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Abstract

We begin with a brief consideration of the topology of knowledge.
It has traditionally been assumed that true knowledge must be rep-
resented by discrete symbol structures, but recent research in psy-
chology, philosophy and computer science has shown the fundamental
importance of subsymbolicinformation processing, in which knowledge
is represented in terms of very large numbers — or even continua —
of microfeatures. We believe that this sets the stage for a fundamen-
tally new theory of knowledge, and we sketch a theory of continu-
ous information representation and processing. Next we consider field
computation, a kind of continuous information processing that empha-
sizes spatially continuous fields of information. This is a reasonable
approximation for macroscopic areas of cortex and provides a conve-
nient mathematical framework for studying information processing at
this level. We apply it also to a linear-systems model of dendritic
information processing. We consider examples from the visual cortex,
including Gabor and wavelet representations, and outline field-based
theories of sensorimotor intentions and of model-based deduction.
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1 Topology of Knowledge

1.1 The Assumption that Knowledge is Discrete

For the ancient Greeks the knowable and the sayable were nearly identical.
Socrates is quite explicit: “what we know we must surely be able to tell”
(Laches 190¢), but the idea goes much further back and is nearly inherent
in the Greek language: logos simultaneously means word, language, thought,
reason, explanation, calculation and meaning. Socrates likely came out of the
Pythagorean tradition, which reduced the universe to numbers (especially
ratios, another meaning of logos), and which calculated by the mechanical
manipulation of formal arrangements of pebbles (calculi, in Latin). Through
Plato and Aristotle this led to the idea that true knowledge could be reduced
to a deductive structure in which inference is represented by the mechanical
rearrangement of patterns of discrete symbols. The search for a calculus for
knowledge representation and inference was continued by such figures as Lull,
Hobbes, Leibniz and Boole.

These efforts reached a kind of culmination in the twentieth century.
The development of practical symbolic logics by Peano, Russell, Whitehead
and others created the real possibility of putting knowledge in the form of a
calculus. Within just a few decades, however, inherent theoretical limitations
of calculi were discovered by Godel, Turing, Lowenheim, Skolem and others.
In order to do this they investigated the mechanical manipulation of discrete
symbols, and so laid the foundation for the theory of digital computation.

The twentieth century also brought the technological means — the elec-
tronic digital computer — for manipulating large discrete-symbol structures
at high speed. The theory that knowledge can and must be reducible to
calculi then found its home in Al (artificial intelligence), which attempted to
apply it to practical problems. The emerging discipline of cognitive science
also adopted this view of knowledge in its information processing model of
cognition. The assumption that knowledge representation and processing is
equivalent to the formal manipulation of discrete symbols was accepted, al-
most without question, until the mid-1980s, when finally its limitations, both
as a technology and a model of cognition, could no longer be ignored.

There is no need to rehearse here the arguments in favor of connectionist
knowledge representation over the traditional, symbolic approaches. 1 will
observe only that connectionism brings with it a recognition of the role of



flexible, context-sensitive information processing as a foundation upon which
rest the more symbolic processes. Thus discrete, or approximately discrete,
symbol manipulation is viewed as an emergent phenomenon grounded in
continuous, or approximately continuous, subsymbolic processes.

We believe that, although there have been many demonstrations of the
power of connectionist knowledge representation, its progress is impeded
by the lack theoretical construct that captures the essence of connectionist
knowledge representation. We have attempted to fill this gap by developing
the idea of a simulacrum, a model of continuous information representation
and processing that fills a role in connectionist epistemology analogous to
that filled by the idea of a calculus in traditional epistemology (MaclLennan
in press-a, in press-b, subm.-c). It attempts to answer the question, “What,
if not symbols, can be a medium for knowledge representation and process-
ing?” The simulacrum is postulated as the central concept of the theory of
continuous computation.

1.2 Theory of Continuous Computation

It must be remarked that a simulacrum, like a calculus, is an idealization of
reality. Just as a calculus is taken to be perfectly (i.e. topologically) discrete,
so a simulacrum is taken to be perfectly continuous (the mathematical for-
malization is below). For example, in the conventional theory of (discrete)
computation, we assume certain processes are unproblematic, such as the
separation of a token from the background or the classification of a token as
to its type. Thus, we don’t consider the possibility that a Turing machine
could misidentify the tape symbol under its read head, although this would
be a significant issue for a real (vs. ideal) Turing machine. Similarly, in the
theory of continuous computation we assume the continuity of the spaces,
maps and processes, even though in practice they might be represented in
terms of discrete charge carriers, for example. For both calculi and simulacra
the relevant question is whether the real system is sufficiently close to the
ideal that the differences may be ignored. In the following we present the
simulacrum as an idealized model of continuous computation.

The central idea in the theory of simulacra is the image, which is the
vehicle of continuous information representation; images correspond to the
symbols, formulas and other structures of calculi. The images in a simu-
lacrum belong to one or more image spaces, which determine their topology.



Examples of images include the set of all visual images (of bounded area and
amplitude) and the set of all auditory images (likewise bounded). On the
other hand, a single real number can be considered an image, and an interval
of the real line is perhaps the simplest image space. Image spaces satisfy the
following postulates.t

Postulate 1 Image spaces are path-connected metric spaces.

Some implications of this postulate are (1) that images have quantifiable
degrees of similarity, (2) that any image is reachable from any other in the
space by a continuous process of transformation, and (3) that image spaces
have at least the cardinality of the real numbers.

Postulate 2 Image spaces are separable and complete.

This postulate is introduced mainly for mathematical convenience; it ensures
that images can be approximated by convergent sequences and that the limits
of these sequences are in the space. One important consequence of this pos-
tulate is that image spaces are topologically equivalent to subsets of Hilbert
spaces, which allows us to apply the theory of field computation (see below).?

Postulate 3 Maps between image spaces are continuous.

One implication of this is that syntactic relations between images are con-
tinuous and inherently fuzzy.

Just as in idealized discrete computers the state transitions are taken to
occur at discrete time intervals (even though in fact the underlying physical
processes proceed continuously), so likewise in idealized continuous comput-
ers, states are taken to change continuously (even though some implementa-
tions might approximate this with small discrete steps). We define a formal
process to be one that depends only on the form of the image representing
the state of the system; the process is not affected by any meaning that may
be associated with the images.

IThese postulates are tentative; our familiarity with simulacra is too slight to permit
a definitive formalization. Justification for the postulates is in MacLennan (in press-a, in
press-b).

2This follows from a theorem of Urysohn which shows that any metric space with a
countable base is homeomorphic to a subset of £2 (Nemytskii & Stepanov 1989, p. 324).



Postulate 4 Formal processes in simulacra are continuous functions of time
and process state.

The preceding postulates deal with simulacra as formal systems, that is
idealized computational processes that depend on the form of images but
not on any interpretation of them; they are the postulates of uninterpreted
simulacra or continuous formal systems. Now we turn to interpreted sim-
ulacra, which can be considered continuous symbol systems. Thus as the
interpretation of a calculus is required to be systematic, in particular, to be
compositional, to respect the constituent structure of the formulas, so also we
require systematicity of the interpretations of simulacra, in particular, that
interpretations be continuous.® Thus:

Postulate 5 Interpretations of simulacra are continuous.

There are many open questions in the theory of continuous computation.
One immediate question is whether the famous undecidability and uncom-
putability results of Godel and Turing apply. Interestingly, some of these
questions cannot even be asked in a consistently continuous context, so the
problems must be reformulated.? Another issue is the existence of universal
machines for continuous computation. Although it’s well-known that under
various idealizing assumptions artificial neural networks can simulate Tur-
ing machines, and Wolpert & MacLennan (subm.) present a purely-linear
continuous-computer with Turing power, we think that there are probably
other notions of computational universality that are more appropriate to the
theory of continuous computation (MacLennan 1987a).?

Another open problem — in continuous computation as well as discrete
— 1s how representations can come to have meanings. Of course, human
beings can impose interpretations on otherwise uninterpreted computational
systems. But a central philosophical question for computational theories of

3Indeed, systematicity in both cases is equivalent to continuity, since respect for con-
stituent structure is just continuity under the appropriate topology for discrete, hierarchi-
cally structured formulas (Scott 1970, 1971, 1973; Scott & Strachey 1971).

4See MacLennan (in press-a, in press-b) for a discussion and preliminary results. Other
formulations of the problems can be found in Blum & al. (1989, 1988), Pour-El & Richards
(1979, 1981, 1982) and Stannett (1990).

5See also McCulloch & Pitts (1943), Pollack (1987), Hartley & Szu (1987), Franklin
& Garzon (1990), and Garzon & Franklin (1989, 1990) for discussion of computational
universality in a continuous context.



cognition is whether representations can acquire meanings on their own, so-
called original intentionality, as opposed to having meanings attributed by
a outside observer, derived intentionality (e.g., Dennett 1987, 1988). Harnad
(1990, in press) has called this the symbol grounding problem. Although he
thinks it applies only to digital computers and not to analog computers,
elsewhere (e.g. MacLennan subm.-c) we argue that grounding is just as
much of an issue for continuous (analog) computers as for discrete (digital)
computers. As should be clear from the preceding discussion, the constraints
of systematic interpretation are no less for continuous computational systems
than for discrete, and the solution of the symbol grounding problem does not
hinge on the continuous/discrete distinction.®

Finally, one of the most important open problems, from the standpoints
of both psychology and artificial intelligence, is to understand the emergence
of quasidiscrete symbolic processes from the underlying, continuous subsym-
bolic processes (MacLennan 1992b, in press-a, in press-b). This is the dual
problem of that which traditional, symbolic Al was unable to solve: the re-
duction of continuous information representation and processing (including
tacit knowledge, perceptual understanding, sensorimotor skill and associa-
tive memory) to discrete symbol manipulation. It resulted in the cognitive
inversion of the “old AI” (MacLennan 1987b, 1988): it was most successful
where humans are least successful (e.g., formal deduction), but least suc-
cessful where people — and even lower animals — are most successful (e.g.,
pattern recognition). However, the goal of the “new AI” should not be limited
to a connectionist implementation of traditional discrete symbol manipula-
tion (a neural network implementation of LiSP); rather we term the symbol
processing of the new Al quasidiscrete because it has an ineluctable admix-
ture of the continuous, which imparts to it the flexibility characteristic of
human symbol use.

5We have proposed a different solution to the problem of original intentionality, in
which conventional representations acquire meaning through shared relevance to a com-
munity that is ultimately grounded in inclusive fitness (MacLennan 1992a; MacLennan &
Burghardt subm.). Harnad’s notion of grounding would be derivative from this.



2 Field Computation

2.1 Overview of Theory

Evidence is accumulating that Hilbert spaces provide a central theoretical
framework in which to construct a theory of neurodynamics and cognition.
In addition to the neural wave equation developed by Pribram, Yasue and
Jibu (Pribram 1991), we have Urysohn’s theorem, cited above, which im-
plies that image spaces are topologically equivalent to subsets of Hilbert
spaces. We also expect Hilbert spaces to provide the basis for understand-
ing the emergence of symbolic cognition from subsymbolic processes, since
the continuous and the discrete meet mathematically in Hilbert space (L is
homeomorphic to /3); recall that the square wave is an infinite superposition
of sinusoids. Finally we have found Hilbert spaces to be the most convenient
theoretical framework in which to construct our theory of field computation,
to which we now turn.

It is necessary to remark on the meaning of field as used in the phrase
‘field computation’” (MacLennan 1987a; MacLennan 1990), which is some-
what broader than current usage in physics, but corresponds to Faraday’s.
Informally, we define a field to be a spatially extended continuum of quantity.
This seems to be an especially useful basis for understanding the neurody-
namics of cognitive processes, as recognized by the Gestalt psychologists (e.g.
Kohler 1940, Ch. II). We’ll illustrate the idea with several examples before
giving a formal definition.

Perhaps the simplest example of a field is the distribution of light intensity
over the rods in the retina. Although we know the number of rods is finite,
it is sufficiently large (10®) that they may be treated as a continuum and
analyzed through the theory of field computation (MacLennan 1987a). The
value of the field ¢ at retinal position p, ¢(p), is a scalar representing the
light intensity.

A more complex example is provided by the activity of the cones, since
there are three kinds of these, and so the activity of the cones is represented
by a vector field ¢. The vector (z,y,z) = @(p) represents the activities (z,
y and z) of the three kinds of cones at location p.

The preceding examples were two-dimensional fields, that is, quantities
defined over a two-dimensional continuum (the retina). One dimensional
fields are also common in the nervous system; for example, the instantaneous



activities of hair cells in the cochlea define a one-dimensional field ¢( f), where
f is the frequency of the sound. We consider later fields of dimension greater
than two.

It’s obvious that the fields we’ve mentioned are time-varying, and we have
argued elsewhere (MacLennan 1991) for the importance of their temporal
structure. Therefore, we often find it convenient to view a time-varying
spatially-extended field ¢ (x) as a spatiotemporally-extended field p(x,t). This
often yields a considerable theoretical simplification and greater insight into
the neural processes, as we’ll show later.

Although we’ve illustrated fields with examples from sensory systems,
they are just as prevalent in motor systems and in higher cognitive areas, as
will also become apparent later.

Now we define fields more formally. Readers uninterested in the math-
ematical details, which are routine, may wish to skip to the next section.
We capture the requirement for continuous extension by stipulating that a
field ¢ i1s a continuous function defined between two continua ¢ : 0 — ',
where, as usual in topology, a continuum is a nontrivial compact connected
set. Most commonly the domain € will be a closed and bounded subset of a
Euclidean space, such as a finite interval of the reals, or a disk or rectangle
in the plane. The range )’ will most often be a closed and bounded subset
of the real numbers, but complex-valued and vector-valued fields also occur.
Finally, it is usually realistic and convenient to restrict our attention to finite
energy (i.e., L) functions, so we can assume fields belong to a Hilbert space.

If ¢ is a field over 2 and K is a field over ' X(), then we define a kind
of product K, which is the continuous analog of a matrix-vector product:

Ko =1, where ;b(s):/g)[((s,t)cp(t)dt.

If K is finite energy (L;) then this product defines an integral operator of
Hilbert-Schmidt type with kernel K. In MacLennan (subm.-a) we have ar-
gued that excitatory synapses and hyperpolarizing inhibitory synapses are
effectively linear, and so they may be viewed as computing a field product of
this kind (Fig. 1A). The field of synaptic efficacies defines the kernel of the
operator.

We extend the product notation in the obvious way to more than one
argument field. Suppose M is a field over QX X --- X, and that ¢ is a
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Figure 1: Linear and Bilinear Synaptic Fields. A. Excitatory synapses and hyper-
polarizing inhibitory synapses can define a linear interaction field L operating on
an incoming field ¢, v = Ly. More generally these synapses implement an affine
field transformation, ©» = K + L. The input and output fields may be defined
by spike densities or graded polarizations. (The figure ‘1’ indicates a first-order
interaction field.) B. Shunting inhibition permits an approximate multiplication
between two graded potentials, thus giving a second-order (bilinear) interaction
between two fields, 1 = M@£. More generally such a synaptic field implements a
second order interaction, v = K + Ly + L& + M €. The input fields must be
graded potentials, but the output field may be represented by graded potentials
or spike density. (The figure ‘2’ indicates a second-order interaction field.)



field over Q, k = 1,...,n. The product is defined:

Mooz -0, =,

where
¢(S) :/ /Q /Q M(Satny7t27t1>8«91(t1)g«92(t2)Q«Qn(tn)dtldtgdtn

The result is a multilinear operator of Hilbert-Schmidt type with kernel M;
multilinear means that it is linear in each of its n arguments.

Notice that the multilinear operator is reduced to the simple product by
writing

Meipa---n = {--- [(Me1)ga] - pn}.

However, all the products after the first, My, involve a variable kernel, and
so they are in effect bilinear rather than linear operations. This is important,
because a shunting inhibition is a second-order operation (it computes a
product between two variable quantities), and so a series of second-order
operations is of sufficient power to compute any multilinear operator of this
kind (Fig. 1B).

There is a well-known theorem in functional analysis that is analogous to
Taylor’s Theorem in real analysis. It allows expanding a nonlinear operator
in an infinite series around a fixed field @ (MacLennan 1987a; Maclennan

1990):

> D ¢(k)
T(e+ ) = T(=) + 3 .
k=1 .

where

D™ = Dpop--- 0.

k

The fields Dy are the derivatives of the operator T evaluated at w, D) =
d*T'(w); these fields give locally-multilinear approximations to 7.7 Although
this expansion is “locally good” around w, more often we would like expan-
sions that satisfy global criteria of goodness. Therefore we consider general
“polynomial” multilinear expansions of the form:

T(¢) = Ko+ Ko+ Kop® + K30 4 -+ .

"Under the assumptions of field computation, the Fréchet and Gateaux derivatives are
identical (MacLennan 1990).
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The kernels K}, are chosen to satisfy or optimize some global criterion, such
as minimum error over a training set.

As we’ve seen, nonlinear operators can be approximated by field “polyno-
mials” of the form ¢» = ¥, K,»®), which can be reduced in turn to a sum of
first- and second-order interactions. In MaclLennan (1987a) we argued that
this provides a theoretical basis for universal field computation analogous to
the Universal Turing Machine in the theory of discrete computation.® There-
fore it is especially interesting that first- and second-order interactions can be
computed by synaptic fields (Fig. 1), since this suggests that the layers of a
neural network may be computing successively higher-order approximations
to a nonlinear operator, and series-parallel projections of a field may have a
kind of computational universality (Fig. 2).

2.2 Neuronal Field Computation

In this section we’ll consider briefly how a number of neural processes can be
understood from the standpoint of field computation. For this purpose we
will distinguish neuronal information processing from dendritic information
processing. The activity of relatively large cortical areas (i.e., those typically
identified anatomically and given names or numbers) can be characterized in
terms of neuronal activity fields. Most obviously, if x is the coordinate vector
of a neuron in some area €2, then D(x) could represent the instantaneous spike
density of the neuron. Alternately we may view this as a spatiotemporal field
(signal or wave) D(x,1).

Another way of understanding neuronal information processing is in terms
of the somatic potential, which represents the integration of a neuron’s in-
puts. Thus we may take V(x) to be the potential of the soma of the neuron
with coordinates x. It may be the case that in many areas and in most
circumstances, the spike-density field is approximately proportional (up to
neuronal precision) to the somatic-potential field, D(x) = kV/(x). This will
be the case except for neurons that operate frequently in saturation (i.e., at
their minimum or maximum firing rates; see MacLennan subm.-a).

It may be objected that neural cortex is not continuous, but composed of
discrete neurons, and of course this is true. But a square centimeter of cortex

8In Wolpert & MacLennan (subm.) we show that there is a completely linear field
computer that is computationally universal in the sense of Turing.

11



Figure 2: Higher-Order Field Computation in Neural Networks. By projecting in
parallel to sequential second-order interaction fields, a neural network may imple-
ment a higher-order field polynomial approximating an arbitrary nonlinear opera-
tor. Therefore the class of networks of this form exhibit a kind of computational
universality. In this case the three-layer network implements the third-degree op-
erator ¥ = Ko+ K1p 4 K02 + K500,

12



contains approximately 15 million neurons, which is a large enough number
to allow the application of continuous mathematics. It is a central tenet of
field computation (MacLennan 1987a, 1990) that it does not matter whether
the spatial distribution of a quantity is really continuous or really discrete;
to be considered a field it is sufficient that it approximate a continuum well
enough to apply continuous mathematics. We believe that for the practical
purposes of biological modeling and computer technology, all that matters is
whether a phenomenon looks continuous or discrete, a methodological tenet
called the Complementarity Principle (MacLennan subm.-a). We may put
it:

Continuous models should be practically indistinguishable from
approzimately-continuous discrete models, and vice versa.

It has been remarked that neural networks in the brain — as opposed
to most PDP models — are neither random nor fully connected (Crick &
Asanuma 1986; Pribram 1991, pp. 5-7). Much more common are neurotopic
maps, topology preserving maps from one cortical area to another.

For an example of neuronal field computation we may take the coordinate
transformation that occurs between the retina and its first projection (VI,
area 17) in the primary visual cortex.” The retinal hemifield is most easily
represented in polar coordinates (r, #), where r represents the radial position
from the center of the retina, and 6 represents the angle measured clockwise
from the horizontal radius of the hemifield (Fig. 3A). Thus r € P = [0, rmax],
where ryax is the radius of the retina, and § € © = [—7 /2, 7/2].

The projection from the retinas to area 17 is topology preserving in that
regions adjacent on the retina remain adjacent on the cortex. However, there
is a metric distortion since much more cortical space is devoted to the center
of the retina than to the periphery. Indeed, to a first approximation the
arrangement of area 17 is as shown in Fig. 3B, which shows logarithmically
less cortical distance with increasing distance from the retinal center.l® If we
let (p, ¢) be the coordinates in visual cortex of the point corresponding to

9 Although this transformation apparently occurs in the projection of the retinal gan-
glion cells onto the LGN (Berne & Levy 1983, p. 127), we’ll take it to be between the
retina and VI. Recall that the right visual hemifields of both eyes project to VI in the left
hemisphere, and vice versa.

10For the time being we are ignoring orientation and velocity sensitivity of cortical cells;
they will be considered later.
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Figure 3: Hemifield Coordinates. A. The figure shows the coordinates of the right
visual hemifield of either eye. The particular convention chosen for the angles is
for convenience in mapping to area 17 (VI) of the visual cortex. B. A schematic
representation of the retinotopic map of the right hemifields in area 17 (VI) of the
left visual cortex. The p axis is along the calcarine fissure, from the back of the
brain forward (left to right) on the medial surface of the cortex. Radial positions
are mapped approximately logarithmically, p = logr. Overall the relation between
the two coordinate systems is a complex logarithm.

the retinal point at (r, ), then we see that (ignoring scale factors), ¢ = § and
p = logr. Thus the retina-to-cortex map distorts an image ¢ by applying
the transformation:

T(¢) =, where w(logr,0) = o(r,0).

Following Baron (1987, pp. 181-186) we note that if we represent retinal
position by Cartesian coordinates (x,y), then the coordinate transformation
can be expressed

p =log /a2 + y2, ¢ = tan™'(y/x).

If we express both systems of coordinates by complex numbers, z = x + 1y,
( = p+ 10, then this logmap transformation is simply a complex logarithm,
( = log z. The corresponding field transformation is

T(¢) =1, where (() = p(exp().

14



The logmap transformation has many information-processing advantages for
the visual system (Baron 1987, Ch. 8; Schwartz 1977). In particular, ro-
tations and scale changes of centered retinal images correspond to simple
translations of the cortical image.

2.3 Dendritic Field Computation
Shepherd (e.g., 1972, 1978, 1988, 1990a, 1990b) has argued that the synapse,

rather than the neuron, should be considered the basic computational ele-
ment of the brain, and that spatiotemporal relations in the dendritic tree are
crucial to understanding synaptic information processing. Further, Pribram
(1991, pp. 5-7) has argued that PDP models are a better description of
information processing in dendritic nets, which have dense, random inter-
connection patterns, rather than in neural nets, with their regular topology.

The fields involved in dendritic information processing are predominantly
electrochemical fields. Specifically, if x represents the location of an active
site in the dendritic arbor, such as a synapse, then ¢(x) most commonly
represents the membrane potential, but it could also represent the concen-
tration of a chemical species, such as an ion or neurotransmitter. Of course,
there has been much work, from Hodgkin and Huxley’s day, that models the
detailed dynamics of these processes, but that is not our concern here. Since
we are interested in the general structure of information processing in the
brain, it is sufficient that such fields exists; we would like to understand their
possible role in information representation and processing.

The electrochemical dynamics of nervous tissue is without doubt com-
plex, so the challenge is to find simplifying approximations that capture
the essence of information processing and avoid irrelevant detail. To this
end we have been investigating a linear system model of dendritic informa-
tion processing (MacLennan subm.-a; MacLennan & Pribram in prep.). The
mathematical advantages of a linear model are obvious, but do we have any
basis for assuming it? We believe that the evidence supports linear mod-
els of both excitatory synapses and hyperpolarizing inhibitory synapses, and
bilinear models of shunting inhibition (MacLennan subm.-a; MacLennan &
Pribram in prep.). Although there is widespread opinion that linear sys-
tems are computationally impotent (e.g., Poggio & Torre 1981; Reichardt &
Poggio 1981), we show below that dynamic linear systems can accomplish
significant information processing (cf. also Wolpert & MacLennan subm.).
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We also consider the present theory a simplification of the neural wave
equation developed by Pribram, Yasue and Jibu (Pribram 1991, Apps. A-G),
which is also a linear model. Specifically, by assuming a discrete set of in-
teraction sites, the model becomes a lumped-parameter system, which means
that its dynamics can be described by ordinary differential equations rather
than partial differential equations. A significant simplification results from
this assumption, which is justified by our Complementarity Principle, and
we anticipate that this simplification will help us to go beyond the dynamics
of dendritic interactions, and to understand their function.

Let ¥ be some time-varying field relevant to dendritic information pro-
cessing (membrane polarization at synapses would be an example). Based
on the linear-system assumption, we take its dynamics to be defined by a
nth-order integro-differential equation with kernels Fj.:

n—1
) = Z Fib0™ 4 input drive.
k=0

As usual this equation can be reduced to a system of first-order equations by
introducing additional field variables 5 corresponding to the time-derivatives

of ¥:

‘77Z) = 77Z)07
¢k = 77Z)k-|-17 k:()v"'vn_lv

n—1

77[)71—1 = Z Iy + input drive.

k=0

If these state variables are combined into a field-vector ¥ = (to,...,%,—1)
and the kernels Fj, ..., F,,_; into a kernel-vector F', then the system can be
described by a single field-vector differential equation:

¢ = F + input drive.

To complete our description of the linear system, we must describe how it is
driven by the input ¢ and how it in turn drives the output w. Then we have
a linear system of the form (Fig. 4):

Y = Do+ 'y,
w = Fo+ Gy.

16
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Figure 4: The Dendritic Net as a Dynamic Linear System. The input field ¢
drives both the state fields 4 through kernel D and the output field w through
kernel I/. Kernel F determines the feedback among the state fields, and kernel &
governs the contribution of the state fields to the output field. The house-shaped
figure represents a field integration (with respect to time) of the state fields.
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Such a system will exhibit resonances, the number of which is on the order
of the size of the state fields, that is on order of the number of interac-
tion sites. Since there may be 5000 to 200000 synapses in the dendritic
arbor of a single neuron, it’s not implausible to assume that such a dendritic
net may have thousands of resonances. We consider elsewhere some kinds
of information processing that such a system can implement, including the
self-organization of hierarchically-structured spatiotemporal matched filters
(MacLennan subm.-a).

Although our emphasis here is on the linear processes, it will be worth-
while to say a little about the functional role of nonlinearities in dendritic in-
formation processing. We have already mentioned the bilinearity of shunting
inhibition; one possible function it could serve (aside from a simple and-not
gate) is to implement bilinear operators such as convolutions and correla-
tions over both space and time, whose information-processing potential is
manifest. Also, as explained previously, bilinear operations are sufficient for
an important kind of computational universality. One of the best known
nonlinearities in the behavior of neurons is the generation of action poten-
tials. According to Shepherd (1988, p. 137), an action potential causes an
antidromic electrical signal, which is transferred efficiently into the dendritic
spines. We have suggested (MacLennan subm.-a) several possible roles for
this signal, including the (1) triggering or enhancing of Hebbian learning, (2)
the top-down “priming” of dendrites (i.e., the creation of top-down expec-
tations), and (3) pattern completion. We’ve also shown how the antidromic
electrotonic flow can lead to the self-organization of recursive spectral-density
matched-filters, which have many possible applications in neural information
processing.

Hameroff (1987) has suggested that Boolean and automata-like processes
could occur in the cytoskeletons of neurons, and that this could be “where
the action is” so far as information processing is concerned. We suggest
that field computation may be a better model of cytoskeletal processing —
if it exists — since the large number of elements (~1625/micron) makes
the microtubule a good approximation to a field.!! Local values of the field
could be represented, for example, by rate of conformational change of the

' Microtubules are composed of spirals of tubulin dimers, 13 around the circumference,
which are 8 nm long in the direction of the axis (Hameroff 1987, p. 106). Therefore, a one-
micron length of microtubule contains 1000nm / 8nm spirals, each containing 13 dimers;

13 x 1000/8 = 1625.
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microtubule-associated proteins. The question remains, of course, whether
the dynamics are approximately linear, but if they are, then much of the
theory presented here would apply unchanged.

3 Gabor-like Representations

In this section we will consider some Gabor-like field representations that
may be important in sensory and motor systems.

3.1 Vision
3.1.1 Spatial Gabor Wavelets

There is now considerable evidence that the receptive fields of simple cells in
the primary visual cortex correspond (up to synaptic precision) to the even-
or odd-symmetric parts of two-dimensional Gabor functions v4, which sug-
gests that Gabor functions are the representational primitives of the primary
visual cortex.!? (See MacLennan 1991 for a review.)

The problem is that the Gabor functions are not orthogonal, so the coef-
ficients cq of a Gabor expansion of a field ¢,

P =2 cqq
q
cannot be computed by a simple inner product, ¢q # (¢,7q). Neverthe-

less, inner products with Gabor functions are what the simple cells seem to
compute.?

12An N-dimensional Gabor function is a Gaussian-modulated complex-exponential,

Yspu(x) = exp{—7||S(x — p)||*} exp[27iu - (x — p)].

All the vectors are N-dimensional. The parameter p determines the function’s location
in N-space; the wave vector u determines its modulatory frequencies, or position in N-
dimensional spectral space, and the orientation of the function in N-space. The parameter
S 1s a diagonal matrix which defines the function’s aspect ratio, or shape in N-space. When
it is not necessary to distinguish the parameters, we simply write yq(x). The Gabor
functions form an anisotropic (oriented) wavelet family.

13This is an oversimplification, as noted in MacLennan (1991, n. 23). The input to area
17 is from the retina via the LGN, which have already represented the image in terms of
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Although there are theoretical reasons to expect representation in terms
of Gabor functions (they are optimal in terms of the Gabor Uncertainty Prin-
ciple), we must keep in mind that they are mathematical objects and cannot
be instantiated perfectly in the biology. Therefore, objections against the
Gabor functions, such as that they have noncompact support, are not rel-
evant in a biological context. It’s true that the Gaussian envelope extends
to infinity, but 99.7% of its area is within three standard deviations of its
mean, and 99.994% within four. Thus the Gabor functions are practically
indistinguishable from functions with compact support. The conclusion we
draw is that the theory is underdetermined by the biology, and so we can
choose to model the receptive fields by Gabor functions, if it is mathemati-
cally convenient to do so.

Another problem with the Gabor functions is that they are complex-
valued, and therefore not representable by real-valued membrane potential,
spike densities, etc. Although there is evidence (Pollen & Ronner 1981) that
simple cells occur in conjugate pairs with receptive fields representing the
(real valued) odd- and even-symmetric parts of the Gabor function, Stork
& Wilson (1990) have objected that these real functions do not minimize
the Gabor uncertainty, and therefore that they should not be given special
status. The real-valued functions that achieve the minimum are the Hermite
functions, as shown by Gabor and proved more carefully by Stork & Wilson.
Nevertheless, the Hermite functions are sufficiently like the real parts of the
Gabor functions, that even this difference may be insignificant.

Although Gabor functions are nonorthogonal and so cannot be a ba-
sis, under biologically plausible conditions they do form a frame, for which
the inner products fulfill a similar role to that for bases (Macl.ennan 1991).
Thus one possibility is that the higher levels of the visual system simply
operate in terms of a nonorthogonal representation. Just because orthogo-
nality is mathematically convenient doesn’t imply that it’s biologically con-
venient. As Daugman (1988) observed, nonorthogonality is ubiquitous in

radial basis functions (center-surround receptive fields). Therefore, the Gabor receptive
fields observed in striate cortex reflect the combined effect of retina, LGN and area 17 on
the image.
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sensory and motor systems, which we should expect from the Robustness
Principle (MacLennan subm.-a):

No biological process can depend on an absolute mathematical
property.

This tells us that biological processes cannot depend on exact orthogonal-
ity. In fact, approximate orthogonality is in many ways preferable to exact
orthogonality (Kainen submitted; MaclLennan subm.-a). Further, given the
imprecision of biological computation, the correction of coefficients by relax-
ation (such as described below) can be expected even for formally orthogonal
representational primitives.

In MacLennan (1991) we argued that such a relaxation process was un-
likely in neural networks in which signaling is mediated by impulses, since
the rate of information transmission is too slow, but that it was feasible in
local circuits in dendritic nets, where signaling may be mediated by graded
potentials. In MacLennan (subm.-a) we showed that dendritic iteration can
be expected to proceed 20 to 200 times as fast as neuronal iteration, and
furthermore that dendritic nets have the computational power to implement
a linear system that relaxes to the coefficients of a nonorthogonal represen-
tation, such as the Gabor (see also MacLennan & Pribram in prep.). In this
linear system, the driving matrix D is proportional to the array of elementary

fields o4,

Dq = N0q;
for example even- or odd-symmetric Gabor functions, which correspond with
the observed receptive field profiles. The feedback matrix or interaction field

F'is proportional to all the inner products between the elementary fields (i.e.,
the Gram matrix),

qu = _77<QQ7 QI'>7

and has a decorrelating effect which takes care of the nonorthogonality.
Pattison (1992) has independently proposed the same relaxation algo-
rithm for Gabor or other nonorthogonal representations, but claims that it
could be implemented in neural networks. In particular he assumes that the
coefficients are represented by instantaneous firing frequencies, but neglects
the finite interval — given by the Gabor Uncertainty Principle — required
to represent a coefficient to a given precision (MacLennan 1991, subm.-a;
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MacLennan & Pribram in prep.). In fact, approximately 10* msec. are re-
quired for k digits of precision. Nevertheless he estimates that the relaxation
process will require at least 50 msec. per iteration, which he concedes is
inconsistent with simple cell response times observed by Jones & Palmer
(1987). We suggest that the inconsistency is eliminated by assuming that
the relaxation takes place through graded interactions in the dendritic net,
which have a delay of about 1 msec.

We consider briefly the representation of the Gabor coefficients in visual
cortex. We've already seen that the logmap transformation converts retinal
coordinates (r,#) into VI coordinates (p, ¢); recall Fig. 3. If the VI field
were simply a representation of light intensity at the retina, then it would
be a scalar field over the two-dimensional domain P X ©, but we’ve seen that
it’s a scalar field over three dimensions: two for retinal location and one for
Gabor-field orientation.!* The possible orientations of the receptive fields
range from 0 to 27 so we define ® = [0, 27]; it is not simply [0, 7] since the
odd-symmetric receptive fields are asymmetric across their edge. Therefore,
VI must represent a scalar field defined over three-dimensions, P X0 X ®.
How can this be represented in the essentially two-dimensional cortex?

This is a standard problem in field computation (Maclennan 1990), and
there are a number of ways of mapping a higher dimensional field into a
lower dimensional space. One is to simply cut up the field along one or
more of the dimensions, and arrange the resulting lower-dimensional fields
next to one another. This is exactly what we find in the orientation columns
of striate cortex. The orientations [0, 2x] run through an entire cycle in a
space of about 2mm and repeats thereafter (Baron 1987, p. 153). Therefore,
wherever the mathematical function requires a field of dimension greater than
two, we expect to see a striate or columnar structure in the cortex.

This arrangement has another useful effect in that it leads to texture
(oriented spatial frequency) being represented is a similar way to color: the
orientation columns are arranged similarly to the cortical pegs or blobs that
respond to color (Shepherd 1988, pp. 348-349). This is reasonable since both
texture and color are “extended” properties.

14There is actually a fourth dimension, representing spatial frequency and receptive-field
size, which are closely correlated. For simplicity this will be ignored.
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3.1.2 Spatiotemporal Gabor Wavelets

The research which led to the Gabor representation (Gabor 1946) was mo-
tivated in part by the observation that our perception of sound is simulta-
neously of duration and pitch. Thus the Gabor representation captures the
local temporal structure of the sound. The preceding discussion of vision
can be interpreted to mean that our visual perception is simultaneously of
extension and texture (oriented spatial frequency). Thus the Gabor repre-
sentation captures the local spatial structure of a scene. On the other hand,
we also have an immediate visual awareness of motion, and we know that
some cells in the visual cortex respond to motion, so we might wonder if our
visual system uses a Gabor representation in both the spatial and temporal
domains.

In Macl.ennan (1991) we suggest three-dimensional Gabor functions, with
two space dimensions and one time dimension, as possible representational
primitives in vision. In addition to orientation in space, these functions may
be oriented in space-time, which gives them receptive fields responsive to
textural motion localized in space and time (Fig. 5). Temporal localization
suggests that visual system operates cyclically, which is compatible with the
use of relaxation to calculate Gabor coefficients. The idea is that the basic
cycle is (1) acquire the image; (2) calculate its Gabor coefficients by relax-
ation; (3) forward the coefficients on to the next stage of processing. It’s
possible that the frequency of this cycle is the alpha rhythm, which is the
principal thythm of the occipital cortex. It might seem that representational
primitives oriented in space-time are of only theoretical interest, but in fact
they have a simple neural implementation in terms of spatial Gabor func-
tions, analogous to the well-known construction of moving-edge detectors
from static-edge detectors. Although spatiotemporal Gabor functions seem
to be consistent with neurophysiological data, more research is needed to
establish their presence.

3.2 Other Sensory and Motor Systems

The ability of Gabor and similar locally-Fourier representations to capture
temporal structure suggests that we look for them in other sensory and motor
systems; perhaps they are a general representational principle in the brain.
For example, observe that an auditory signal, from the cochlea on, is repre-

23



Figure 5: Depiction of Spatiotemporal Gabor Function. The figure shows a slice
through the even (cosine) part of a 3D Gabor function. The vertical axis represents
time and the horizontal axis is along the spatial orientation of the function. This
filter is selective for fringes of a specific frequency moving at a specific velocity in
a localized region of space and time. This particular filter responds maximally to
fringes with a frequency 1/./8 moving with a velocity of 1 to the left (arbitrary
units).
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sented by a spatiotemporal wave, in which instantaneous frequency — the
local Fourier transform — is mapped to spatial location. Therefore, 2D spa-
tiotemporal Gabor functions will capture temporal changes of intensity and
pitch — what we might call the rhythm and melody of the sound.
Temporal structure is also very important in motor activity, and so we will
consider the possibility of Gabor-like representations there. It is reasonable
to treat as a field the activity of a large system of motor neurons or of a
region of motor cortex. Motor control is then accomplished by generating an
appropriate spatiotemporal wave (in a feedback loop, of course). Since such
a signal may be represented as a linear superposition of Gabor-like functions,
we will investigate the effect of such a representation of motor signals.
Considered as a generative field rather than a receptive field, a Gabor-like
function amounts to an amplitude-controlled, time-bounded rhythm genera-
tor (Fig. 5). More concretely, a Gabor function v4 generates, during a given
time interval A, a burst of waves of a given frequency and direction across
a field of motoneurons (such as a somatotopically mapped region). Higher
levels of motor control have the task of generating the Gabor coefficients.
More global control mechanisms can adjust the size of the Gabor functions,
which affects both their frequency and their spatial and temporal extent.

4 Cognition

In this section we touch on the role field computation may play in higher
cognitive function; our focus will be on intentionality.

4.1 Intentions
4.1.1 History

The notions of intentionality and intention are central to the modern philos-
ophy of the mind, so it will be useful to review the meanings of these terms
before considering intentional fields.

The basic meaning of Latin intendo is to stretch toward, point at, or to
direct one’s mind toward, and at least from the time of Cicero the related
noun intentio could refer to acts of stretching, reaching or concentrating one’s
attention (Ozford Latin Dict., s.vv.). The basic idea is an active process of
directing the mental faculties.
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The Medieval Schoolmen chose intentio to translate Arabic ma‘na (a
meaning, thought, signification or notion) in the works of Avicenna. Later,
Ockham defined an intention as “something in the soul capable of signifying
something else,” or more briefly, a sign in the mental discourse (Summa Log-
icae 1 §12). Although this definition is limited by Ockham’s linguistic view
of cognition, it captures the idea that an intention is a mental representation
that refers to something outside of itself (either in the world or in another
mental representation).

Brentano (in his Psychology from an Empirical Standpoint) resurrected
the medieval notion of intention, and used it to refer to the ability of con-
sciousness to refer out of itself and be directed toward something, that is, the
characteristic of consciousness that it is consciousness of something. Husserl
borrowed the term from Brentano and used it with this sense. In accord
with its methodological biases, Anglo-American philosophy gave intention-
ality a linguistic interpretation. An intentional proposition is one which has
another proposition as its content, and so it expresses a certain “attitude”
toward that proposition.

All these definitions have in common the idea of selecting or “foreground-
ing” some aspects of a mental representation with respect to others, which are
left in the background. A “mental sign” picks out some aspect of the external
or internal world (in Scholastic terms, a first or second intention); in Brentano
and Husserl’s terms, consciousness is directed at some aspects of experience;
in linguistic terms, an intentional expression has a particular content. The
essence of selection is a decrease in entropy, for by making some things more
likely to be processed relative to others, we shift the probability distribu-
tion away from the uniform distribution, which has maximum entropy, to
a nonuniform, lower entropy distribution (MacLennan 1988, pp. 172-173).
Thus an intention organizes a representation with respect to an intended
functional role. Intentions, as understood here, are closely related to the
focus of attention (Pribram 1991, pp. 119-120, 219).

4.1.2 Field Representation

Next we will consider a possible theory of intentions in terms of field com-
putation. We define an intentional field to be a [0,1]-valued field over any
domain ). If ¢ is any field over the same domain {2 as an intentional field
v, and F(v,p) is an operation on the pair of fields (v, ), then v is called
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an intention of type F' toward p.*> This definition reflects the fact that an
essential part of an intention is its function or end; it is an intention to treat
something in a particular way (e.g., to notice it, to be surprised by it, to
fear it, to avoid it, to orient toward it, to seize it). Thus the operator F
represents the function of the intention, which I call its kind. (In biologi-
cal terms, F' might correspond to a specific brain area and v to a field over
that area.) Each intention also has a particular content, which is the region
of the image towards which the operation is directed; the content is given
by the pair of fields (v,¢). The intention field v can be interpreted as a
probability distribution selecting certain regions of ¢ for more-likely process-
ing by F. In this sense an intention functions like a continuous analog of a
programming-language pointer.

Some examples may make this idea clearer. Visual intentions are char-
acteristic responses or attitudes to the content of the visual field. Thus we
may be surprised, either by the presence of some object or by its absence.
Also, we may react to perceived objects with fear or with comfortable fa-
miliarity. These are not purely visual intentions, since they typically involve
nonperceptual evaluations. Purer examples include the tracking of a moving
object, or the sudden focus of our attention on an unexpected movement. It
is clear in both of these how the relevant intention field could be computed
from relatively low level perceptual fields.!® Auditory intentions are similar,
including, for example, the ability to focus on a particular sound, such as a
voice, among many other sounds.

For an example of a nonperceptual intention, consider our awareness of an
object not visible to us (e.g. behind our back, in a closet). We suppose that
spatial awareness is represented in several frameworks, such as the egocentric,
centered on the body, and the allocentric, centered elsewhere (Bryant 1990;
Bryant et al. 1992; Franklin & Tversky 1990), and that these representations
are not unlike abstract sensorimotor representations. Spatial intentions then
refer to locations within these spaces, and establish functional relations with

15T will generally use v (from voéw = intend, discern, notice, remark) for intentional
fields. Similarly T will generally use ¢ (from pdvTaopua = mental image) for fields repre-
senting images of any other sort.

16For example, the spatiotemporal Gabor representation makes it easy to detect sudden
changes in the motion in a local area. We simply apply a low pass filter to eliminate
slow changes. Of course that’s not the whole story, since animals also habituate to rapid
changes.
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those locations (e.g., intent to move an arm to that place, noting presence
or absence of an object in that place). Spatial intentions may be translated
from one reference frame to another in the same way as images.

Orienting reactions can be understood in this context. An unexpected
sight, sound or touch creates a perceptual intention (v,¢) in a functional
area ['. The intentional field v is translated from sensoricentric to egocentric
coordinates in the same way as a perceptual image. This “surprise” intention
has the functional role of being translated into an intention to move, which
can be used to compute a spatiotempral motor field to control the motion.

4.2 Abstract Reason

Johnson-Laird and Byrne have argued that abstract reason is accomplished
by manipulating mental models rather than formal symbols (Johnson-Laird
& Byrne 1991, in press). We suggest that these models are just abstract,
multimodal sensorimotor images, including intentions (MacLennan subm.-
b), and we anticipate that manipulation of mental models can be described
in terms of field computation. To give a very rough idea, we consider one of
the formal logic problems studied by Johnson-Laird & Byrne:

There is a cross if and only if there is a circle. There is not a
cross. What follows?

Let ¢ be an (abstract) image of both the cross and the circle. Let vy, be
an intentional field indicating that the cross is present, and v,, that the
circle is present. Then v, = vy, 4 vop is an intention referring to both and

17 To show the absence of the objects, we postulate

indicating their presence.
intentional fields vy, and v,,, and their sum v, = vy, + Voa.

The first premiss (the biconditional) results in the construction of two
models, (v, ) and (v,, @), which are held in working memory (as fields in
prefrontal cortex).

The second premiss, “there is not a circle,” results in the model (vo,, ).

In an attempt to merge this with each of the previous models, it’s found to be

17In fact, these intentions mean that these are the only allowed models in which these
things are present; thus they include Johnson-Laird & Byrne’s “exhaustive representation
tag”; there are other intentions, not discussed here, that do not bear that tag (i.e., they
have a different functional role).
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incoherent with the first, since the intentions v,, and v, treat ¢ inconsistently
(as can be seen by noting vo,v, # 0). The only other model, that the cross
and circle are both absent, is consistent with the second premiss, so it is the
conclusion (or, more accurately, the model that the conclusion expresses).

5 Conclusions

We have argued that the limitations of the traditional representation of
knowledge as discrete symbols can be avoided by a reformulation in terms
of continuous images. We proposed the simulacrum as a topological model
of continuous knowledge representation and processing, and discussed field
computation as a specific instance of it. We showed that both neuronal
and dendritic information processing can be understood in the context of
field computation. In the course of this we considered the possible role of
spatiotemporal Gabor wavelet representations in sensorimotor systems, and
suggested a field representation of intentions. Overall we hope that this pa-
per has shown the potential contribution of continuous computation — and
especially field computation — toward understanding the mind and brain.
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