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1.0 Is Cognition Discrete or Continuous?

1.1 Although I hate to haggle over words, Harnad’s use of ‘analog’ confuses
a number of issues. The problem begins with the phrase ‘analog world’
in the title, which does not correspond to any technical or nontechnical
usage of ‘analog’ with which I'm familiar. Although I don’t know pre-
cisely what he means by ‘analog’, it is clearly related to the distinction
between analog and digital computers, so I'll consider that first.

1.1.1 In traditional terminology, analog computers represent variables by
continuously-varying quantities, whereas digital computers represent
them by discretely-varying quantities (typically, voltages, currents, charges,
etc. in both cases). Thus the difference between analog and digital com-
putation lies in a distinction between the continuous and the discrete,
but it is not the precise mathematical distinction. What matters is the
behavior of the system at the relevant level of analysis. For example,
in an analog computer we treat charge as though it varies continuously,
although we know it’s quantized (electron charges). Conversely, in a
digital computer we imagine we have two-state devices, although we
know that the state must vary continuously from one extreme state to
the other (voltage cannot change discontinuously). The mathematical
distinction between discrete and continuous is absolute, but irrelevant
to most physical systems.



1.1.2 Many complex systems are discrete at some levels of analysis and con-
tinuous at others. The key questions are: (1) What level of analysis
is relevant to the problem at hand? (2) Is the system approximately
discrete or approximately continuous (or neither) at that level? One
conclusion we can draw is that it can’t matter whether an analog com-
puter system (such as a neural net) is “really” being simulated by a
digital computer, or for that matter whether a digital computer is “re-
ally” being simulated by an analog computer. It doesn’t matter what’s
going on below the level of relevant analysis. So also in the question
of whether cognition is more discrete or more continuous, which I take
to be the main issue in the symbolic/connectionist debate. This is a
significant empirical question, and the importance of connectionism is
that it has tipped the scales in favor of the continuous.

1.2 Having considered the differences between analog and digital comput-
ers, I'll now consider their similarities, which I think are greater than
Harnad admits.

1.2.1 First, both digital and analog computers provide state spaces, which
can be used to represent aspects of the problem. In digital computers
the set of states is (approximately) discrete, e.g., most of the time the
devices are in one of two states (i.e., 0 and 1). On the other hand, in
analog computers the set of states is (approximately) continuous, e.g.,
in going from 0 to 1 it seems to pass through all intermediate values. In
both cases the physical quantities controlled by the computer (voltages,
charges, etc.) correspond to quantities or qualities in the problem being
solved (e.g., velocities, masses, decisions, colors).

1.2.2 Both digital and analog computers allow the programmer to control
the trajectory of the computer’s state through the state space. In
digital computers, difference equations describe how the state changes
discretely in time, and programs are just generalized (numerical or non-
numerical) difference equations (MacLennan 1989, 1990a, pp. 81, 193).
On the other hand, in analog computers, differential equations describe
how the state changes continuously in time. In both cases the actual
physical quantities controlled by the computer are irrelevant; all that
matters are their “formal” properties (as expressed in the difference



or differential equations). Therefore, analog computations are inde-
pendent of a specific implementation in the same way as are digital
computations. Further, analog computations can support interpreta-
tions in the same way as can digital computations (a point elaborated
upon below).

1.3 In the theory of computation we study the properties of idealized com-
putational systems. They are idealized because they make certain ide-
alizing assumptions, which we expect to be only approximately instan-
tiated in reality. For example, in the traditional theory of discrete
computation, we make such assumptions as that tokens can be un-
ambiguously separated from the background, and that they can be
unambiguously classified as to type.

1.3.1 The theory of discrete computation has been well developed since
the 1930s and forms the basis for contemporary symbolic approaches
to cognitive modeling. In contrast, though exploration of continuous
computation has been neglected until recently, we expect that contin-
uous computational theory will provide a foundation for connectionist
cognitive models (MacLennan 1988, in press-a, in press-b). Although
there are many open questions in this theory — including the proper
definition of computability, and of universal computing engines analo-
gous to the Universal Turing Machine — the general outlines are clear
(MacLennan 1987, 1990c, in press-a, in press-b; Wolpert & MacLennan
submitted; see also Blum 1989; Blum & al. 1988; Franklin & Garzon
1990; Garzon & Franklin 1989, 1990; Lloyd 1990; Pour-El & Richards
1979, 1981, 1982; Stannett 1990).

1.8.2 In general, a computational system is characterized by: (1) a formal
part, comprising a state space and processes of transformation; and (2)
an interpretation, which (a) assigns meaning to the states (thus making
them representations), (b) assigns meaning to the processes, and (c) is
systematic. For continuous computational systems the state spaces and
transformation processes are continuous, just as they are discrete for
discrete computational systems. Systematicity requires that meaning
assignments be continuous for continuous computational systems, and
compositional for discrete computational systems (which is just conti-
nuity under the appropriate topology).
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1.4 Whether discrete or continuous computation is a better model for cogni-
tion is a significant empirical question. Certainly connectionism shows
great promise in this regard, but it leaves open the question of how rep-
resentations get their meaning. The foregoing shows, I hope, that the
continuous/discrete (or analog/digital) computation issue is not essen-
tial to the symbol grounding problem. I don’t know if Harnad is clear
on this; sometimes he seems to agree, sometimes not. What, then, is
essential to the problem?

2.0 How Do Representations Come to Represent?

2.1 After contemplating the Chinese Room Argument for about a decade
now, I've come to the conclusion that the “virtual minds” form of the
Systems Reply is basically correct. That is, just as a computer may
simultaneously be several different programming language interpreters
at several different levels (e.g. a machine language program interpret-
ing a LISP program interpreting a PROLOG program), and thereby
instantiate several virtual machines at different levels, so also a physi-
cal system could simultaneously instantiate several minds at different
levels. There is no reason to suppose that these “virtual minds” would
have to be aware of one another or that the system would exhibit any-
thing like multiple personality disorder. Nevertheless, Harnad offers
no argument against the virtual minds reply, although perhaps we are
supposed to interpret his summary dismissal (“unless one is prepared
to believe,” 4.2) as an argument ad hominem. He admits in Hayes &
al. (1992) that it is a matter of intuition rather than of proof.

2.2 However, I agree with Harnad and Searle that symbols do not get their
meanings merely through their formal relations with other symbols,
which is in effect the claim of computationalism (analog or digital). In
this sense, connectionist computationalism is no better than symbolic
computationalism.

2.2.1 There is not space here to describe an alternate approach to these
problems, but I will outline the ideas and refer to other sources for the
details. Harnad argues that there is an “impenetrable ‘other-minds’
barrier” (Hayes & al. 1992), and from a philosophical standpoint that
may be true, but from a scientific standpoint it is not. Psychologists



and ethologists routinely attribute “understanding” and other mental
states to other organisms on the basis of external tests. The case of
ethology is especially relevant, since it deal with a range of mental
capabilities, which, it’s generally accepted, includes understanding and
consciousness at one extreme (the human), and their absence at the
other (say, the amoeba). Therefore it becomes a scientific problem to
determine whether an animal’s response to a stimulus is an instance of
it understanding the meaning of a symbol or merely responding to its

physical form (Burghardt 1970; Slater 1980).

2.2.2 Burghardt (1970) solves the problem of attributing meaning to sym-
bols by defining communication in terms of behavior that tends to
influence receivers in a way that benefits the signaller or its group. Al-
though it may be difficult in the natural environment to reduce such
a definition to operational terms, the techniques of synthetic ethol-
ogy allow carefully-controlled experimental investigation of meaningful
symbol use (MacLennan 1990b, 1992; MacLennan & Burghardt sub-
mitted). (For example, we’ve demonstrated the evolution of meaningful
symbol use from meaningless symbol manipulation in a population of
simple machines.)

2.3 Despite our differences, I agree with Harnad’s requirement that meaning-
ful symbols be grounded. Furthermore, representational states (whether
discrete or continuous) have sensorimotor grounding, that is, they are
grounded through the system’s interaction with its world. This makes
transduction a central issue in symbol grounding, as Harnad has said.

2.3.1 Information must be materially instantiated — represented in a con-
figuration of matter and energy — if it is to be processed by an animal
or a machine. A pure transduction changes the kind of matter or energy
in which information is instantiated. Conversely, a pure computation
changes the configuration of matter and energy — thus processing the
information — without changing its material embodiment. We may
say that in transduction the form is preserved but substance is changed.
In computation, in contrast, the form is changed but the substance re-
mains the same. (Most actual transducers do not do pure transduction,
since they change the form as well as the substance of the information.)



2.3.2 Observe that the issue of transduction has nothing to do with ana-
log/digital (continuous/discrete) computation question; transduction
can be either continuous or discrete depending on the kind of informa-
tion represented. Continuous transducers transfer an image from one
space of continuous physical variables to another; examples include the
retina and robotic sensor and effector systems. Discrete transducers
transfer a configuration from one discrete physical space to another;
examples include photosensitive switches, toggle switches, and on/off
pilot lights.

2.3.3 Harnad seems to be most interested in continuous-to-discrete trans-
duction, if we interpret his ‘analog world” to mean the world of physics,
which is dominated by continuous variables, and we assume the output
of the transducers are discrete symbols. The key point is that the spe-
cific material basis (e.g. light energy) for the information “out there”
is converted to the unspecified material basis of formal computation in-
side the computer. Notice, however, that this is not pure transduction,
since in addition to changing the substance of the information it also
changes its form; in particular it must classify the continuous image
in order to assign it to one of the discrete symbols, and so we have
computation as well as transduction. (We can also have the case of
an “impure” discrete-to-continuous transduction; an example would be
an effector that interpolates between discretely specified states. Impure
continuous/continuous and discrete/discrete transducers also occur; an
analog filter is an example of the former.)

3.0 Conclusions

3.1 Harnad’s notion of symbol grounding is an important contribution to the
explanation of intentionality, meaning, understanding and intelligence.
However, I think he confuses things by mixing it up with several other,
independent issues. One is the important empirical question of whether
discrete or continuous representational spaces and processes — or both
or neither — are a better explanation of information representation and
processing in the brain. The point is that grounding is just as important
an issue for continuous (analog) computation as for discrete (digital)
computation. Second, Harnad ties the necessity of symbol grounding
to Searle’s Chinese Room Argument with its problematic appeal to



consciousness. This is unnecessary, and in fact he makes little use of the
Chinese Room except to argue for the necessity of transduction. There
is no lack of evidence for the sensorimotor grounding of meaningful
symbols. Given the perennial doubt engendered by Searle’s argument,
I would prefer to depend upon a more secure anchor.
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