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Abstract

We review the concepts of �eld computation� a model of computation that

processes information represented as spatially continuous arrangements of con�

tinuous data� We show that many processes in the brain are described usefully

as �eld computation� Throughout we stress the connections between �eld com�

putation and quantum mechanics� especially including the important role of

information �elds� which represent by virtue of their form rather than their

magnitude� We also show that �eld computation permits simultaneous nonlin�

ear computation in linear superposition�

� Motivation for Field Computation

In this paper we discuss the applications of �eld computation to natural and arti�cial
intelligence� �More detailed discussions of �eld computation can be found in prior

�This report is in the public domain and may be used for any non�pro�t purpose provided that
the source is credited� It is based on an invited presentation for the Third International Conference

on Computational Intelligence and Neuroscience �October ������ 	

��� special session on Neuro�
Quantum Information Processing�
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publications� e�g� MacLennan ����� ����� ���	b� �����
 For this purpose� a �eld
is de�ned to be a spatially continuous arrangement of continuous data� Examples
of �elds include two�dimensional visual images� one�dimensional continuous spectra�
two� or three�dimensional spatial maps� as well as ordinary physical �elds� both scalar
and vector� A �eld transformation operates in parallel on one or more �elds to yield
an output �eld� Examples include summations �linear superpositions
� convolutions�
correlations� Laplacians� Fourier transforms and wavelet transforms� Field computa�
tion may be nonrecurrent �entirely feed�forward
� in which a �eld passes through a
�xed series of transformations� or it may be recurrent �including feedback
� in which
one or more �elds are iteratively transformed� either continuously or in discrete steps�
Finally� in �eld computation� the topology of the �eld �that is� of the space over which
it is extended
 is generally signi�cant� either in terms of the information it represents
�e�g� the dimensions of the �eld correspond to signi�cant dimensions of the stimulus
�
or in terms of the permitted interactions �e�g� only local interactions
�

Field computation is a theoretical model of certain information processing opera�
tions and processes that take place in natural and arti�cial systems� As a model� it is
useful for describing some natural systems and for designing some arti�cial systems�
The theory may be applied regardless of whether the system is actually discrete or
continuous in structure� so long as it is approximately continuous� We may make an
analogy to hydrodynamics� although we know that a 
uid is composed of discrete
particles� it is nevertheless worthwhile for most purposes to treat it as a continuum�
So also in �eld computation� an array of data may be treated as a �eld so long as the
number of data elements is su�ciently large to be treated as a continuum� and the
quanta by which an element varies are small enough so that it can be treated as a
continuous variable�

Physicists sometimes distinguish between structural �elds� which describe phenom�
ena that are physically continuous �such as gravitational �elds
� and phenomenological
�elds� which are approximate descriptions of discontinuous phenomena �e�g� velocity
�elds of 
uids
� Field computation deals with phenomenological �elds in the sense
that it doesn�t matter whether their realizations are spatially discrete or continuous�
so long as the continuum limit is a good mathematical approximation to the compu�
tational process� Thus� we have a sort of �complementarity principle�� which permits
the computation to be treated as discrete or continuous as convenient to the situation
�MacLennan ���	a
�

Neural computation follows di�erent principles from conventional� digital com�
puting� Digital computation functions by long series of high�speed� high�precision
discrete operations� The degree of parallelism is quite modest� even in the latest
�massively parallel� computers� We may say that conventional computation is deep
but narrow� Neural computation� in contrast� functions by the massively parallel ap�
plication of low�speed� low�precision continuous �analog
 operations� The sequential
length of computations is typically short �the ���� Step Rule�
� as dictated by the
real�time response requirements of animals� Thus� neural computation is shallow but
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broad� As a consequence of these di�erences we �nd that neural computation typi�
cally requires very large numbers of neurons to ful�ll its purpose� In most of these
cases the neural mass is su�ciently large � �� million neurons�cm� �Changeux �����
p� ��
 � that it is useful to treat it as a continuum�

To achieve by arti�cial intelligence the levels of skillful behavior that we observe in
animals� it is not unreasonable to suppose that we will need a similar computational
architecture� comprising very large numbers of comparatively slow� low precision ana�
log devices� Our current VLSI technology� which is oriented toward the fabrication of
only moderately large numbers of precisely�wired� fast� high�precision digital devices�
makes the wrong tradeo�s for e�cient� economical neurocomputers� it is unlikely to
lead to neurocomputers approximating the �� million neurons�cm� density of mam�
malian cortex� Fortunately� the brain shows what can be achieved with large num�
bers of slow� low�precision analog devices� which are �initially
 imprecisely connected�
This style of computation opens up new computing technologies� which make di�erent
tradeo�s from conventional VLSI� The theory of �eld computation shows us how to
exploit relatively homogeneous masses of computational materials �e�g� thin �lms
�
such as may be produced by chemical manufacturing processes� The theory of �eld
computation aims to guide our design and use of such radically di�erent computers�

� Overview of Field Computation

A �eld is treated mathematically as a continuous function � over a bounded set �
representing the spatial extent of the �eld� Typically� the value of the function is
restricted to some bounded subset of the real numbers� but complex� and vector�
valued �elds are also useful� Thus we may write � � � � K for a K�valued �eld�

We write ��u
 or �u for the value of a �eld � at u � �� If the �eld is time�varying�
we write ��t
 for the �eld� and ��u� t
 or �u�t
 for its value at u � �� Further� to
stress the connections between �eld computation and quantum mechanics� we may
denote real or complex �elds with Dirac�s �����
 bracket notation� j�i or j��t
i� as
appropriate� With this notation� the value of j�i at u is given by the inner product
hu j �i� where huj � h�uj is a Dirac delta function �unit impulse
 located at u��

Fields are required to be physically realizable� which places restrictions on the
allowable functions� I have already mentioned that �elds are continuous functions
over a bounded domain that take their values in a bounded subset of a linear space�
Furthermore� it is generally reasonable to assume that �elds are uniformly continuous
square�integrable �e�g� �nite�energy
 functions� k�k� � h� j �i � �� and therefore
that �elds belong to a Hilbert space of functions� Thus Hilbert spaces provide the
vocabulary of �eld computation as they do of quantum mechanics� �To stress this

�If �� � � ��
� are �elds of the same type� we use h� j �i and h�� �i for the appropriate inner
product on these �elds� If they are real� or complex�valued� then h� j �i �

R
�
��
u
�udu� where �

�

u

is the complex conjugate of �u� If the �elds are vector�valued� then h� j �i �
R
�
�u � �udu� where

�u ��u is the ordinary scalar product of the vectors�

	



commonality� this paper will follow the notational conventions of quantum mechan�
ics�
 Nevertheless� not all elements of a Hilbert space are physically realizable� so we
write �K��
 for the set of all K�valued �elds over � �the subscript K is omitted when
clear from context
� �See Pribram ���� and MacLennan ����� ���	a� ���	b� ����a�
���� for more on Hilbert spaces as models of continuous knowledge representation in
the brain� see MacLennan ���� for more on the physical realizability of �elds�


A �eld transformation is any continuous �linear or nonlinear
 function that maps
one or more input �elds into one or more output �elds� Since a �eld comprises an
uncountable in�nity of points� the elements of a �eld cannot be processed individually
in a �nite number of discrete steps� but a �eld can be processed sequentially by a
continuous process� which sweeps over the input �eld and generates the corresponding
output sequentially in �nite time� Normally� however� a �eld transformation operates
in parallel on the entire input �eld and generates all elements of the output at once�

One important class of linear �eld transformations are integral operators of Hilbert�
Schmidt type� which can be written

�u �
Z
�
Kuv�vdv ��


where � � ����
� � � ���
 and K is a �nite energy �eld in ����
��
� Equation ��


may be abbreviated � � K� or� as is common in quantum mechanics� j�i � Kj�i�
We also allow multilinear integral operators� If �k � ���k
� k � �� � � � � n and M �
����

��n� � � �������
� then � � M���� � � � �n abbreviates

�u �
Z
�n
� � �

Z
��

Z
��

Muvn���v�v����v�
���v�
 � � ��n�vn
dv�dv� � � �dvn�

Many useful information processing tasks can be implemented by a composition
of �eld transformations� which feeds the �eld�s
 through a �xed series of processing
stages� �One might expect sensory systems to be implemented by such feed�forward
processes� but in fact we �nd feedback at almost every stage of sensory processing�
so they are better treated as recurrent computations� discussed next�


In many cases we are interested in the dynamical properties of �elds� how they
change in time� The changes are usually continuous� de�ned by di�erential equations�
but may also proceed by discrete steps� As with the �elds treated in physics� we are
often most interested in dynamics de�ned by local interactions� although nonlocal
interactions are also used in �eld computation �several examples are considered later
�
For example� Pribram �����
 has discussed a neural wave equation� i� �� � ����

�
r� �

U
� � which is formally identical to the Schr�odinger equation�
One reason for dynamic �elds is that the �eld may be converging to some solution

by a recurrent �eld computation� for example� the �eld might be relaxing into the
most coherent interpretation of perceptual data� or into an optimal solution of some
other problem� Alternately� the time�varying �eld may be used for some kind of
real�time control� such as motor control �MacLennan ����
�
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An interesting question is whether there can be a universal �eld computer� that
is� a general purpose device �analogous to a universal Turing machine
 that can be
programmed to compute any �eld transformation �in a large� important class of trans�
formations� analogous to the Turing�computable functions
� In fact� we have shown
�Wolpert � MacLennan submitted
 that any Turing machine� including a universal
Turing machine� can be emulated by a corresponding �eld computer� but this does
not seem to be the concept of universality that is most relevant to �eld computation�
Another notion of universality is provided by an analog of Taylor�s theorem for Hilbert
spaces� It shows how arbitrary �eld transformations can be approximated by a kind
of ��eld polynomial� computed by a series of products between the input �eld and
�xed �coe�cient� �elds �MacLennan ����� ����
� In particular� if F � ���
 � ����

is a �possibly nonlinear
 �eld transformation� then it can be expanded around a �xed
�eld � � ���
 by�

F �� � �
 � F ��
 �
�X
k��

Dk�
�k�

k 
�

where
Dk�

�k� � Dk �� � � � �� �z �
k

�

and the �elds Dk � ����
��k
 are the kernels of the �both Fr!echet and G"ateaux


derivatives of F evaluated at �� Dk � dkF ��
� More generally� nonlinear �eld
transformations can be expanded as ��eld polynomials��

F ��
 � K� � K�� � K��
��� � K��

��� � � � � �

Adaptation and learning can be accomplished by �eld computation versions of
many of the common neural network learning algorithms� although some are more ap�
propriate to �eld computation than others� In particular� a �eld�computation version
of back�propagation is straight�forward� and Peru#s ����$� ����
 has investigated �eld�
computation versions of Hop�eld networks� Learning typically operates by computing
or modifying �coe�cient �elds� or connection �elds in a computational structure of
�xed architecture�

� Field Computation in the Brain

There are a number of processes in the brain that may be described usefully as �eld
computation� In this section we discuss axonal �elds� dendritic �elds� projection �elds
and synaptic �elds� �There are� however� other possibilities� such as conformational
�elds on the surfaces of dendritic microtubules� which we will not discuss�
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��� Axonal Fields

Computational maps are ubiquitous in the brain �Knudsen et al� ����
� For example�
there are the well�known maps in somatosensory and motor cortex� in which the
neurons form a topological image of the body� There are also the retinotopic maps
in the vision areas� in which locations in the map mirror locations on the retina� as
well as other properties� such as the orientation of edges� Auditory cortex contains
tonotopic maps� with locations in the map systematically representing frequencies
in the manner of a spectrum� Auditory areas in the bat�s brain provide further
examples� with systematic representations of Doppler shift and time delay� among
other signi�cant quantities�

We may describe a computational map as follows� We are given some abstract
space X� which often represents a class of microfeatures or stimuli �e�g� particular
pitches� locations on the surface of the body� oriented edges at particular places in the
visual �eld
� If these stimuli or microfeatures are represented spatially over a brain
region �� then there is a piecewise continuous map � � X � � giving the location
ux � ��x
 optimally tuned to microfeature value x � X� The presence of microfeature
x will typically lead to strong activity at ��x
 and lesser activity at surrounding
locations� we may visualize it as an approximate �typically two�dimensional
 Gaussian
centered at ��x
� In general we will use the notation 	x or j	xi for a localized pattern
of activity resulting from a stimulus x� When the pattern of activity is especially
sharply de�ned� it may be approximated by �x �also written j�xi or jxi
� a Dirac
delta�function centered at the location corresponding to x� �We may write 	u or
�u when the neural coordinates u � ��x
 are more relevant than the microfeature
x � X�
 The amplitude s of the peak s�x may encode the degree of presence of the
microfeature or stimulus x�

In the presence of multiple stimuli� such maps typically represent a superposition
of all the stimuli� For example� if several frequencies are present in a sound� then
a tonotopic map will show corresponding peaks of activity� Similarly� if there are
patches of light �or other visual microfeatures� such as oriented grating patches
 at
many locations in the visual �eld� then a retinotopic map will have peaks of activity
corresponding to all of these microfeatures� Thus� if features x�� x�� � � � � xn are all
present� the corresponding computational map is 	x� � 	x� � � � �� 	xn �possibly with
corresponding scale factors
� In this way the form of the stimulus may be represented
as a superposition of microfeatures�

Computational maps such as these are reasonably treated as �elds� and it is use�
ful to treat the information processing in them as �eld computation� Indeed� since
the cortex is estimated to contain at least ��$���� neurons per square millimeter
�Changeux ����� p� ��
� even a square millimeter has su�cient neurons to be treated
as a continuum� and in fact there are computational maps in the brain of this size
and smaller �Knudsen et al� ����
� Even one tenth of a square millimeter contains
su�cient neurons to be treated as a �eld for many purposes� The larger maps are
directly observable by noninvasive imaging technique� such as fMRI�
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Figure �� Phase�encoding of Axonal Signals

We refer to these �elds as axonal �elds� because the �eld�s value at each location
corresponds to the axonal spiking �e�g� rate and�or phase
 of the neuron at that
location� If only the rate is signi�cant� then it is appropriate to treat the �eld as
real�valued� If both rate and phase are signi�cant �Hop�eld ����
� then it is more
appropriate to treat it as complex�valued�

To see this� consider the relation between an axonal signal and a �xed �clock
signal� with period 
 �Fig� �
� Two pieces of information may be conveyed �e�g� to a
dendrite upon which both axons synapse
� The �rst is the delay ��t
 between the clock
and the signal �at time t
� which is represented by the phase angle ��t
 � ����t


 �
�Such a delay might result from a di�erence in the integration times of a neuron
representing a �xed standard and one encoding some microfeature or other property�

Second� the average impulse rate r�t
 may represent pragmatic factors such as the
importance� urgency or con�dence level of the information represented by the phase�
�This dual representation of pragmatics and semantics is discussed further below�
Section ��
 The two together constitute a time�varying complex�valued signal� which
can be written as the complex exponential�

z�t
 � r�t
e��i��t��� � r�t
ei��t��

More generally� if we have multiple signals� then the information may be encoded in
their relative phases� and the clock signal is unnecessary� This is especially the case
for complex�valued axonal �elds� in which the �eld value is represented in the rate
and relative phase of the axonal impulses�

��� Projection Fields

Next we can consider projection �elds �or connection �elds
� which are determined by
the patterns of axonal connections between brain regions� Typically they operate on
an axonal �eld and� in the process of transmitting it elsewhere in the brain� transform
it to yield another axonal �eld� Projection �elds usually correspond to the kernel of
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a linear operator� To see this� suppose that a bundle of axons projects from region �
to region ��� For u � ��� v � �� let Kuv represent the connection to u from v �Fig�
�
� �Kuv could be a complex number representing the e�ect of the axon on the signal�
it is � if there is no axon connecting v to u�
 Then� the activity �u at destination
u is expressed in terms of the activities �v of source neurons v by �u �

R
�Kuv�vdv�

that is� � � K� or j�i � Kj�i� Thus the projection �eld K is a linear operator�
Since K � ����

��
� the projection �eld�s topology is determined by � and ���
the topologies of the source and destination regions� Projection �elds may be quite
large �i�e� they are anatomically observable
 and change quite slowly �e�g� through
development
� their information processing role is discussed further below�

A linear operator �of Hilbert�Schmidt type
 can be resolved into a discrete neural
network by methods familiar from quantum mechanics� Let j�ki be the eigen�elds
�eigenstates
 of a linear operator L with corresponding eigenvalues �k� Since the
eigen�elds can be chosen to be orthonormal� an input �eld j�i can be represented
by a discrete set of coordinates ck � h�k j �i� �The coordinates are discrete because
there is no signi�cant topological relationship among them�
 Then� j�i � Lj�i can
be expanded�

j�i � Lj�i
� L

X
k

j�kih�k j �i

� L
X
k

j�kick

�
X
k

Lj�kick

�
X
k

�kj�kick�

Only a �nite number of the eigenvalues are greater than any �xed bound� so the
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Figure 	� Computation of Linear Operator Factored through Eigen�eld Basis

operator can be approximated by a �nite sum� In the �rst part of the computation�
the discrete set of coe�cient ck are computed by a �nite number of neurons with
receptive �eld pro�les �k� In the second stage� each of these neurons projects its
activity ck with a pro�le �k�k �Fig� 	
�

It is not necessary to use the eigen�elds of the operator� for we can resolve the
input �eld into any set of orthonormal base �elds j�ki and the output �eld into any
set of orthonormal base �elds j�ji� Then�

j�i �
X
j

j�jih�j j �i �
X
j

j�jih�j j L j �i�

But�
Lj�i �

X
k

Lj�kih�k j �i�

Hence�

j�i �
X
j

j�ji
X
k

h�j j L j �kih�k j �i �
X
jk

j�jih�j j L j �kih�k j �i�

Let ck � h�k j �i be the representation of the input and Mjk � h�j j L j �ki the
representation of the operation� Then dj � h�j j �i� the representation of the output�
is given by a discrete matrix product d � Mc �Fig� �
� When a linear operator is
factored in this way� it can be computed through a neural space of comparatively low
dimension� Such a representation might be used when the projection �eld �kernel
 of
L would be too dense�

Generally speaking� axons introduce phase delays� but do not a�ect the amplitudes
or rates of the signals they transmit� Therefore the e�ect of a projection �eld can
be described by an imaginary exponential �eld� Kuv � ei�uv � However� since multiple
impulses are typically required to cause the exocytosis of neurotransmitter from an
axon terminal� the axon terminal has the e�ect of scaling the impulse rate by a factor
less than � �Fig� �
� Therefore� the combined e�ect of the axon and axon terminal
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Figure �� Rate Scaling at Axon Terminal
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is to multiply by a complex exponential� Kuv � suve
i�uv � where suv and �uv are real�

� � suv � � and � � �uv � ���
Two common kinds of projection �elds are correlation and convolution �elds� in

each of these the destination neurons have identical receptive �eld pro�les� For exam�
ple� if the receptive �eld pro�le is approximately Gaussian� then the projection �eld
coarse codes �by Gaussian smoothing
 an input represented in a computational map�

More precisely� let � and � be input and output �elds de�ned over the same domain
� �i�e�� the source and destination regions have the same shape
� Each output neuron
u has the same receptive �eld pro�le �� de�ned as a �eld over �� but centered on
the corresponding location u in the input region �Fig� $
�� The activity of output
neuron u is the sum of the activities of the neurons surrounding input location u� but
weighted by the receptive �eld pro�le�

�u �
Z
�
���r
��u � r
dr�

�We use the complex conjugate �� to accommodate complex�valued receptive �eld
pro�les�
 By letting s � u � r we can see that � is the cross�correlation of � and ��

�u �
Z
�
���s� u
��s
ds

or � � � � �� Equivalently� if� as is often the case� the receptive �eld pro�le is
symmetric� ���r
 � ��r
� we may write � as a convolution�

�u �
Z
�
���u� s
��s
ds

or � � ��� �� �Convolution is easier to manipulate than correlation� since its proper�
ties are more like ordinary multiplication�
 The complete projection �eld is given by
Rus � ���s� u
 so that � � R� or j�i � Rj�i�

�This presumes that 
 is a linear space �e�g� a two�dimensional Euclidean space�� so that it
makes sense to translate the receptive �elds�

��



��� Synaptic and Dendritic Fields

A projection �eld typically terminates in a synaptic �eld� which denotes the mass of
synapses forming the inputs to a group of related neurons� Synaptic �elds represent
the interface between a projection �eld and a dendritic �eld �discussed next
� The
topology of a synaptic �eld is determined by the spatial arrangement of the synapses
relative to the axon terminals and the dendrites that they connect� A synaptic �eld�s
value �u corresponds to the e�cacy of synapse u� which is determined by the number
of receptor sites and similar factors� In the case of synaptic �elds� the transmitted
signal is given by a pointwise product ��u
��u
 between the synaptic �eld � and the
input �eld �� Frequently a projection �eld and its synaptic �eld can be treated as a
single linear operator�

�u

Z
�
Kuv�vdv �

Z
�
�uKuv�vdv �

Z
�
Luv�vdv�

where Luv � �uKuv � Synaptic �elds change comparatively slowly under the control
of neurological development and learning �e�g� long�term potentiation
�

Another place where �eld computation occurs in the brain is in the dendritic
trees of neurons �MacLennan ���	a
� The tree of a single pyramidal cell may have
several hundred thousand inputs� and signals propagate down the tree by passive
electrical processes �resistive and capacitive
� Therefore� the dendritic tree acts as a
large� approximately linear analog �lter operating on the neuron�s input �eld� which
may be signi�cant in dendritic information processing� In this case� the �eld values
are represented by neurotransmitter concentrations� electrical charges and currents
in the dendritic tree� such �elds are called dendritic �elds� Such a �eld may have a
complicated topology� since it is determined by the morphology of the dendritic tree
over which it�s spread�

Analysis of the dendritic net suggests that the antidromic electrical impulse caused
by the �ring of the neuron could trigger a simple adaptive process which would cause
the dendritic net to tune itself to be a matched �lter for the recent input pattern
�MacLennan ���	a� ����a
�

� Examples of Field Computation

��� Gabor Wavelets and Coherent States

Dennis Gabor ����$
 developed a theory of information by generalizing the Heisenberg�
Weyl derivation of the Uncertainty Principle to arbitrary ��nite�energy
 signals� He
presented it in the context of scalar functions of time� I will discuss it more gen�
erally �see MacLennan ���� for further details
� Let ��x
 be a �eld de�ned over
an n�dimensional Euclidean space� We may de�ne the uncertainty along the k�th
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Figure �� Minimum Uncertainty in �Gabor Space�

dimension by the root mean square deviation of xk �assumed to have � mean
�

%xk � kxk��x
k �

sZ
�
��
x
x�k�xdx�

Likewise� the uncertainty along the k�th conjugate axis is measured by the root mean
square deviation of uk for the Fourier transform ��u
 of ��x
�

%uk � k�uk � &u
��u
k �

sZ
�

��

u
u�k�udu�

As in quantum mechanics� we can show %xk%uk � �
�� �Fig� �
� The minimum
joint uncertainty %xk%uk � �
�� is achieved by the Gabor elementary functions�
which are Gaussian�modulated complex exponentials and correspond to the coherent
states of quantum mechanics �Fig� �
�

Gpu�x
 � exp'��kS�x� p
k�( exp'��iu � �x� p
(�

The second� imaginary exponential de�nes a plane wave� the frequency and direction
of the wave packet are determined by the wave vector u� The �rst� real exponential
de�nes a Gaussian envelope centered at p� which has a shape determined by the
diagonal aspect matrix S � diag���� ��� � � � � �n
� which determines the spread in each
variable and its conjugate�

%xk �
�k

�
p
�
� %uk �

���k
�
p
�
�
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Figure �� Gabor Elementary Function �Coherent State
� On the left is a �complex�
valued
 Gabor elementary function of one dimension� on the right is the real part of
a Gabor elementary function of two dimensions�

Each Gabor elementary function occupies a cell in �n�dimensional �Gabor space� of
volume

nY
k��

%xk%uk �
�

���
n
�

Each of these cells corresponds to an elementary unit of information� which Gabor
called a logon�

Now suppose we have a �eld ��x
� �nite in extent and bandwidth in all dimensions�
it occupies a bounded region in �n�dimensional Gabor space� A given choice of
��� ��� � � � � �n will divide this region into cells of minimum size� Corresponding to each
cell will be a Gabor elementary function� we may index them arbitrarily Gk�x
� k �
�� �� � � � � N �

We may calculate N � the number of cells� as follows� Let Xk be the extent of �
along the k�th axis and let Uk be its bandwidth in the k�th conjugate variable� Then
there are mk � Xk
%xk cells along the k�th axis and nk � Uk
%uk along the k�th
conjugate axis� Therefore� the maximum number of cells is

N �
nY

k��

mknk �
nY

k��

Xk

%xk
Uk%xk �

nY
k��

XkUk�

That is� the maximum number of logons of information is given by the volume of the
signal in Gabor space�

Gabor showed that any �nite�energy function could be represented as a superpo�
sition of such elementary functions scaled by complex coe�cients�

j�i �
NX
k��

ckjGki�

However� the Gabor elementary functions are not orthogonal� so the complex coef�
�cients are not given by ck � hGk j �i� Nevertheless� for appropriate choices of the

��



Figure �� Fixed� versus Multiresolution Gabor Cells� In this example the �eld contains
�� logons of information�

parameters� the Gabor elementary functions constitute a tight frame �MacLennan
����
� for which

j�i �
NX
k��

jGkihGk j �i�

The consequence of the foregoing for information theory is that the �eld � has
exactly N independent degrees of freedom� and thus can represent at most N logons
of information �ignoring noise etc�
�

There is considerable evidence �reviewed in MacLennan ����� see also Pribram
����
 that images in primary visual cortex �V�
 are represented in terms of Gabor
wavelets� that is� hierarchically arranged� Gaussian�modulated sinusoids� Whereas
the Gabor elementary functions are all of the same shape �determined by S
� Gabor
wavelets scale %uk with frequency �and %xk inversely with frequency
 to maintain a
constant %uk
uk� thus giving a multiresolution representation� �Typically� they are
scaled by powers of �� see Fig� ��


The Gabor�wavelet transform of a two�dimensional visual �eld generates a four�
dimensional �eld� two of the dimensions are spatial� the other two represent spatial
frequency and orientation� To represent this four�dimensional �eld in two�dimensional
cortex� it is necessary to �slice� the �eld� which gives rise to the columns and stripes
of striate cortex� The representation is nearly optimal� as de�ned by the Gabor
Uncertainty Principle �Daugman ����
� Time�varying two�dimensional visual im�
ages may be viewed as three�dimensional functions of space�time� and it is possi�
ble that time�varying images are represented in vision areas by a three�dimensional
Gabor�wavelet transform� which generates a time�varying �ve�dimensional �eld �rep�
resenting two spatial dimensions� spatial frequency� spatial orientation and temporal
frequency
� The e�ect is to represent the �optic 
ow� of images in terms of spatially
�xed� oriented grating patches with moving gratings� �See MacLennan ���� for more

��



details�
 Finally� Pribram provides evidence that Gabor representations are also used
for controlling the generation of motor �elds �Pribram � al� ����� Pribram �����
pp� �	�)���
�

��� Motion in Direction Fields

Another example of �eld computation in the brain is provided by direction �elds�
in which a direction in space is encoded in the activity pattern over a brain region
�Georgopoulos ����
� Such a region is characterized by a vector �eld D in which the
vector value Du at each neural location u gives the preferred direction encoded by the
neuron at that location� The population code � for a direction r is proportional to
the scalar �eld given by the inner product of r at each point of D� that is� �u 	 r �Du�
Typically� it will have a peak at the location corresponding to r and will fall o� as
the cosine of the angle between this vector and the surrounding neurons� preferred
directions� which is precisely what is observed in cortex� �See MacLennan �����
section $��� for a more detailed discussion�


Field computation is used in the brain for modifying direction �elds� For example�
a direction �eld representing a remembered location� relative to the retina� must be
updated when the eye moves �Droulez � Berthoz ����a� ����b
� and the peak of the
direction �eld must move like a particle in a direction determined by the velocity
vector of the eye motion� The change in the direction �eld is given by a di�erential
�eld equation� in which the change in the value of the direction �eld is given by
the inner product of the eye velocity vector and the gradient of the direction �eld�
d�
dt � v � r�� Each component �x and y
 of the gradient is approximated by a
convolution between the direction �eld and a �derivative of Gaussian� �DoG
 �eld�
which is implemented by the DoG shape of the receptive �elds of the neurons� �See
MacLennan ����� section $�	� for a more detailed discussion�


Other examples of �eld computation in motor control include the control of frog
leg position by the linear superposition of convergent force �elds generated by spinal
neurons �Bizzi � Mussa�Ivaldi ����
� and the computation of convergent vector �elds�
de�ning motions to positions in head�centered space� from positions in retina�centered
space� as represented by products of simple receptive �elds and linear gain �elds
�Andersen ����
� �See MacLennan ����� section $� for more details�


��� Nonlinear Computation in Linear Superposition

One kind of �eld transformation� which is very useful and may be quite common in
the brain� is similar to a radial basis function �RBF� neural network �Fig� ��
� The
input �eld � is a computational map� which encodes signi�cant stimulus values by
the location of peak activity within the �eld �similar to the direction �elds already
discussed
� The transformation has two stages� The �rst stage is a correlation � �
� � � between the input �eld and a local �basis �eld� � �such as a Gaussian
� this
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Figure ��� Field Computation Analogous to Radial Basis Function Network

��



�coarse codes� the stimulus as a pattern of activity� �We do not require the basis
�eld to be strictly radial� ��r
 � f�krk
� although it commonly is�
 This stage is
implemented by a projection �eld to a layer of neurons with identical receptive �eld
pro�les given by the basis �eld �� The second stage is a linear transformation L�
of the coarse�coded �eld� which yields the output �eld� it is also implemented by a
single layer of neurons� Thus the transformation is given by L�� � �
� where � is the
input� � is the basis �eld� and L is the linear transformation�

Now we will carry out the construction in more detail� In an RBF network a
function F � X � Y is approximated by a linear combination of radial functions of
the form�

F �x
 �
NX
k��

Lkf�kx� xkk
�

For a given F � the coe�cients Lk� centers xk and radial function f are all �xed� It
has been shown �Lowe ����� Moody � Darken ����� Wettscherick � Dietterich ����

that simple networks of this form are universal in an important sense� and can adapt
through a simple learning algorithm�

In transferring these ideas to �eld computation� we make three changes� First� as a
basis we use functions ��x�xk
 which need not be radial� although radial functions are
included as a special case� Second� we represent the input x � X by a computational
map 	x � ���
 or� more ideally� by �x� that is� the input will be encoded by a �eld
with a peak of activity at the location corresponding to the input� Finally� in accord
with the goals of �eld computation� we replace the summation with integration�

F �x
 �
Z
�
Lv��x� xv
dv�

There are two parts to this operation� the coarse�coding � of the input by the basis
functions and the linear transformation of the result�

Because� in our continuous formulation� there is a radial function centered at each
possible location in the input space� the coarse�coded result � is de�ned over the same
space as the input� so we may write �y � ��x � y
� However� because the input is
encoded by a map �x� the coarse coding can be accomplished by a correlation�

�y � ��x� y
 �
Z
�
��z � y
�x�z
dz�

so � � � � �x�� The output is then computed as a linear function of the correlation
�eld�

� �
Z
�
Ly�ydy � L� � L�� � �
�

�Note that the output � is typically a �eld� so that �z �
R
� Lzy�ydy�


�This is the sort of projection �eld correlation that we have already discussed� Observe� however�
that the computational map � must preserve distances x� y in X� This restriction may be avoided
by using a slightly more complex projection �eld instead of the correlation �MacLennan 	

�� �������
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Figure ��� Nonlinear Computation in Linear Superposition

Observe that this transformation is linear in its input �eld �which does not imply�
however� that F is a linear function of the stimulus values
� Since� if there are several
signi�cant stimuli� the input �eld will be a superposition of the �elds representing the
individual stimuli� the output will likewise be a superposition of the corresponding
individual outputs� Thus this transformation supports a limited kind of parallel
computation in superposition� This is especially useful when the output� like the
input� is a computational map� so we will explain this nonlinear computation in
linear superposition in more detail�

Suppose that the input �eld is a superposition �x � �x� of two sharp peaks repre�
senting distinct inputs x and x� �Fig� ��
� Since the computation is linear we have
L'�� ��x ��x�
( � F �x
�F �x�
 in spite of the fact that F need not be linear� Further�
if� as is often the case� F has been de�ned to produce a computational map �f�x� for
some �possibly nonlinear
 f � then the network computes both �nonlinear
 results in
superposition�

L'� � ��x � �x�
( � �f�x� � �f�x���
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Figure ��� Fuzzy Computation

Further� due to linearity� if the input maps are weighted by s and s�� perhaps re
ecting
pragmatic factors� such as the importance of the inputs� then the outputs are similarly
weighted�

L'� � �s�x � s��x�
( � s�f�x� � s��f�x���

Finally� we can consider the case in which the input is a �eld 	x� such as a Gaussian�
representing a fuzzy estimate of x� The fuzzy envelope 	 is de�ned 	�y � x
 � 	x�y

�Fig� ��
� We may use the identity

j	xi �
Z
�
jyihy j 	xidy

to compute the output of the network�

j�i � L�� � j	xi

� L

�
� �

Z
�
jyihy j 	xidy

�

� L
Z
�
� � jyihy j 	xidy

��



�
Z
�
L�� � jyi
hy j 	xidy

�
Z
�
F �y
hy j 	xidy

�
Z
�
F �x� r
hx � r j 	xidr

�
Z
�
F �x� r
	�r
dr�

Therefore we get a superposition of the outputs F �x � r
 weighted by the strengths
	�r
 of the deviations r of the input� Alternately� since

� �
Z
�
F �y
	x�y
dy�

we might write j�i � F j	xi� although it must be recalled that F need not be linear�

��� Di�usion Processes

Di�usion processes can be implemented by the spreading activation of neurons� and
they can be used for important tasks� such as path planning �Steinbeck � al� ����

and other kinds of optimization �Miller � al� ����� Ting � Iltis ����
� In a di�usion
process the rate of change of a �eld is directly proportional to the Laplacian of the
�eld� d�
dt 	 r��� The Laplacian can be approximated in terms of the convolution
of a Gaussian with the �eld� which is implemented by a simple pattern of connections
with nearby neurons� d�
dt 	 	 � � � �� where 	 is a Gaussian �eld of appropriate
dimension� �See MacLennan ���� for more details�


� Information Fields

As previously remarked� Hop�eld �����
 has proposed that in some cases the infor�
mation content of a spike train is encoded in the phase of the impulses relative to
some global or local clock� whereas the impulse rate re
ects pragmatic factors� such
as the importance of the information� Phase�encoded �elds of this sort are typical
of the separation of semantics and pragmatics that we �nd in the nervous system�
Information is inherently idempotent� repeating a signal does not a�ect its seman�
tics� although it may a�ect its reliability� urgency and other pragmatic factors� the
idempotency of information was recognized already by Boole in his Laws of Thought�

This characteristic of information may be illustrated as follows�

YES NO

YES NO

��



The horizontal distinction is semantic� the vertical is pragmatic� The information is
conveyed by the di�erence of form� *YES� versus *NO�� The di�erence of size may
a�ect the urgency� con�dence or strength with which the signal is processed� We may
say that the form of the signal guides the resulting action� whereas its magnitude
determines the amount of action �Bohm � Hiley ���	� pp� 	�)	$
�

Likewise� an information �eld represents by virtue of its form� that is� the relative
magnitude and disposition of its parts� its signi�cance is a holistic property of the
�eld� The overall magnitude of the �eld does not contribute to its meaning� but may
re
ect the strength of the signal and thereby in
uence the con�dence or urgency with
which it is used� Thus a physical �eld � may be factored � � s�� where s � jj�jj is
its magnitude and � is the �normalized
 information �eld� representing its meaning�
Information �elds can be identi�ed in the brain wherever we �nd processes that
depend on the form of a �eld� but not on its absolute magnitude� or where the form
is processed di�erently from the magnitude� Information �elds are idempotent� since
repetition and scaling a�ect the strength but not the form of the �eld�

� � � � �� � ��s
��

Therefore entropy is an information property� since it is depends only on the form of
the �eld� independent of magnitude�

S��
 �
Z
�

�u

k�k log

�
�u

k�k

�
du �

Z
�
�u log �udu � tr�� log �
 � S��
�

In the foregoing we have been vague about the norm k�k we have used� In many
cases it will be the familiar L� norm� k�k �

ph� j �i� but when we are dealing with
information �elds we should select the norm appropriate to the measure of �action�
resulting from the �eld�

Information �elds are also central to quantum mechanics� For example� the quan�
tum mechanical state j�i is considered undetermined with respect to magnitude �e�g�
Dirac ����� p� ��
� so zj�i is the same state as j�i for any �nonzero
 complex z�
That is� quantum mechanical states are idempotent� Conventionally� the state is nor�
malized k�k� � h� j �i � �� so that its square is a probability density function�
�x � j�xj��

Of course� this independence of magnitude is also characteristic of the quantum
potential� which has led Bohm � Hiley ����	
 to characterize this �eld as active
information� Thus �following Bohm � Hiley� pp� ��)��
� if we write the wave function
in polar form� �x � Rxe

iSx��h� then the motion of a single particle is described

�Sx
�t

�
�rSx
�

�m
� Vx � Qx � ��

where the quantum potential is de�ned

Qx � � &h�

�m

r�Rx

Rx

�

��



Notice that because the Laplacian r�Rx is scaled by Rx� the quantum potential
depends only on the local form of the wave function� Further� since scaling the wave
function does not a�ect the quantum potential� Q�z�
 � Q��
� we see that the
quantum potential depends only on the form of the wave function� As with many
�elds in the brain� the strength and form a�ect the action in di�erent ways� the
particle moves under its own energy but the quantum potential controls the energy�

� Discrete Symbols as Field Excitations

In quantum �eld theory discrete particles are treated as quantized excitations of the
�eld� Similarly� we have seen particle�like motion of direction �elds in the brain �Sec�
tion ���
� Therefore it will be worthwhile to see if �eld computation can illuminate
the emergence of discrete symbols from continuous neurological processes� Although
traditional� symbolic arti�cial intelligence takes discrete symbols as givens� under�
standing their emergence from continuous �elds may help to explain the 
exibility of
human cognition �MacLennan ����a� ����b� ����
�

Mathematically� atomic symbols have a discrete topology� which means there are
only two possible distances between symbols� � if they are the same and � if they
are di�erent� This property also characterizes orthonormal �elds �base states
� which
means that orthonormal �elds are a discrete set� To see this� observe that if w�w� are
distinct orthonormal �elds� then hw j w�i � � and hw j wi � �� Therefore� we de�ne
the discrete metric� d�w�w�
 � �

�
kw � w�k� � ��

The simplest examples of such orthonormal �elds are localized patterns of activity
approximating Dirac delta functions� Thus distinct symbols w�w� might be repre�
sented by �elds �w� �w�� h�w j �w�i � � and h�w j �wi � �� More realistically we may
have broader patterns of activity 	w� 	w� � so long as they are su�ciently separated�
h	w j 	w�i � �� �If this seems to be a very ine�cient way of representing symbols�
it is worth recalling that cortical density is approximately ��$ thousand neurons per
square millimeter�
 Such localized patterns of activity may behave like particles� but
they also may be created or destroyed or exhibit wave�like properties� However� the
discrete topology is not restricted to localized patterns of activity� Nonlocal orthonor�
mal �elds �w have exactly the same discrete properties� h�w j �w�i � �� h�w j �wi � ��
�Such patterns are less easily detected through imaging� however�


Further� wave packets� such as coherent states �Gabor elementary functions
� can
emerge from the superposition of a number of nonlocal oscillators of similar frequency�
�A coherent state results from a Gaussian distribution of frequencies�
 The position
of the particle is controlled by the relative phase of the oscillators �recall Section 	��

and its compactness by the bandwidth of the oscillators� �The frequency of the wave
packet could encode the role �lled by the symbol or establish symbol binding�


The �eld approach allows discrete symbols to be treated as special cases of con�
tinuous �eld computation� This illuminates both how discrete symbols may be repre�
sented by continuous neural processes and how discrete symbol processing may merge

�	



with more 
exible analog information processing�

� Field Computing Hardware

Field computation can� of course� be performed by conventional digital computers or
by special�purpose� but conventional digital hardware� However� as noted previously�
neural computation and �eld computation are based on very di�erent tradeo�s from
traditional computation� which creates the opportunity for new computing technolo�
gies better suited for neural computation and �eld computation �which is broad but
shallow
� The ability to use slow� low precision analog devices� imprecisely connected�
compensates for the need for very large numbers of computing elements� These char�
acteristics suggest optical information transmission and processing� in which �elds are
represented by optical wavefronts� They also suggest molecular processes� in which
�elds are represented by spatial distributions of molecules of di�erent kinds or in
di�erent states �e�g� bacteriorhodopsin
� Practical �eld computers of this kind will
probably combine optical� molecular and electrical processes for various computing
purposes�

For example� Mills �����
 has designed and implementedKirkho� machines� which
operate by di�usion of charge carriers in bulk silicon� This is a special purpose �eld
computer which �nds the steady state de�ned by the di�usion equation with given
boundary conditions� Mills has applied it to a number of problems� but its full range
of application remains to be discovered�

Further� Skinner � al� �����
 have explored optical implementations of �eld com�
puters corresponding to feed�forward neural nets trained by back�propagation� The
�elds are represented in �self�lensing� media� which respond nonlinearly to applied ir�
radiance� The concept has been demonstrated by means of both computer simulation
and an optical table prototype�

To date� much of the work on quantum computing has focused on quantum me�
chanical implementation of binary digital computing� However� �eld computation
seems to be a more natural model for quantum computation� since it makes better
use of the full representational potential of the wave function� Indeed� �eld computa�
tion is expressed in terms of Hilbert spaces� which also provide the basic vocabulary
of quantum mechanics� Therefore� since many �eld computations are described by
the same mathematics as quantum phenomena� we expect that quantum computers
may provide direct� e�cient implementations of these computations� Conversely� the
mathematics of some quantum�mechanical processes �such as computation in linear
superposition
 can be transferred to classical systems� where they can be implemented
without resorting to quantum phenomena� This can be called quantum�like comput�
ing� and it may be quite important in the brain �Pribram ����
�
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� Concluding Remarks

In this article I have attempted to provide a brief overview of �eld computation� pre�
senting it as a model of massively parallel analog computation� which can be applied
to natural intelligence� implemented by brains� as well as to arti�cial intelligence�
implemented by suitable �eld computers� Along the way we have seen many parallels
with quantum mechanics� so each may illuminate the other� In particular� we have
seen that ��
 �eld computation takes parallel computation to the continuum limit� ��

much information processing in the brain is usefully described as �eld computation�
�	
 the mathematics of �eld computation has much in common with the mathematics
of quantum mechanics� ��
 computational maps permit nonlinear computation in lin�
ear superposition� and ��
 information �elds are important in both neurocomputation
and quantum mechanics� It is my hope that this overview of �eld computation will
entice the reader to look at the more detailed presentations listed in the references
and perhaps to explore the �eld computation perspective�
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