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Abstract

This report presents synthetic ethology as a new tool for the investigation of
animal cognition. In synthetic ethology a population of simulated organisms is
created inside a computer and allowed to evolve within a specified environment.
Since we create the organisms and the world they inhabit, we are free to make
them as simple or as complex as required for the investigation. The mechanisms
underlying the organisms’ behavior is fully explicit and accessible to the inves-
tigator; there can be no “ghost in the machine.” Synthetic ethology permits
investigations spanning a wide range of time and space scales, from simulated
nervous system activity, to individual behavior, to group behavior and commu-
nication, up to populations. Thus cognitive capacities can be investigated in
their full ethological context.

1 Goals

Synthetic ethology is based on several methodological commitments. First, it is based
on the conviction that research into cognition should investigate behavior and the
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mechanisms underlying that behavior in the agents’ environment of evolutionary
adaptiveness. Second, this investigation should extend over structural scales from
the neurological mechanisms underlying behavior, through individual agents, to the
behavior of populations, and over time scales from neurological processes, through
agents’ actions, to the evolutionary time scale. Obviously, such a wide range of scales
is difficult to encompass in investigations of natural systems. Third is the observation
that the discovery of deep scientific laws (especially quantitative ones) requires the
sort of control of variables that can be achieved only in an artificial experimental
setup.

Therefore we are faced with conflicting demands. On the one hand, we need
precise experimental control. On the other, ecological validity dictates that agents
be studied in their environment of evolutionary adaptiveness, where are there are
innumerable variables, which are not amenable to independent control. Synthetic
ethology intends to reconcile these conflicting requirements by constructing a synthetic
world in which the phenomena of interest may be investigated. Because the world is
synthetic, it can be much simpler than the natural world and thereby permit more
careful experimental control. However, although the world is synthetic and simple, it
is nevertheless complete in that the agents exist, live, and evolve in it.

The original motivation for synthetic ethology came from one of the central prob-
lems in cognitive science: the nature of intentionality, the property that makes mental
states about something. We felt that an understanding of intentionality would have
to encompass both the underlying mechanisms of intentional states and the social-
evolutionary structures that lead to the creation of shared meaning. Our analysis of
intentionality concluded that something is intrinsically meaningful to an agent when
it is potentially relevant to an agent or to its group in its environment of evolution-
ary adaptedness (MacLennan 1992). Therefore intentionality must be studied in an
evolutionary context.

We began our investigation with communication, since it involves both inten-
tionality and shared meaning. We will show in this chapter how synthetic ethology
permits the investigation of signals that are inherently meaningful to the signalers,
as opposed to those to which we, as observers, attribute meaning.

2 Methods

The agents that populate our synthetic worlds can be modeled in many different ways;
in particular there are a variety of ways of governing their behavior, including simu-
lated neural networks and rule-based representations. In the experiments described
here, an agent’s behavior was controlled by a set of stimulus-response rules (64 rules,
in these experiments). These rules were determined by an agent’s (simulated) genetic
string, but they could be modified by a simple learning mechanism (described below).

Since our goal is to investigate the synthetic agents in their environment of evo-
lutionary adaptedness, they must evolve. Therefore our world includes a simplified



form of simulated evolution, which proceeds as follows. Periodically two agents are
chosen to breed, the probability of which is proportional to their “fitness” (as de-
scribed later). The genetic strings of the two parents are mixed so that each of the
offspring’s genes comes form one or the other of the parents. In addition, there is
a small probability of a gene being mutated. The resulting genetic string is used
to create the stimulus-response rules for the single offspring, which is added to the
population. In order to maintain a constant population size (100, in these experi-
ments), one agent was chosen to “die” (i.e. to be removed from the population), the
probability of dying being inversely related to “fitness.”

We take this opportunity to illustrate the sort of experimental control permitted
by synthetic ethology. Because we have complete control over the experimental setup
and the course of evolution, we may begin with genetically identical populations
and observe their evolution under different experimental conditions. If something
interesting is observed in the course of an experiment, we may rerun the exact course
of the evolution of the population to that point, and then make additional observations
or experimental interventions to investigate the phenomena. Finally, whenever any
interesting phenomena are observed, there can be no fundamental mystery, for all the
mechanisms are transparent. If some agent exhibits interesting behavior, its entire
mechanism is available for investigation. There can be no “ghost in the machine.”

In synthetic ethology there is no requirement to model the natural world, so long
as the synthetic world retains the essential characteristics of the natural world. That
is, although determinate laws govern the evolution of our experimental populations,
we are able to decide our world’s “physical laws,” which determine whether an agent
“lives” or “dies,” and which select agents to reproduce. The goal, of course, is to
create synthetic worlds that are like the natural world in relevant ways, but are much
simpler to study. The following experiment will illustrate what can be accomplished.

3 Demonstrating the Evolution of Communication

3.1 Methods

Our first series of experiments investigated whether it was even possible for genuine,
meaningful communication to evolve in an artificial system. Therefore we decided
to construct the simplest possible system that could be expected to lead to real
communication.

Although there are many purposes for which an agent might be expected to com-
municate, we decided to focus on cooperation. Our reasoning was that communication
could be expected to evolve in a context in which some agents have information that
other agents could use to facilitate cooperation. Therefore we gave each agent a local
environment, which could be sensed by that agent but by no other. It can be thought
of as the situation in an animal’s immediate vicinity, but to keep the model as simple
as possible, we limited the local environments to be in a small number of discrete



states (eight, in these experiments).

To make the state of one agent B’s local environment relevant to another agent A,
we arranged that they could cooperate only if A performed an action suitable for B’s
environment. To make this cooperation as simple as possible, we made our agents
capable of producing an action from the same set as the local-environment states.
Thus A could cooperate with B only by producing the same item as was in B’s local
environment, which A could not sense directly.

To select for cooperation we simply measured the number of times, over a specified
period, that each agent was involved in successful cooperations. The probability of
an agent reproducing was made proportional to this rate of cooperation, and its
probability of dying was inversely related to the rate in a simple way. Thus we placed
selective pressure on cooperation but not directly on communication; indeed, limited
cooperation can be achieved by random action (which has a 1/8 chance of succeeding).

Our experiments implemented only micro-evolution, so our agents were unable to
evolve new sensor or effector organs. Therefore, we gave our agents organs that might
be used for communication, but we did not construct the agents to use them in this
or any other way.

Again, simplicity was our principle aim. Therefore we equipped our synthetic
world with a simple global environment, shared by all the agents, which could be
in one of a few discrete states (eight, in these experiments). The agents had the
physical capability of sensing and modifying this global environment. Specifically,
the state of the global environment is part of the stimulus to which an agent reacts,
and the response can be either a new state for the global environment or an attempt
to cooperate.

To test the potential effects of communication on cooperative behavior, we im-
plemented a mechanism for making communication impossible. Specifically, when
communication is being suppressed we periodically randomize the state of the global
environment. This allowed us to measure the effect of apparent communication on
the fitness (rate of cooperation) of the population, since genuine communication is
defined in terms of its effect on the fitness of the communicators (Burghardt 1970).

We also investigated a very simple form of single-case learning, which could be
enabled or disabled. When enabled, learning took place when an agent attempted
to cooperate, but failed. Specifically, if agent A attempted cooperation L, but the
last signaler’s local-environment state was L' # L, then the rule of A that led to
this action was changed to try L’ instead. In other words, the rule used was changed
to what would have been correct in this situation (although there is no guarantee
that it would be the correct response in the future). This simple, single-case learning
rule is potentially destabilizing, since it allows occasional errors to corrupt effective
communicators, but it is a start towards investigating learning.

We initialized our population with 100 individuals with random genetic strings.
Therefore, the stimulus-response rules governing their behavior, which were deter-
mined by their genomes, were also initially random.
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Figure 1: Degree of Coordination a: Communication Permitted with Learning Dis-
abled

3.2 Results

To be able to measure the effect of communication on the fitness of a population, we
quantified the fitness by the number of successful cooperations per unit time, which
we call the degree of coordination of the population. (The unit of time is a “breeding
cycle,” in which one individual dies and one is born.) Because there is considerable
random variation in the degree of coordination, the time series was smoothed by
a moving average. Linear regression was used to establish the rate at which the
degree of coordination (fitness) was increasing or decreasing. Details can be found in
MacLennan (1990, 1992) and MacLennan & Burghardt (1993).

The baseline for comparison is determined by suppressing all possible communi-
cation, as previously described. In this case the degree of coordination stays near to
6.25 cooperations per unit time, the level predicted by analysis to occur in the ab-
sence of communication. Linear regression shows a slight upward trend in the degree
of cooperation, which can be expressed as a rate of fitness increase: 3.67 x 10~° coop-
erations per unit time per unit time. (The reason for this upward trend is discussed
in the papers cited).

On the other hand, when communication was not suppressed, we found that the
degree of coordination increased at a rate of 9.72 x 10~* cooperations / unit time /
unit time, which is 26 times faster than when communication was suppressed. Over an
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Figure 2: Degree of Coordination a: Communication Permitted and Learning En-
abled

interval of 5000 breeding cycles, the degree of coordination reached 10.28 cooperations
/ unit time, which is 60% higher than the 6.25 achieved when communication was
suppressed (Fig. 1).

When the agents were permitted to learn from their mistakes, fitness increased
even faster: 3.71 x 103 cooperations / unit time / unit time, which is 3.82 times the
rate when learning was disabled, and approximately 100 times the rate when commu-
nication was suppressed. Furthermore, the degree of cooperation begins higher than
in the other cases, because the population is given several opportunities to respond to
a particular situation before the local environments are re-randomized. Therefore, an
agent has the opportunity to learn from its mistake and to respond correctly several
more times before the local environments are changed. Thus we observe the degree
of coordination to begin at approximately 45 cooperations / unit time (as opposed
to the 6.25 without learning), and to climb rapidly to 59.84 cooperations / unit time,
which is 857% above the level achieved without communication (Fig. 2).

As would be expected for experiments of this kind, there is considerable exper-
imental variation from run to run. Nevertheless, the results we have described are
typical over more than one hundred experiments. Therefore, we can conclude that
genuine, meaningful communication is taking place, for it is enhancing significantly
the fitness of the population. Furthermore, since communication evolves in our pop-
ulation when it is not suppressed, we may investigate genuine communication in its



environment of evolutionary adaptedness.

Since it is genuine communication, the signals passed among the agents are mean-
ingful to them, but not necessarily to us as observers. That is, we have the opposite
situation from artificial intelligence, in which the computer manipulates symbols that
are meaningful to us but meaningless to it (or, more precisely, have only derived
meaning dependent on the meaning we attribute). Here we are in the same situation
as in natural ethology: we are faced with apparently meaningful communication and
must discover its meaning for the communicators.

Even in these simple experiments, signals and their interpretation are complex
functions of the total situation. The signal emitted by an agent may depend on
both its local environment and the shared global environment. Further, an agent’s
interpretation (use) of a signal may (and typically is) influenced by its own local
environment.

Nevertheless, we would expect that over time a simple meaning would emerge for
the signals; that is, that there would be a one-to-one correspondence between sig-
nals and local-environment states. To determine if this was occurring, we compiled a
co-occurrence table, which recorded the number of times particular pairings of signal
(global-environment state) with meaning (local-environment state) occurred in suc-
cessful cooperations. So that we could track changes over time, the table at any given
point of time reflected only recent activity by the agents.

If no communication were taking place, one would expect all signal /meaning com-
binations to be about equally likely, and that is what we found when communication
was suppressed, and at the beginning of the simulations when it was not. How-
ever, when communication was not suppressed, the co-occurrence tables became more
structured as the “language” self-organized.

We quantified the organization of the co-occurrence tables in a number of dif-
ferent ways, including entropy, a measure of disorder (so lower numbers represent
greater organization). With our experimental design, the maximum entropy, when
all signal/meaning pairs are equally likely, is 6 bits, but when there is a one-to-one
symbol/meaning correspondence, the entropy is 3 bits. When communication was
suppressed we observed an entropy of 4.95 bits, which shows that it is not completely
disordered, but when communication was not suppressed, the entropy decreased (after
5000 breeding cycles) to 3.87, representing a much higher degree of organization.

Visual inspection of the evolved co-occurrence tables showed a number of cases
in which, almost always, a particular signal corresponds to a particular meaning
and vice versa. However, we also observe cases of ambiguity, in which a signal is
more or less equally likely to correspond to two or more meanings, and cases of
synonymy, in which two or more signals are about equally likely to correspond to a
particular meaning. These cases could result from individual agents using ambiguous
or synonymous symbols, or from two or more competing “dialects” in the population,
but Noble & CIliff (1996) have evidence supporting the former hypothesis.

The observations heretofore described can be called behavioral and are analogous



to those made in natural ethology. However, synthetic ethology affords additional
possibilities, for the structure of the agents is completely transparent. At any time we
may “dissect” the agents and analyze their behavioral programs (see MacLennan 1990
for examples). Thus we may relate the mechanisms of behavior to their manifestations
in the population.

3.3 Brief Overview of Other Experiments

We have been interested in whether a population would evolve to use sequences of
symbols for communication, were there selective advantage in doing so. Therefore
my students and I have conducted a number of experiments, similar to those already
described; details may be found in MacLennan (in press) and in the references cited
therein. In these experiments the agents evolved the ability to communicate with
pairs of symbols displaying a very rudimentary “syntax,” but the results have been
less than we expected. One explanation may be that the very simple behavioral model
we used (finite-state machines) is too weak for the sequential perception and control
required for more complex communication. Animals, in contrast, have rich, highly
structured perceptual-motor systems, which evolution can recruit for communication.
Therefore, future experiments might need to use more complex agent models, as well
as a more structured environment about which they might communicate.

We have conducted some experiments using neural networks as behavioral models,
but they have not produced substantially different results. Most likely this is because
the nets that we have used are about as unstructured as the finite-state machines.

4 Discussion

Of necessity, our discussion of related and future work and of implications must
be brief. Noble & CIliff (1996) have replicated our earliest studies and extended
them in a number of informative ways. A somewhat different approach can be found
in Werner & Dyer (1992), which demonstrated the evolution of communication by
making it necessary for effective reproduction. Steels (1997a, 1997b) has conducted
fundamental studies of the emergence of meaningful symbols.

In discussing related work, it may be worthwhile to make a few remarks about
the connection between synthetic ethology and two related disciplines, artificial life
and artificial language. First, it must be stressed that there is substantial overlap
between the three, so that the difference is at most one of emphasis.

Artificial life studies artificial systems that are significantly “lively” in some sense.
Some investigators are attempting to create systems that are literally alive, while
others are content with systems that faithfully imitate life. In ether case, the artificial
systems may exist as robots or as patterns of electrical activity in a computer’s
memory. Synthetic ethology differs in that the agents need not be alive in either of



these senses, although they may be. Certainly, we make no claim that the agents
described in this report are alive in any literal sense.

Artificial language research, the newest discipline of the three, uses computers to
study the formal processes governing the formation and evolution of languages (e.g.
Kirby 2000a, 2000b). It tends to concentrate on the sorts of complex syntactic and
semantic structures found in human languages, and tends to treat the languages as
autonomous systems independent of the behavior and evolution of the agents that
use them. Although one of the original goals of synthetic ethology was to study
the evolution of human-like languages, to date it has been limited to very simple
communication systems. Another difference is that synthetic ethology may be applied
to other kinds of behavior besides communication. Future work, however, might
combine synthetic ethology and artificial language techniques.

Current experiments in synthetic ethology are too simple to exhibit psychological
states, but future ones may be; we do claim that even the current experiments do
exhibit genuine intentionality. Nevertheless, synthetic ethology indicates how psycho-
logical states may be made accessible to scientific investigation.

We have claimed that our agents (although they are not conscious, nor even alive)
exhibit genuine intentionality. The point is certainly arguable and depends on our
analysis of intentionality. Nevertheless, all subtleties aside, we claim that the signals
are inherently meaningful to the agents because the agents’ continued persistence as
organized systems depends on their use of the signals.

Are these synthetic worlds and agents so alien that results will not be seen as
relevant to nature? In particular, we have argued that we can use abstract, ad
hoc selection rules (since the “laws of physics” are under our control), but it can
be objected that selection should be more naturalistic (e.g. Werner & Dyer 1992).
Certainly, this is an important issue, and in the long run we want to explore ever richer
synthetic worlds, but to introduce gratuitous complexity would defeat the goals of
synthetic ethology.

One of the advantages of synthetic ethology is that we can make our worlds as
simple as possible, so long as they include the phenomena of interest. On the other
hand, we must construct these worlds from scratch; they are not given to us. This
becomes a challenge as we begin to investigate phenomena that require larger pop-
ulations of more complex agents acting in more complex environments. Simulating
such worlds requires ever more powerful computers. Therefore synthetic ethologists
must strike a delicate balance between the sophistication of the synthetic world and
the resources required to implement it. Indeed, as we move in the direction of greater
complexity, synthetic ethology will face some of the same problems as natural ethol-
ogy. Nevertheless, by affording greater control and an alternative to natural life, it
will remain a worthwhile approach.
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