0,1].

We consider now an alternative representation of continuous recur-
sive spaces that makes use of the properties of Hilbert spaces. Suppose
fy9 € La(R2). Then we can represent them by generalized Fourier se-
ries: f = cpex, g = drey, where {e;} is any orthonormal basis for
Lo(9). Next represent the construction of f and ¢ by the interleaved
series: f@dg = > cpear +dreapt1 (Fig. 12). This operation is a homeo-
morphism; indeed, it is linear (versus bilinear) on Ly(Q) x L2(Q2), and
even an isometry, since || f@g[|? = || f||2+||g||*. Clearly the component
selector functions left and right are easily defined.

We make several observation about the continuous recursive repre-
sentations that we have defined. First, we can construct binary trees
to an arbitrary (finite) depth, since if 2, y and z are in the space
X, then so are z © y, (¢ P y) ® z, etc. Similarly, if 2 € X, then we
can select its right and left components, left(z), right(z), regardless of
whether it resulted from a construction. In this representation there
are no atomic symbols (leaves); we can always “go deeper” in our
analysis. This potentially bottomless recursive decomposition seems
to agree with the properties of continuous images revealed by our phe-
nomenological analysis. We also observe that a temporal sequence of
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(AGB)D (chdD)

Figure 11: Recursive structure represented by functions over self-similar
spaces. For the sake of example, we assume that the domain of all the
functions is the interval [0,1], which is homeomorphic to disjoint subinter-
vals of itself, such as [0,1/2 — ¢] and [1/2 + ¢,1]. Two functions A, B are
combined by contraction, making [0,1/2 — ¢] the domain of A and [1/2+¢, 1]
that of B. Continuity is preserved by interpolation between A(1/2 — ¢) and
B(1/2 + €). Depth of recursive nesting is limited only by the ability of the
underlying medium to sustain higher gradients.
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Figure 12: Recursive nesting in function spaces. Suppose cg, ¢y, Co, ... are
the Fourier coefficients of A and dy, dy, ds, ... are the Fourier coefficients of
B. Then the pair (A, B) is represented by the function whose coefficients
are cg, dg, ¢1,dy, ca,ds, .. ., the interleaved coefficients of A and B. Recursive

nesting is limited only by the ability of the underlying medium to sustain
higher frequencies. (Waveforms shown are merely schematic.)

36



images z; can be recursively folded into a sequence s by the formula
Si41 = ¢ P sy, which defines a right branching binary tree.

In both of the representations we have defined, successive com-
position pushes deeper information (for trees) or earlier information
(for sequences) into higher frequency bands. Ideally, this doesn’t mat-
ter; from a mathematical standpoint all bands are equally recover-
able. Practically, however, physical media will not sustain arbitrarily
high frequencies; also noise tends to be high frequency. Thus from a
practical standpoint, components that are deeper or more in the past
are progressively less recoverable. This seems to be a natural model
of the competence/performance distinction, since noise and physical
properties of the media limit performance to less than its theoretical
competence. For example, arbitrarily large trees or sequences could
be represented in the ideal continuous neural tissue. But real neu-
ral tissue, being composed of discrete neurons, places an upper limit
on representable spatial frequency, and so on the size of trees or se-
quences.

5 Connectionist Maps

5.1 Mathematical Properties

Nonrecurrent neural networks implement a map between two spaces.
For example, associative memories, filters, pattern classifiers and fea-
ture extractors can often be implemented without recurrent connec-
tions. The only restriction we have postulated on such maps is that
they be mathematically continuous, and for this we can take what-
ever definition of continuity is most appropriate to the spaces being
mapped. For example, if they are metric spaces, then f : S — T is
continuous at a point « if and only if for all ¢ > 0 there exists a 6 > 0
such that pr[f(z), f(y)] < € whenever pg(z,y) < 6. If the spaces are
Euclidean, then we can use the Euclidean metric. If the spaces are not
metric, then continuity must be defined in terms of open sets. Next
we consider the consequences of this postulate.
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1 Definite "Yes"

0 Definite "No"

Figure 13: Requirements for exact classification in a continuous symbol sys-
tem. We require a continuous function that is 1 on the category and 0 on
the complement of the category. This is impossible in a continuum.

5.2 Categorization
5.2.1 Exact Categorization Impossible

Suppose we wish to divide a continuum 5 into two disjoint, mutually
exclusive categories, A and non-A. Thus, for every image z € 5 we
want a continuous map f : S — {0,1} such that f(z) = 1if z isin
category A and f(z) = 0 if it is not.!® We may take this as a precise
statement of the problem of exact categorization (Fig. 13).

Our first important result from the theory of continuous formal
systems is that exact categorization is impossible. This is because it
is easy to show that a space is connected if and only if it cannot be
continuously mapped to a nontrivial discrete space (i.e. a space with
more than one point) (Moore, 1964, p. 66). That is, a continuum
cannot be discretized by a continuous map. Therefore we have:

Theorem 1 (Exact Categorization) A continuous formal system
cannot perform exact classification.

Notice that this result is quite robust, since it follows from only two

19The use of 0 and 1 is not important; any discrete space with two elements would do.
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>0 Indefinite "Yes"

<0 Indefinite "No"

( R )

Figure 14: One form of classification permitted in continuous formal systems.

We are permitted a function that is positive on the category (an open region)
and nonnegative on its complement, but it must be continuous, so it will be
arbitrarily close to zero near the boundary.

assumptions: connectionist spaces are connected, and connectionist
maps are continuous.

5.2.2 Connectionist Categorization

Given that exact categorization is impossible, we must consider the
kinds of categorization possible to connectionist systems. We find that
various topological separation axioms correspond to various kinds of
categorization; we consider several examples.

It is easy to show that for each open set in a metric space, there
is a real-valued continuous function that is positive just on the set
(Hausdorff, 1957, p. 129). Notice, however, that the boundary is fuzzy;
hard thresholds are not possible (Fig. 14). As images approach the
boundary, the categorization must leave the certain values (say +1)
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1 Definite "Yes"

? Indefinite

@) Definite "No"

I—/

[ A1 [ B ]

Figure 15: Classification by Urysohn’s Lemma. We are permitted a closed

" and a closed region on

region on which the classification is definitely “yes,’
which it is definitely “no,” but there must be a nonempty region between the

two where the classification is indefinite.

and approach uncertainty, 0. We can, of course, in principle make
the uncertain area as small as we like, but the Exact Categorization
Theorem says that we can never decrease it to zero.

In a normal topological space (such as a metric space) Urysohn’s
Lemma forms a basis for categorization (Moore, 1964, p. 122): For
a pair of nonempty disjoint closed subsets of the space, there is a
continuous map into [0, 1] that is 1 on one subset and 0 on the other
(Fig. 15). This captures the idea of two categories being mutually
exclusive, but preserves their essential fuzziness. That is, we can have
“definitely A”and “definitely B” provided the remainder of the space
is indefinite (varies between the two). (There must be a remainder,
since otherwise the space would be the union of separated sets, and
hence disconnected.)

In completely regular spaces (such as metric spaces) we have the
following categorization theorem (Moore, 1964, p. 132): For each point
in the space and each neighborhood of the point, there is a continuous
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Prototype:
1  Definite "Yes"

? Indefinite

0 Definite "No"

p
( R

Figure 16: Classification relative to a prototype. We are permitted a function
that is definitely “yes” for the prototype, and definitely “no” for images
sufficiently far from the prototype, but it must vary continuously between
these extremes.

map into [0, 1] that is 1 at the point and 0 outside the neighborhood
(Fig. 16). This too gives a kind of category to which some points
definitely do not belong; however the category itself is defined relative
to the point as exemplar. We have a sense of an image being “too far
away” from the exemplar.

6 Connectionist Processes

6.1 Decidability

When we consider a new notion of computation, such as is provided by
continuous formal systems, the question immediately arises of whether
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(attractors)

Figure 17: Decisions. In a continuous formal system a “decision” is an
asymptotically stable equilibrium, a state which once approached will not be

left.

they are subject to the same undecidability results as are discrete
formal systems.2°

However, before the question of decidability can even be addressed,
we must ask what constitutes a decision in the context of continuous
formal systems. Intuitively, making a decision is reaching a definite
state that will not be later left (Fig. 17). (More accurately, the deci-
sion is required to be stable only so long as the context is stable. That
is, reasoning is monotonic in an unchanging context, but a change of
context may destabilize the decision.) In mathematical terms, a con-
tinuous decision is an asymptotically stable equilibrium: it remains so
long as the context and initial conditions are fixed.?! Then, determin-
ing if an image is decidable is accomplished by determining whether
it is in the basin of attraction of some equilibrium. Conversely, an
image is undecidable if it is outside all basins of attraction (Fig. 18).

Suppose we have a stable state with a corresponding basin of at-
traction D. Call an image undecidable if it is outside this basin. Thus

20Two other extensions of computation into the continuous realm are Blum (1989),
Blum, Shub, & Smale (1988) and Stannett (1990). Their notions of decidability are
somewhat different from ours.

21For some purposes a mere stable equilibrium can be considered a decision: in effect
the system has settled into a set of possible results.

42



basins of // __-
attraction
undecidable __--

region

Figure 18: Decision basins. A “decision basin” is the basin of attraction of
an asymptotically stable equilibrium. An undecidable image is one that is
outside of all decision basins.

D represents the decidable images. Obviously we can define a function
that is 1on D and 0 on X — D. Thus, if we do not restrict ourselves to
continuous formal systems and use instead our familiar discrete logic,
then we can easily talk about the decidable and undecidable images.
It is a sharp distinction: D vs. X — D.

On the other hand, from within a continuous formal systems, in
order to categorize an image as decidable or undecidable, we need
a continuous decision function d — {0,1} such that d[D] = {1} and
d[X — D] = {0}. But this is impossible for continua; it is just the exact
categorization problem. As we saw, continuous categories are always
fuzzy, and this includes the category ‘decidable’. Notice, however, that
this “undecidability result” comes from the fact that in a continuous
formal system it is impossible to ask a yes-or-no question. Thus, from
the perspective of continuous logic, the decidability question is not
even well-formed.

What kinds of question can we ask a continuous formal system to
decide? Here is one example. We can define a “definitely undecidable”
set U C X — D (proper subset). If D and U are disjoint closed
sets, then we can define a continuous f such that f[D] = {1} and
flU] = {0}, but there will remain a fuzzy region X — D — U between
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D and U.22

These decidability results have nowhere near the significance of
the classical results of (Godel and Turing, but they do illustrate the
fact that continuous formal systems bring with themselves an entirely
new way of asking these questions. We hope that the future will
bring deeper insights into decidability in both discrete and continuous
formal systems.

7 Conclusions

We have argued that connectionist knowledge representation requires
a theory of continuous symbol systems analogous to the theory of dis-
crete symbol systems, which informs our understanding of traditional
(“symbolic”) knowledge representation. A phenomenological analysis
exposed the differences between the two kinds of symbol systems, and
revealed invariances that are important to capture in the mathematics.
Based on this analysis we tentatively concluded that continuous sym-
bol systems are characterized by path-connected metric spaces which
are separable and complete, and by continuous maps and processes
over those spaces.

Next we considered a number of connectionist spaces and con-
cluded that many are profitably treated as Hilbert spaces. Problems
associated with the decomposition of image spaces were addressed,
including especially the possibility of recursive decomposition, which
was shown to require function spaces (such as Hilbert spaces).

We found that the continuity of connectionist maps precludes exact
classification, but does permit other kinds of classification that are
more robust and less likely to lead to brittleness. Finally I argued that
in the context of continuous formal systems, decisions are equivalent
to attractors and that an image is decidable when it is in a basin of
attraction. We discovered that yes-or-no decidability questions cannot
be formulated in continuous symbol systems, and therefore that a
theory of continuous decidability must take a different form from that
for discrete systems.

A few words about future research. I do not see much need for a lot
of additional work trying to establish which mathematical structure
is the “right” formalization of continuous symbol systems. Sometimes

22This construction presumes that the space is normal, e.g., a metric space.
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Hilbert spaces will be the best model, and other times connected met-
ric spaces or finite-dimensional Euclidean spaces. This is analogous to
discrete symbol systems, which are sometimes assumed to be deter-
ministic and other times nondeterministic, sometimes assumed to have
a finite number of types, other times a denumerably infinite number,
and so forth. However, I do anticipate significant research in other ar-
eas, including continuous knowledge representation and an expanded
theory of computability and decidability.
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