
PHP: Constructs and Variables
Introduction
This document describes:

1. the syntax and types of variables,
2. PHP control structures (i.e., conditionals and loops),
3. mixed-mode processing,
4. how to use one script from within another,
5. how to define and use functions,
6. global variables in PHP,
7. special cases for variable types,
8. variable variables,
9. global variables unique to PHP,
10. constants in PHP,
11. arrays (indexed and associative), and
12. common array, number, and string manipulation functions.

Brief overview of variables
The syntax for PHP variables is similar to C and most other programming languages. There are three primary differences:

1. Variable names must be preceded by a dollar sign ($).
2. Variables do not need to be declared before being used.
3. Variables are dynamically typed, so you do not need to specify the type (e.g., int, float, etc.).

Here are the fundamental variable types, which will be covered in more detail later in this document:
• Numeric

o integer. Integers (±231); values outside this range are converted to floating-point.
o float. Floating-point numbers.
o boolean. true or false; PHP internally resolves these to 1 (one) and 0 (zero) respectively. Also as in C, 0

(zero) is false and anything else is true.
• string. String of characters.
• array. An array of values, possibly other arrays. Arrays can be indexed or associative (i.e., a hash map).
• object. Similar to a class in C++ or Java. (NOTE: Object-oriented PHP programming will not be covered in this

course.)
• resource. A handle to something that is not PHP data (e.g., image data, database query result).

PHP has a useful function named var_dump() that prints the current type and value for one or more variables. Arrays and
objects are printed recursively with their values indented to show structure.

$a = 35;
$b = "Programming is fun!";
$c = array(1, 1, 2, 3);
var_dump($a,$b,$c);

Here’s the output from the above code.

int(35)
string(19) "Programming is fun!"
array(6) {
 [0]=>
 int(1)
 [1]=>
 int(1)
 [2]=>
 int(2)
 [3]=>
 int(3)
}

The variable $a is an integer with value 35. The variable $b is a string that contains 19 characters. The variable $c is an
array with six elements: element zero is an integer whose value is 1, and so on.

Control structures
The control structures – conditionals and loops – for PHP are nearly identical to C. The following list identifies how PHP’s
control structure syntax differs from other languages.

• The “else-if” condition is denoted by elseif. Recall that else if is used in C, and elsif for Perl.
• Single statements within a condition or loop do not require curly braces, unlike Perl where the braces are

mandatory.
• The “cases” within a switch-statement can be strings, unlike C where the cases must be numeric.
• The syntax for the foreach loop is slightly different than Perl. For example, in Perl you would write

foreach $val (@array) ...

In PHP, you would write

foreach ($array as $val) ...

Mixed-mode processing
When the PHP interpreter encounters code islands, it switches into parsing mode. This feature is significant for two
reasons: you can retain variable scope, and you can distinguish PHP code from markup. Here are two examples that
demonstrate these concepts.

<?php
 $username = "dknuth"; // Defining a variable in the first code island
?>
...
<h1>Hello World</h1>
<p>Welcome,
<?php
 print "$username"; // Using a variable defined in a previous code island
?>. Enjoy your stay!</p>

Even though there is HTML markup between the two code islands, the variable $username retains its value. The technical
reason for this capability is that the variable $username is within the current file’s scope.

The following example demonstrates how to have specific HTML markup displayed if a given condition is true.

<?php
 if ($is_logged_in == true) {
?>
<p>Welcome, member. (Log out)</p>
<p>Check out our new member features below.</p>
<?php
 } else {
?>
<p>Register for an account</p>
<p>You must be a member to view anything on this site, sorry!</p>
<?php
 }
?>

The same result could be achieved by using multiple print statements within the condition blocks to output the HTML
markup.

Including other scripts
As with most programming languages, initialization, function definitions, and common code can be placed in separate files.
For example, if you had several constants used by multiple C applications, those constants would be defined in a common
header file rather than being duplicated within each source code file. In the case of PHP, these separate scripts typically
contain common/shared functions, object definitions, and page layout code.

To include other scripts, use the include statement.

include 'somefile.php';

The PHP interpreter essentially “inserts” the contents of the specified file name into the current location. If you try to
include a file that does not exist, a warning message will be displayed in the browser.

NOTE: If PHP is configured so that display_errors is set to Off, the warning will not be seen in the browser.
You can, however, see the warning by running the script using the CLI.

Suppose you want to define the heading for each page on your site in the file pageheader.php:

<?php
 print "<div class=\"pageheader\">Programming is Fun!</div>\n";
 print "<div class=\"commonlinks\">some links would go here</div>\n";
 print "<p>Motto: <i>If programming isn't fun, you're doing it wrong.</i></p>\n";
?>

This script can be included by other PHP files. For example, the index page – index.php – may look like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 <title>Programming is Fun!</title>
 </head>
 <body>
 <?php
 include 'pageheader.php';
 // More code here
 ?>
 </body>
</html>

Potentially each page of your site would use the page header so that (a) you don’t have to copy and paste the same header
markup into every PHP file that displays HTML content, and (b) if you decide to change the page header content, you only
need to modify pageheader.php.

The inclusion of other scripts can also be based on a condition. Suppose you want to display additional content if the
current user is an administrator. (NOTE: This is a contrived example – the variable $is_admin has no special meaning.)

<?php
 if ($is_admin == true)
 include 'admincontent.php';
?>

If there are external scripts that contain code that is mandatory for the current script, use the require statement:

require 'somefile.php';

If a required file does not exist, an error message will be displayed in the browser, and the PHP interpreter will exit (i.e., a
fatal error).

NOTE: If PHP is configured so that display_errors is set to Off, the error message will not be seen in the
browser. You can, however, see the error by running the script using the CLI.

If you want to prevent multiple includes or requires, use the include_once or require_once statements. If you attempt to
use include_once (or require_once) on a file that has already been included or required using the “once” functions, that
statement will be ignored. Depending on the configuration of the PHP interpreter (i.e., if code caching is enabled),
include_once and require_once prevent multiple compilations of the included/required code, thus decreasing the time
required to process your script.

There are a few scenarios where the include/require and include_once/require_once constructs can cause confusion.
Consider the following examples.

include_once 'foo.php';
include 'foo.php';

The first statement includes foo.php as expected; however, the second statement also includes foo.php. In other words
include does not check to see if the given file has been included using include_once.

include 'foo.php';
include_once 'foo.php';

The second statement will not include foo.php because it has already been included.

function initialize_stuff() {
 include_once 'foo.php';
}
initialize_stuff();
include_once 'foo.php';

Suppose foo.php initializes some variables. Those variables are initialized within initialize_stuff()’s scope, meaning
that they will be undefined the function returns. Because foo.php has already been included, the last include_once
statement will not be executed, essentially leaving the initialization not performed.

Functions
To define a function, use the function keyword. For example, function foo() below takes no arguments simply returns the
integer 1 (one).

function foo() {
 return 1;
}

As with Perl, functions in PHP do not have a specified return type; therefore, the return statement is not required. If you
were to use return with no argument, the value NULL is returned. As with C you can return the results of conditions, in
which case 1 (one) is true and 0 (zero) is false. Here is an example:

function is_more_than_ten ($i) {
 return $i > 10;
}

Arguments are passed by specifying the names within the parentheses of the function definition. Because PHP uses
dynamic typing, no data type is necessary. NOTE: You can pass arguments by reference (i.e., pointers) as in C; however,
that topic is beyond the scope of this document.

function display_name_and_age ($name, $age) {
 print "It appears that $name is $age year(s) old.\n";
}

You can also specify default values for function arguments.

function greet ($name = "user") {
 print "Hello, $name!\n";
}

The statement greet(); displays “Hello, user!”, whereas greet("Donald"); displays “Hello, Donald!”. If values are
passed to the function – rather than being set to a default value – they are used from left to right. Consider the following
function:

function greet2 ($daypart = "day", $name = "user") {
 print "Good $daypart, $name!\n";
}

The statement greet2(); displays “Good day, user!”, greet("evening","Donald"); displays “Good evening, Donald!”,
and greet2("Donald"); displays “Good Donald, user!”.

Arguments that have default values should be placed at the end of the argument list. For example, the following is not
recommended:

function greet_bad ($daypart = "day", $name) {
 print "Good $daypart, $name!\n";
}

The true intent of the statement greet_bad("Donald") cannot be inferred. Should the string “Donald” override the default
value for $daypart, or be assigned to the variable $name, which does not have a default value? In this case,
greet_bad("Donald"); displays “Good Donald, !” – where $daypart is assigned the value "Donald", and $name is
undefined, which in the string context is the empty string.

Suppose you have the following function:

function foo ($a, $b) { }

The statement foo(10,20,30); will assign 10 to $a and 20 to $b – the value 30 is effectively ignored. Because the PHP
interpreter does not complain if you specify too many arguments, you can support multiple arguments using the
func_num_args() and func_get_arg() functions. Here is an example function that prints out each of its arguments:

function display_arguments () {
 $n = func_num_args();
 for ($i=0; $i < $n; $i++)
 echo "arg ", $i+1, " = ", func_get_arg($i), "\n";
}

Global variables
Global variables are stored in a predefined associative array named $GLOBALS. To assign a value to a global variable, use the
following syntax:

$GLOBALS['variablename'] = somevalue;

To access a global variable, simply provide the variable name as the key to the $GLOBALS array. For example,

$GLOBALS['theuser'] = "dknuth"; // Assign the value
...
$curr_user = $GLOBALS['theuser']; // Retrieve the value

Alternatively, you can specify that a given variable is global within the current scope using the GLOBAL keyword. Suppose
you have a global variable $bar that you want to be updated by function foo().

function foo () {
 GLOBAL $bar;
 $bar++;
}

In the above example, any use of the variable $bar after the GLOBAL statement is equivalent to $GLOBALS['bar'].

Special cases for variable types

Booleans
As previously mentioned, non-zero numbers are considered to be true, and zero-valued numbers (e.g., 0, 0.000) are false.
Any string with a value is considered to be true, except for the empty string ("") and "0". WARNING: The string "0.0" is
true.

Strings
Strings can be denoted by single (') or double (") quotation marks. The ability to use either type of quotation mark is useful
if a string contains one of these marks. As with C you can use the \' and \" escape codes to explicitly produce the desired
quotation mark. The single and double quotation mark delimiters for strings have the same effect as they do in Perl:
Characters within single quotation marks are treated as literals, and characters within double quotation marks are
interpolated. Interpolation means that values will be substituted for variable names, and escape codes will be replaced with
the appropriate characters within the string.

NOTE: To display a dollar sign, use \$; otherwise, PHP will try to resolve the character sequence as a variable
name.

$greeting = 'Hello';
$message1 = "$greeting, world!\n"; // Double quotation marks
$message2 = '$greeting, world!\n'; // Single quotation marks
print "1: $message1\n";
print "2: $message2\n";

This is how the output appears before being sent to the browser.

1: Hello, world!

2: $greeting, world!\n

Note that $message2 neither contains the value for $greeting nor interprets the newline character as calling for a new line.

As in Perl, the concatenation character is the dot (.) operator:

$a = "Hello, world" . 35 . "!\n";
print $a;

This is how the output appears before being sent to the browser.

Hello, world35!

To handle cases where you need to have text adjacent to a variable name within an interpolated string, use curly-braces
distinguish between variable and text.

$person_type = "student";
$count = 20;
print "There are $count $person_types."; // Looks for variable named $person_types
print "There are $count $person_type" . "s"; // Correct, but awkward to read
print "There are $count ${person_type}s";
print "There are $count {$person_type}s"; // Also correct

To access individual characters within a string, use the {x} notation, where x is a zero-based index. As with Perl, you can
specify a positive index that is beyond the current length of the string.

$foo = "Gleetings";
$foo{1} = "r";
$foo{20} = "!";
print "$foo\n"; // Displays "Greetings !"

Type conversion
PHP is loosely typed, meaning that you can use variables of different types in the same statement. For example, strings that
contain valid numeric values can be used in arithmetic expressions.

$a = "100";
$b = "324.75";
$sum = $a + $b;
print "$a + $b = $sum";

This is how the output may appear in the browser.

100 + 324.75 = 424.75

With numeric expressions, the following conditions hold:

• strings that start with numerals are cast as numbers (e.g., "42foo" is converted to 42),
• strings that do not contain valid numeric values are assumed to be zero (e.g., "foo42" is converted to 0),
• true is treated as 1 (one), and false is treated as 0 (zero).

Unfortunately PHP does not perform type conversion for arrays (i.e., array-to-string). In other words if you tried to display
the values in the array $myarray using print $myarray;, the output would be Array. Displaying boolean values can cause
unexpected results as well.

$cake_exists = false;
print "The statement, 'The cake is a lie,' is $cake_exists.\n";

The above code produces the output, "The statement, 'The cake is a lie,' is .". In the boolean-to-string context,
false is interpreted as the empty string. If $cake_exists were set to true, the output would be "The statement, 'The
cake is a lie,' is 1.".

PHP also supports type casting, using more or less the same syntax as C. Type casting is used to force a particular type,
provide extra security, or ensure that a specific type is always used. The following example demonstrates how a floating-
point value is truncated when cast as an integer.

$a = 100;
$b = 324.75;
$sum = $a + (int) $b;
print "$a + $b = $sum";

This is how the output may appear in the browser.

100 + 324.75 = 424

To address the previous example where boolean values are displayed, consider the following revised code:

$cake_exists = false;
print "The statement, 'The cake is a lie,' is " . (int) $cake_exists . ".\n";

The above code produces the output, "The statement, 'The cake is a lie,' is 0.".

Undefined variables
Undefined variables have a default value of NULL. The NULL value is interpreted differently depending on the context in
which the undefined variable is used (i.e., string, number, etc.). Depending on the configuration of the PHP interpreter, you
may or may not see a warning when using an undefined variable. To determine if a variable has been defined, use the
isset() function.

$foo = 10;
if (isset($foo) == true)
 print "foo is $foo\n";
else
 print "foo is undefined\n";
if (isset($bar) == true)
 print "bar is $bar\n";
else
 print "bar is undefined\n";

The code above will produce the following output:

foo is 10
bar is undefined

Variable variables
Variable variables allow you to access a variable without using that variable directly. Essentially the first variable contains
a string whose value is the name of the second variable (without the dollar sign). The second variable is accessed indirectly
by prefixing the first variable with an extra dollar sign. This PHP construct is best described with an example:

$val1 = 30;
$val2 = 60;
$foo = "val2";
$bar = $$foo; // $bar's value is 60 after this statement

Superglobals
Superglobals are global variables that a predefined by PHP because they have special uses. The variables themselves are
associative arrays. The following table lists the superglobals and their corresponding descriptions.

Superglobal Description
$_GET Variables sent via an HTTP GET request.
$_POST Variables sent via an HTTP POST request.
$_FILES Data for HTTP POST file uploads.
$_COOKIE Values corresponding to cookies.
$_REQUEST The combination of $_GET, $_POST, and $_COOKIE.
$_SESSION Variables stored in a user’s session (server-side data store).
$_SERVER Variables set by the Web server.
$_ENV Environment variables for PHP’s host system.
$GLOBALS Global variables (including $GLOBALS).

The $_GET, $_POST, $_FILES, $_COOKIE, and $_SESSION, superglobals will be covered in more detail in later documents.

The $_SERVER superglobal has several useful variables.

Variable Description
HTTP_REFERER The previous URL (if any).
HTTP_USER_AGENT Browser name.
PATH_INFO All characters in the URL after the script name.
PHP_SELF Current script’s file name.
REQUEST_METHOD Either GET or POST.
QUERY_STRING All characters after the ? in a GET-based URL.

The HTTP_REFERER and HTTP_USER_AGENT variables should be used with care because their values can be spoofed. The
following scenario demonstrates a potential security risk.

Suppose you have information on your Web site (served from say, programmingisfun.net) that should not be
available to the general Web public. One solution is to check the HTTP_REFERER to ensure that
programmingisfun.net is contained somewhere in the string. The problem is that the “from” domain can be
spoofed by an attacker who knows how to properly modify the hosts file on his/her machine.

The HTTP_USER_AGENT value is most commonly used to modify page layout based on the target browser. For example, if
given the same markup and cascading style sheet, Microsoft Internet Explorer and Mozilla Firefox may render the page
differently. The solution is to have different markup or style sheets sent to the browser based on the browser’s name.

Constants
Constants in PHP are distinct from other variables because no there is no dollar-sign prefix. Constants are also global
within the script’s scope. To define a constant use the define() function:

define("constname", somevalue);

The constants value can be accessed using its name. However, constants cause a problem for variable variables. To get
around this, use the constant() function:

define("foo", 10);
$bar = "foo"
$baz = constant($bar);

PHP has some useful predefined constants.

Constant Description
__FILE__ Current file name and line of code.
__LINE__ Current line number.
__FUNCTION__ Current function name.
__CLASS__ Current class name.
PHP_EOL The newline character for the server’s operating system.
PHP_VERSION Current version of PHP.

DEFAULT_INCLUDE_PATH File paths used if a file is included/required and is not in the
current directory.

There are also several mathematical constants, such as M_PI for the floating-point value for pi.

Arrays
PHP has essentially one type of array – the associative array (i.e., hash table). Each element in the array has a key and a
corresponding value. Standard arrays (i.e., indexed arrays) can be used in PHP as well; they are simply associative arrays
with integer-indexed keys. We’ll begin with indexed arrays to introduce some basic syntax and manipulation functions.

Array basics
There are three ways to populate an array. The first method is to use the array() function:

$proglangs = array("C", "C++", "Perl", "Java");
$primes = array(1, 2, 3, 5, 7, 11);
$mixedbag = array("PHP", 42.8, true);
$emptylist = array();

The second method is to access the elements directly using the array operator []:

for ($i=0; $i < 10; $i++)
 $nums[$i] = $i+1;

Notes about the array operator:

• In Perl you can create holes in the array. The above example, which is syntactically identical in Perl, creates a ten-
element list with indices ranging from 0 to 9. The statement $nums[100] = 101; will elongate the array, thus
making the values for keys 10 through 99 default to 0. Because indexed arrays are implemented as associative
arrays, the statement $nums[100] = 101; would not yield a larger array: it would yield a five-element array,
where the fifth element has a key of 100.

• Unlike Perl, you cannot use negative indices. For example, $nums[-1] in Perl will retrieve the last value in the list,
whereas PHP will generate an error message.

The third method is to use the array operator with no key provided:

for ($i=0; $i < 10; $i++)
 $nums[] = $i+1;

This syntax is used less frequently, and has the effect of appending the given value to the array.

As with Perl, arrays are heterogeneous, meaning that the data stored in the array does not need to be of the same type. For
example, $mixedbag contains a string, floating-point value, and a boolean value. To get the number of elements in an array,
use the count() function.

$proglangs = array("C", "C++", "Perl", "Java");
echo "I know ", count($proglangs), " language(s)."; // Displays "I know 4 language(s)."

To display the contents of an array, the print() function will simply display “Array”. The print_r() function performs a
recursive output of the given array.

$proglangs = array("C", "C++", "Perl", "Java");
print_r($proglangs);

Here’s the output from the above code:

Array
(
[0] => C
[1] => C++
[2] => Perl
[3] => Java
)

Notes about array output:

• If you want to use the print_r() function for temporary debugging output within the Web browser, surround the
print_r() call with the HTML <pre> and </pre> tags to make the output easier to read.

• The print_r() function takes an optional second argument, that if set to true, will return the output as a string
instead of printing anything to the console or Web browser. For example, $res = print_r($proglangs,true);.

• The var_dump() function provides more detail with regard to the individual keys and values stored in the array.

PHP also has a function, var_export(), that displays information about an array in PHP syntax.

$proglangs = array("C", "C++", "Perl", "Java");
var_export($proglangs);

Here’s the output from the above code:

array (
 0 => 'C',
 1 => 'C++',
 2 => 'Perl',
 3 => 'Java',
)

Associative arrays
Associative arrays work much like their indexed counterparts, except that associative arrays can have non-numeric keys
(e.g., strings). The same three methods for populating indexed arrays apply, except for the array() function:

$file_ext = array(".c" => "C",
 ".cpp" => "C++",
 ".pl" => "Perl",
 ".java" => "Java");

The value to the left of the => operator is the key, and the content after it is the corresponding value.

NOTE: The line breaks between key/value definitions are not required – they provide visual clarity to make the
code more readable.

Returning arrays from functions
A common task for functions is to initialize various data structures. Consider the following function (and its call):

function init_params () {
 $params["username"] = "dknuth";
 $params["realname"] = "Donald Knuth";
 return $params;
}
...
$params = init_params();

The init_params() function creates an associative array with two keys, then returns the newly-created array. Suppose the
“user name” and “real name” values had to be retrieved from a database, and one or more of the values could not be
retrieved. The only way to ensure that the array was correctly populated is to see if the desired keys are defined (i.e., not
NULL). Now consider the following revision:

function init_params (&$params) {
 // Perform a database query here, then populate $params...

 if (query was successful)
 return true;
 return false;
}
...
if (!init_params($params))
 // Display some useful error message here...

The syntax becomes slightly more complex because the array is passed by reference (denoted by the & operator in the
function argument list). However, the function can now return a success/failure indicator while populating the array
(assuming the query was successful).

Multidimensional arrays
Multidimensional arrays in PHP can be indexed or associative, and are heterogeneous. Consider the following code which
constructs a multidimensional array.

$proglangs['scripted'] = array("Perl", "Python", "PHP");
$proglangs['compiled'] = array("C", "Java", "FORTRAN");
$proglangs['fun'] = array("PHP" => "Web programming", "Java" => "Nice for object-oriented code.");

The variable $proglangs is a multidimensional associative array. The first two statements create indexed arrays of strings,
and the last statement creates another associative array. A simple way to view the contents of a multidimensional array is
with the var_dump() function. Here is the output of var_dump($proglangs):

array(3) {
 ["scripted"]=>
 array(3) {
 [0]=>
 string(4) "Perl"
 [1]=>
 string(6) "Python"
 [2]=>
 string(3) "PHP"
 }
 ["compiled"]=>
 array(3) {
 [0]=>
 string(1) "C"
 [1]=>
 string(4) "Java"
 [2]=>
 string(7) "FORTRAN"
 }
 ["fun"]=>
 array(2) {
 ["PHP"]=>
 string(15) "Web programming"
 ["Java"]=>
 string(30) "Nice for object-oriented code."
 }
}

Common array functions
This section lists common PHP functions that manipulate arrays. For more information as well as examples of these
functions, use the PHP online reference by visiting http://www.php.net/function, where function is the name of the PHP
function of interest.

Function Description
array_diff($arr1,$arr2) Returns an array containing all the values of array $arr1 that do not exist in array

$arr2 (i.e., set difference).
array_filter($arr,funcname) Returns an array containing all the values of array $arr that pass a filter condition

implemented in a boolean function funcname.
array_flip($arr) Returns an array where the keys are $arr’s values, and the values are $arr’s keys.
array_intersect($arr1,$arr2) Returns an array containing all the values in $arr1 that exist in $arr2 (i.e., set

intersection).
array_keys($arr) Returns an array of keys in $arr1.
array_merge($arr1,$arr2) Returns an array where the contents of $arr1 have been combined with the contents of

$arr2. If duplicate keys exist, numerical indices will be renumbered and string indices
will be overwritten. NOTE: The + operator in PHP is overloaded to perform the same
operation as array_merge(). However, if a key exist in $arr1 and $arr2, the instance
in $arr2 will be ignored rather than renumbered or overwritten.

array_pop($arr) Returns the value from the end of array $arr while also removing that value from the

array.
array_push($arr,$var) Appends the value $var to the end of array $arr.
array_rand($arr) Selects one random element from array $arr. Other useful attributes of this function:

• A key is returned. In the case of numerical indices, the key will be a positive
integer. For string indices, the key will be a string – meaning that the value
can be obtained by using the returned key.

• An optional second argument allows you to specify how many random
elements should be returned. If this value is greater than one, this function will
not return duplicate elements.

array_shift($arr) Returns the value from the front of array $arr while also removing that value from the
array.

array_unique($arr) Returns an array where duplicates in array $arr have been removed (i.e., every value is
unique).

array_unshift($arr,$var) Prepends the value $var to the front of array $arr.
array_values($arr) Returns an array of all the values in array $arr.
arsort($arr) Reverse-sorts array $arr by its values while preserving the keys. Some useful notes

about this function:
• The array is modified (i.e., arsort() does not return a sorted array).
• By default, the sort functions do so numerically. In other words 5 comes

before 15. To sort lexicographically, see the documentation for additional
options.

explode($sep,$str) Converts the string $str into an array, tokenizing by $sep as a separator value. (The
explode() function is similar to split() in Perl.)

extract($arr) Converts elements in array $arr into variables, where the variable names are the keys
and the contents are the corresponding values.

implode($arr) Converts the array $arr into a string by inserting the string $sep between each element.
(The implode() function is like join() in Perl.)

in_array($val,$arr) Returns true if the array $arr contains the value $val.
krsort($arr) Reverse-sorts only the keys in the array $arr.
ksort($arr) Sorts only the keys in the array $arr.
range($start,$end) Creates an array of numbers between $start and $end (inclusive).
shuffle($arr) Randomizes the positions of the elements within the array $arr. The array is modified

(i.e., shuffle() does not return the shuffled array).

Common number functions
This section lists common PHP functions that manipulate numbers. For more information as well as examples of these
functions, use the PHP online reference by visiting http://www.php.net/function, where function is the name of the PHP
function of interest.

Function Description
abs($val) Computes the absolute value of $val.
base_convert($val,$from,$to) Converts the number $val from base $from to base $to, where $from and $to are

integers (e.g., 10, 2).
ceil($val) Rounds the number $val to the nearest integer above its current value.
cos($val) Computes the cosine of $val (in radians).
deg2rad($val) Converts $val degrees into radians.
floor($val) Rounds the number $val to the nearest integer below its current value.
mt_rand() Returns a random integer between zero and getrandmax(). Uses the Mersenne Twister

algorithm to generate “better” random numbers than rand().
pow($base,$exp) Computes $base raised to the power of $exp.
rad2deg($val) Converts $val radians into degrees.
rand() Returns a random integer between zero and getrandmax().

round($val) Rounds a floating-point number $val to the nearest integer.
sin($val) Computes the sine of $val (in radians).
sqrt($val) Computes the square root of $val.
tan($num) Computes the tangent of $val (in radians).
time() Returns the number of seconds since January 1, 1970.

Common string functions
This section lists common PHP functions that manipulate strings. For more information as well as examples of these
functions, use the PHP online reference by visiting http://www.php.net/function, where function is the name of the PHP
function of interest.

Function Description
chr($val) Converts an ASCII number $val to its character equivalent.
count_chars($str) Returns an array containing the letters (denoted by ASCII value) used in string $str.
ord($str) Converts a character $str to its equivalent ASCII number.
rtrim($str) Returns a new string where whitespace (i.e., spaces, newlines, tabs) has been removed

(trimmed) from the right-hand side of string $str.
str_pad($str,$len) Returns a new string containing $str followed by $len spaces.
str_replace($old,$new,$str) Returns a new string where all instances of $old within string $str have been replaced

with $new.
str_word_count($str) Counts the number of words in string $str.
strcasecmp($str1,$str2) Performs a case-insensitive comparison of strings $str1 and $str2. The return values

are the same as its C equivalent.
strcmp($str1,$str2) Performs a case-sensitive comparison of strings $str1 and $str2. The return values are

the same as its C equivalent.
strlen($str) Counts the number of characters in string $str.
strpos($str,$targ) Returns the index of the beginning of $targ’s first occurrence within string $str.
strstr($str,$targ) Returns all characters from the first occurrence of $targ with string $str.
strtolower($str) Returns a new string where all uppercase characters in string $str have been made

lowercase.
strtoupper($str) Returns a new string where all lower characters in string $str have been made

uppercase.
substr($str,$pos) Returns all characters within string $str from index $pos onward.
trim($str) Returns a new string where whitespace (i.e., spaces, newlines, tabs) has been removed

(trim) from both sides of string $str.
ucfirst($str) Returns a new string where the first letter of string $str is uppercase.
ucwords($str) Returns a new string where the first letter of each word in $str is uppercase.

