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Abstract—\We investigate two closely related successive refine- X R Hy vs H
ment (SR) coding problems: (i) In the hypothesis testing (HT) »  Encoder Detector ——
problem, bivariate hypothesis Hy : Pxy against H; : Px Py, i.e., {

Y

test against independence is considered. One remote sensor col-

lects data streamX and sends summary information, constrained

by SR coding rates, to a decision center which observes data ) . )

stream Y directly. (ii) In the one-helper (OH) problem, X and Y  Fig- 1. Hypothesis testing with one remote sensor.

are encoded separately and the receiver seeks to reconstrukt

losslessly. Multiple levels of coding rates are allowed at the two

sensors, and the transmissions are performed in an SR manner. coding goes well beyond this single specific applicatiord an

We show that the SR-HT rate-error-exponent region and the n the present work we investigate several such cases which
SR-OH rate region can be reduced to essentially the same entropy yo\iate from the traditional rate-distortion setting. Inet

characterization form. Single-letter solutions are thus provided in ind  thi . - lated . K
a unified fashion, and the connection between them is discussed.'émainder of this section, we review related previous work o

These problems are also related to the information bottleneck (IB) the hypothesis testing (HT) problem and the one-helper (OH)
problem, and through this connection we provide a straightfor- problem; the successive refinement version of these prablem

ward operational meaning for the IB method. Connection to the jn consideration and our contribution are also outlinednfd
pattern recognition problem, the notion of successive refinability roblem definitions are given in the next section
and two specific sources are also discussed. A strong convers® ’

for the SR-HT problem is proved by generalizing the image
size characterization method, which shows the optimal type-two A. The hypothesis testing problem
error exponents under constant type-one error constraints e

independent of the exact values of those constants. The information theoretic formulation of the hypothesis

o testing problem under communication constraint first apguba
Index Terms—Entropy characterization, error exponent, hy-

pothesis testing, image size characterization, information bottle- in the award-winning article by. Ahlswede and CsisZ9], .
neck, one-helper problem, successive refinement. and the problem can be described as follows (see also Fig.

1). Source streanX is observed by a remote sensor who

communicates to the receiver under certain rate constraint

) ) . R < H(X), and the receiver, which observes another de-
In conventional successive refinement (SR) source COd'rﬂﬂandent source stread, wishes to distinguish between the

a source stream is encoded into more than one description,p, hypothesesH, : Pxy and H, : Qxy. The problem is

a p_rogressive order such tha_lt Ia_ter descripti_ons can b_etuserfiO characterize the exponent of the type-two erid {s true

refine the early ones, resulting in progressive reconstme&t .+ the detector judges otherwise), when the type-one error

of improving qualities. As such, it can be conveniently fOFm (77 is true but the detector judges otherwise) is less than a
lated as a rate-distortion problem. In addition to the funda- pre-specified probability.

tal problem of characterizing the rate-distortion regiaisp of For the case thalyy = Px Py, i.e., testing against inde-
interest is the condition under which such a progressivéngod pendence, single letter characterization of the error eepb
require_ment does not cause any performance I(_)ss, compgjed given in [9] for an arbitrarye € (0,1). This is the

to a single stage coding system. These questions were fgjialence of the “strong converse” result encountered in
focus of early works [1]-[3]. The rate-distortion problemsnannon theory as pointed out by Ahlswede and @sjsn

with various extensions has subsequently been thorougRlymparison to the “weak converse” for which only the case
researched, among which are the notable work by Effros [4], _, ( js considered. For a general alternative hypothesis
[5] and by Tuncel and Rose [6]-{8]. , Qxy, single letter lower and upper bounds were provided, yet
~ The successive refinement coding structure is clearly 8ppeg complete characterization was not found. Many subsequent
ing in multimedia delivery systems, since such a framewolkq ks extended or strengthened the results in [9], for examp
allows a single copy of the multimedia content on the serV@fyen poth sensors are remote, or when type-one error is
to satisfy requirement by users with different commun@mati ¢onsirained to satisfy certain error exponent requirenieme

capabilities. However, the importance of successive nefer® .\ iow article by Han and Amari [10] provides a comprehen-
Chao Tian was with School of Computer and Communication Scienc%'ve summary of literature on this topic.
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Y Ry . encoded and transmitted separately to the receiver. Assweh
—— Encoder Y Decoder ——Y . . ..
particular sensor encoder might not have accurate infoomat
as to what the capacity of the communication link is between
X R the receiver and the other sensor, or even whether the other
—— Encoder X - link is reliable or not. If the link between one sensor and
the receiver fails after certain amount of data is succégsfu

transmitted, the data from the other sensor will not be seffic

for the receiver to recover from this failure, when the erpt

coding scheme for the OH problem [13][14] is used. One
8}ution is that instead of fixing one final operating point
Rx, Ry), the sensors choose several possible operating rate
Rirs and the information is transmitted progressivelyhsu

that as long as the received information from both sensors is

practical meaning in distributed hypothesis testing systéth suff|C|en_t Jo'r_]tly’ the dgcodmg procedure_ can be _perform(_ad
delay constraint, and will be referred to as the successilik the situation described above, the refinement informatio
refinement hypoihesis testing (SR-HT) problem rom the other sensor with working communication link can

We shall focus on the testing against independence casénﬁn compensate for the lost mformaﬂon. T.h'S gpproach IS
this work, and provide a single letter characterization hf t also applicable when one of the communication links suffers

rate-error-exponent region. Furthermore, it is shown that unexpected delay or degradation of quality, and the other

result holds independent of the exact value of the constaiit SO with .v.vorkln.g link can help reduce th!s delay by
type-one error constraints, i.e., the strong converseltrésu sending additional information. In a sense, this successiv
established. Interestingly \,/vhen’ the type-one error caimss refinement coding structure makes the system more robust to
are sufficiently large, it can be shown that the progressi\ggmmumcatlon link failure; problems in a similar vein caa b

encoding requirement does not cause any performance I&lénd in [16] and [17]. In this work, we shall show that the

compared to single stage coding, in terms of type-two errqfhievable rate region for the SR-OH problem has essentiall

exponent. It is worth mentioning that the proof for the sgront'€ Same entropy characterization form as that of the SR-HT

converse is not a trivial generalization of the proof in [Q]problem, and also provide a conclusive single-letter smiut

It appears that the covering lemma in [11], which is afpr this problem.

important tool in proving the strong converse for the single

stage case, is not sufficient for the successive refinement pmotivation and structure of the paper
setting. To circumvent this difficulty, we generalize theage
size characterization method [12] to provide the desiredipr

Fig. 2. Lossless one-helper problem.

decision based on a subset of the description, and may
may not) wait for the completion of the transmission to for
a final decision. The remote sensor encoder thus has to t
this requirement into consideration. This problem cledudg

In addition to the clear application of the two problems
which have not been treated before in the literature, oneiof o
main motivations is that these problems are closely relatet]

B. The one-helper source coding problem it is beneficial to make a unified investigation of them. The

The lossless one-helper (OH) source coding problem weannection has been recognized for the single stage case in
considered independently by Wyner [13] and by Ahlswede af@], and we show that it continues to hold for the successive
Korner [14], which can be described as follows (see also Figfinement case. In fact, it appears difficult to establish th
2). Two correlated sourc& andY observed by two sensorsdirect half of the hypothesis testing problem directly, but
are encoded separately into descriptions of fate and Ry, through this relation the proof is rather straightforwasthich
respectively. The decoder wishes to reconstiiclosslessly is exactly the approach taken in [9]. It will also be shownttha
based on information received from both sensors. A cona@usia single codebook exists which is good for these problems.
result was provided in [13][14] for the achievable rate oegi Furthermore, existing results in one problem can be readily
of this problem. The lossy version of the one-helper probleapplied to the other problem to give rather non-trivial tessu
is more difficult, for which the only solved special case i§or example, the successive refinability of the doubly sym-
the Gaussian source problem under the quadratic distortimetric binary source for the hypothesis testing can be ddriv
measure [15]. directly from a result by Wyner [18].

We extend the above lossless one-helper problem to thélThese two problem are related to the pattern recognition
successive refinement setting (referred to as the SR-OH prpboblem [19]-[23] and the information bottleneck problem
lem). Note that in this extension the requirement on tH24]. In fact, the entropy characterization problem exidc
reconstruction is still lossless, but the encoding is dame from the problems being considered also readily provides
an SR fashion, and thus the decoder receives SR informatam operational meaning for the information bottleneck (IB)
regarding the source from either of the two encoders; weethod [24]. Though several attempts were made to formalize
believe this is a natural generalization of the SR notiomfroand clarify the operational meaning of the IB function [25],
the conventional rate-distortion setting. Though in thisrkv [26], our approach is more straightforward and intuitivéisT
we mainly use this problem as an “enabler” to the hypothehows the importance of the IB method, as it is not merely
sis testing problem, it is indeed well motivated in practicaiseful as a classification tool [27], but has roots in many
Observe that in the original problem, the two sources aiformation theoretic problems.



The Gaussian source is given special consideration, andiitd the type-two errors at the two stages do not exgeet,
is shown that lattice encoding together with an approxiamati respectively; i.e.,
to the Neyman-Pearson detector, namely the weighed destanc
difference detector, is asymptotically optimal for thi®ipiem. Qxy(A) = Ppxn) x Pyn(A1) < B,
Large deviation technique is used to establish this result. Qxv(A2) = Ppxnypxn) X Pyn(A2) < fo.
The rest of the paper is organized as follows. In Section Il
we provide formal definitions for the problems. In Sectio

Il the main results are presented. In IV the concept ® said to be(e1, e2)-achievable with fixedes, e, € (0, 1)
successive refinability is defined, and sufficient and N@ogsSs;c o any € > (’) and sufficiently largen th’ere exis£s :;m

conditions are provided. The doubly symmetric binary seur
o . o . . ,€1,€9, 031, B2, M1, Ms) SR-HT code such that
is investigated in this context. In Section V the Gaussians® ?n €1, €2, 01, B2, M, M)

Definition 2 (Achievable rates-error exponentsk  rate
d type-two error exponent quadrupleR:, R, E1, E>)

is considered and we provide a lattice approach for this.case 1 log My < Ry + ¢ 1 log My < Ry + ¢
Section VI gives the strong converse proof for the hypothesi n B n o
testing problem. Finally Section VII concludes the paper. 21 log 31 > E1 — € 21 log B > Es — €.
n — ) n -
[I. NOTATION AND PRELIMINARIES Denote all the(ey, €5)-achievable quadruple &8y, (e1, €2),

Let X and) be two finite sets. Lett” be the set of all and this is the region we seek to characterize. Clearly we hav

n-vectors with components i’. Denote an arbitrary memberRni(€1, €2) € Rni(€), €5) if €1 < €}, e1 < €, and thus the
of X" asz™ = (x1, 2, ..., 7,), O alternatively ase. Upper f0”0W'.n_9.|'m't is well-defined. .
case is used for random variables and vectors. A discreteDefinition 3: The weakly achievablerate-error-exponent
memoryless source (DMS)Y, Px) is an infinite sequence r€gionRy; is
{X;}32, of independent copies of a random variaBlein X’ R, 2 R
with a generic distributionPy and Px (z") = [[;—, Px (z;). h m eler,€2)-
Similarly, let (X,Y, Pxy) be a discrete memoryless two- _
source with generic distributio®yy; the subscript will be In Section VI we show that the strong converse holds true that
dropped when it is clear from the contextB6X, Y). Without Rn:(€1, €2) is essentially independent ¢¢, ), and thus a
loss of generality, we assunte (z) # 0 for anyz € X and characterization ofR;; is almost a sufficient characterization
similarly for P, The cardinality of a sef is denoted agS|. Of Rut(e1, €2).

In this work only two stage systems will be considered. For convenience, define the error-exponent-rate function
To distinguish between the two problems when necessary, #hél?) as the single-stage achievable error exponent with rate
subscripts “ht” and “oh” are used forHypothesisTesting” No larger thank, which was shown in [9] to be

€1>0,e2>0

and ‘One-Helper”, respectively. E(R) =max{I(U;Y)|U & X < Y,
U ) )
A. Successive refinement for hypothesis testing IXU) <R U< |X[+1} (2
Let the two hypotheses be given as follows As shown in [9], E(R) is independent of the type-one error

constraint taken value if0, 1).
Hy : Pxy = (Pxy(2,y))zcxyey, ©,1)

Hy : Qxy =Px x Py =(Px(x)Py(y))eecx.yey,

B. Successive refinement for the one-helper problem
where Px and Py are the marginal distributions dPxy. In perp

other words, we are to test against independence. Definition 4: An - (n, My, My, My, My, A1, Ag)  SR-
Definition 1: An (n, €1, €, 31, B2, M1, M) SR-HT code OH qode for sourcé X', Y, Pxy) consists of four encoding
consists of two encoding functions functions
fi: X" = Iy, fo: X" — Iy, 1) Jr: X" — Iy, fo 1 X" —= Iy,

wherel); = {1,2,..., M} and two detectors specified by the Fra s V7= Iy Fr2: V"= Dyys,

decision setd; C Iy, x Y™ and Ay C Iy, x Iy, x Y™ as:  and two decoding functions
{ Hoy (i1,y") € Ay gn,1 s Iy X gy X Ingy, — V7,
L8 otherwise gn2 s Ingy X Ingy, X Ipngy, — Y7,

ge1(i1,y")

o Hy  (i1,i9,y") € Ag: such that
gr2(it, iz, y") = { 0 (9" 2

H otherwise PHY™ # g (L(X7), ra (Y™, fra(Y™) <
such that the type-one errors at the two stages do not exceed py(y™ gna(f1(X™), fa(X™), fya(Y™)) < A
fixed €1, €2 € (0, 1), respectively; i.e.,
Definition 5: A rate quadrupléRy, Rz, Ry.1, Ry,1+Ry,2)
Prxmyn(A1) = 1-e, is said to be SR-OH achievable, if for amy> 0 and suffi-
>

Pp, (xn) fo(x7)y (A2) 1— €9, ciently largen, there exist an(n, My, My, My 1, My 2, €,€)



SR-OH code, such that where

1 1 N 1
;long < Ry +e, ElogJWQSRz+€, Ritn = U {(RlvRQ,ElaE2)5R12n10g|f1|a
1 1 f1,f2€Fn
—log My,1 < Ry +e, —log My < Ry +e. 1 1
n ’ n R1+R22E10g\f1|+510g\f2|a

Denote the set of SR-OH achievable rate quadruplé®.as 1

and we seek to characterize this region for this problem. For By < ﬁD(Pfl(X")Y"prl(X")PY")’
easier comparison with the other problem, the last comgonen 1

of the rate vector is written as the sum-rate, instead of the By < gD(Pfl(X")fz(X")Y"
individual rate Ry . However it is straightforward to verify
that R, is sufficient to provide a complete characterization if!
we were to define an achievable rate quadruple as the vector D(P||Q) 2 Z P(z)log P(z)
of (Ry, Rz, Ry 1, Ry2). vyt Q(x)

For the single stage system, denote the minimum achievaley,e i jipack-Leibler information divergence. Note that
rate at.theY encherfor a giverk' encoder ratet as Ron(R), U,, R5,.,, is not necessarily a closed set, and thus we take
which is shown in [13], [14] to be its closure, denoted b@'L.

Ron(R) =min{H(Y|U)|U < X <Y, We can now follow the approach taken by Ahlswede and
v Csisar and use Stein's lemma [28] to establish a relation be-
I(X;U) < R,UL < X[+ 1} (3)  tweenRy(ey, e2) andR},, which leads to a characterization

Pfl(X”)fz(X")PY")} :

here

From (2) and (3), it is clear that of Ry as a corollary.
Theorem1: X
Ron(R) + E(R) = H(Y). @ &) Ruler, 2) 2Ry, for all er,e5 € (0,1).

This suggests there is an intimate connection between thé) Rne & RZt-_ o o
single stage hypothesis testing problem and the one—helpe-rrh's theorem is a generalization of the one given in [9], and

problem, and we shall explore this connection in the sudgessthe proof is thus omitted; interested readers can refer 3 [2
refinement coding case. for more details. With Theorem 1 and the definition7of,,

it is straightforward to see that the following corollarytise.
Corollary 1: Ry = Rj,.
Note further that
[1l. MAIN RESULTS 1 1 ny. yn
ED(Pfl(Xn)YnHPfl(X")PY") = ﬁf(fl(X ;i Y™)
1 n n
In the remainder of the work, for a given regidR to =H(Y) - EH(Y [f1(X™)),

be characterized, we shall uge" to denote its single letter and
characterization form, an®R* to denote its entropy charac-

terization form. Our plan to characterize the regi@®g and lD(Pfl(Xﬂ,)fQ(Xn)Yn\|Pf1(Xn)fz(xn)Pyn)
R, is as follows. First we provide an entropy characterization n 1

form of Ry, then give two equivalent forms @2,;,: one is a = —I(fi(X™)f2(X™); Y™)

single letter characterization while the other is in therepy " 1

characterization form. Through the entropy charactedmat =H(Y)- EH(Y”|f1(X”)f2(X")).

form, the SR-HT problem and SR-OH problem are shown

to have intimate connection, by which a single letter char-

acterization is established. Further connections betwhen Thus it follows that

problems, the new interpretation of the operational maanin 1

of the information bottleneck method, and the relationgbip ~ Rivn = | {(R1>R2aE17E2) Ry > —log | fl,
the pattern recognition problem investigated in [19], [2t$ f1,f2€Fn

subsequently discussed. Ryt Ry> llog|f1| n llog|f2|
n o n o )
1
H(Y)—-Ei > EH(Y”|f1(X”)),
A. Entropy characterization form dR: H(Y)—-Ey > 1H(H”fl(X")j"Q(X”))} .
n

It is convenient to introduce the s&, as the collection of
functions with domainX™. First we define the following set B. Two equivalent characterizations &,

ﬁ';;t 2 CL U 7%7“& Next two equivalent characterizations®f,;, are given. One
" of them is in a single letter form, while the other is in the

n



entropy characterization form. Through the latter fornwiit  for the original one-helper problem (see for example [31]),

be clear there is an intimate connection betwgp andR;;. can be shown that the above coding scheme succeeds with
Define the regioriR?, to be the set of all rate quadruplegprobability arbitrarily close to 1. [ ]

(R1, R2, Ry 1, Ry1+ Ry 2) for which there exist random vari- Next we give another characterization &f,;,. Define the

ables(U, V) in finite alphabetd/,V such that the following following set

conditions are satisfied.

1) (U,V)«< X < Y is a Markov string.
2) The non-negative rateR;, R, Ry,1 and Ry, satisfy:

Ron = CL{J R0
n

where
Rlz.[(X,U), R1+R22I(X7U7V)v S *

ohn = {(R1,R2,Ry,1,Ry1 + Ry2) :
Ryvl Z H(Y|Ua V)a RY,l + RY,Q 2 H(Y|U) f1,fL2J€]:n

; 1 1 1

3) The alphabetd/, V satisfy Ry > —log|fi|, Ry + Ro > —log |f1| + = log | fa],
n n n

Ul < |1X|+3, V]| <I|X]*+31X|+1. 1

Ul <1X+3, VI <IXP + 3] Bys > LHEAE) RE),

Note that the regioriR*, is a closed set since entropy n

oh
and mutual information are both continuous functions oheac Ry1+ Ry > lH(Y”|f1 (X"’))} )
argument. We have the following theorem. n
Theorem2: R, = R},. We have the foIIowingAtheorem.

In the proof of this theorem, we only outline the random Theorem3: R, = R, = R,.
coding argument for the achievability of the region; the Proof: To prove R,, 2 ﬁzh, we can either apply the
converse is by generalizing the proof for the single stadmcremental) Slepian-Wolf coding scheme [31] on the super
case in [30], thus it is omitted (see [29] for details). lsourceY™ with two degraded side informatiof (X™) and
is worth pointing out that the achievability is proved by(fi(X"™)f2(X™)), or apply Heegard-Berger coding theorem
strategically combining the coding schemes for the originf83] on the super-source; note hdig (X™), fo(X™),Y™) are
one-helper problem [13][14], the incremental SlepianWol.i.d. random variables across blocks. The details aretethit
coding approach (see [31]-[34]), and the successive reinem To seeR,, C R}, we write
source coding problem [2], 3 nRya > H(fya (V™) = H(fra (V") A (X7) f2(X7))
Let §;,i = 1,2,3 be small positive quantities. Fix a prob- =I(Y"; fya(Y™")|f1(X™) f2(X™))
ability distribution Py xy = Px P, Py . First generate (@) n n n
2”(I(¥<§U)+51> codev(\jc‘)/rds single—lgggr(—w‘i/s‘,)ec accoréiging to the = HY"|f((X") [2(X") = nlog |V]Ar — Hy(A1)
distribution P, and denote the codebook &s. For each where (a) is by applying Fano's inequality. The other cdndit
of theseU codewords, generate"(/(X:VIU)+%2) codewords on the sum rate can be proved similarly. ]
according toP(V|U), and denote the codebook &s(u™)

for eachu™ € (C,. This will be the codebook for the .
encoder observing sourc¥. For the encoder observing, C. Connection between the SR-HT and SR-OH problems

first construct a two-level nested binning structure, sumt t Define thepartially skewed reflectiomperator as follows.
each coarser bin contairg/(Y:VIU) smaller bins, with a  Definition 6: For a real quadruple(as,as,as,as), its
total of 2n(H(Y|U,V)+63) coarser bins: this induces a total ofartially skewed reflection operation under a two-source
on(H(Y|U)+8) finer bins. Assign each” uniformly at random (XY, Pxy) is given by
into one of finer bins. The codebooks are revealed to both th@,(al’ as, az, as) = (a1, a2, HY) — ag, HY) — a3).
encoders and decoders.

During encoding, with high probability the encoder observihe partially skewed reflection of a set of quadrupless
ing 2™ can find a codeword™ (i) € C, that is jointly typical given by
with 2™, and the index is sent to the decoder as the first . .
stage description; for the given™(i) codeword, again with P(S) = {P(a1, a5, 03,a4) : (a1, 02,3, a4) € S}.
high probability there exists a"(j|i) € C,(u"(i)) that is Since P is clearly a bijection and preserves Euclidean
jointly typical with z™ andu™(i). The index;j is sent as the distance, it is an isometry. From Theorem 1, Theorem 3 and
second stage information. At the encoder obseryjfigthe the corresponding entropy characterization expressiomgs,
coarse bin index: to which y™ belongs is sent as the firsthave the following corollary.
stage information, while the finer bin indéxvithin the coarser ~ Corollary 2: Ry = P(Ron).
bin is sent as the second stage information. The first decoderThe isometryP implies the two regions are congruent. Since
with indicesi, k,I decodes, if it finds a uniqug™ sequence R, is convex,R;; is also convex. This fact does not directly
in the (k,1)-th finer bin that is jointly typical withu™(¢); follow from the time-sharing argument as often seen in seurc
the second decoder, with indicésj, k, decodes if it finds coding, because the time-sharing argument does not girectl
a uniquey™ sequence in thé-th coarser bin that is jointly apply in the SR-HT problem. Furthermore, since a single
typical with «™(7) andv™(j|¢). Using a similar argument asletter characterization ok, is available, we thus readily find



a single-letter characterization f2;,; for convenience we regions as4} and A), and type-two errors by and f; as

denote it ask;,. (1 and g5, respectively; note that the type-one errefsand
The connection among the two problems can be furthéy can be made arbitrarily small whenis sufficiently large.
strengthened. For an arbitrary point on the boundarRgf, We now construct a two-stage system using these functions.

by the isometry ofP, there is one point on the boundary ofGiven fixede; ande, such thate; + e; > 1, we partition the
Ron. Using the entropy characterization form, it is clear that™ space into two non-intersecting setsand B, such that
there exists an optimal sequence of functigiisf. € F,, in - P2(A) > 1 —¢; and PE(B) > 1 — eo; with sufficiently large

the sense that the values of n such a partition is always possible. Note thag(A4) +
1 1 1 1 1] yr. £ (X0 P%(B) = 1. The encoding is performed as follows. In the
(; loglfal, —log | fal, — (Y™ f1(X7)), first stage, ifz € A, then f| is used; ifz € B, then send

1 n. n n the firstnR; bits of f}. In the second stage, it € A, we
EI(Y FF1(X7) L(X7))) send a fixed codeword of lengthRy; if x € B, then we

approach the particular operating points for SR-HT, as w&nd the remaining R, bits of f;. An additional prefix bit
as the corresponding point for SR-OH problem. Denote the added to indicate which set is in, and this induces a
concatenation of these functions with suchn-blocks asf!™ negligible rate increase for long block codes. With thisfigre
and fi". It is seen that whenn is sufficiently large (with bit, the first stage decoder uses the following decision set,
the sequence of COd(élafZ S fn), the seqguence of CodesWhiCh indeed utilizes 0n|YL(R1) bits (p'US the one pI’EﬁX blt)
(f, f") € Fpun is indeed approaching optimum. Thus wéf the description
have the following theorem.. o Ch = (Ax YN AL

Theorem4: For any particular points in Ry and the
corresponding poinP(s) € R,, there exists a sequence of-or the second stage detector, the following decision regio
optimal coding functionsf, f2) € F,,, wherel,, — oo as used
n — oo, in the sense that they approaghand there exists a
corresponding sequence of coding functigis, fy.2 € Fi,,
such that the sequence of these four coding functions dpremains to show the error probabilities are as claimedeNo
proaches the poirlP(s) € Rox. that Py (xnyyn (A7) > 1 — €} and the inequalityPy (A) >

It is now clear that the two problems are closely relatedl— ¢, is strict, thus by applying the union bound
and can be treated together. In Section IV, we consider the n ,
notion of successive refinability in the two settings togeth Prxmy=(C1) 2 Px(A) — e 21 —e,
and derive necessary and sufficient conditions; a binaricsouwhen n is sufficiently large, i.e.,¢| is sufficiently small.
example will also be considered in this context. Similarly for the second stage

Cy = (B x V") N A,

n T /
D. The strong converse result for the SR-HT problem Pfl(X"')fz(X")Y"(CQ) 2 Px(B) —e; 21— e,

ThoughR;; can be characterized in a single-letter form aghenn is sufficiently large sincePy (B) > 1 — €. For the
above, this is not sufficient to characteri®,; (e, ;) with type-two errors, we have
arbitrary ey, €2 € (0,1). As it turns outRp¢ (€1, €2) is almost n < oAl _ Al
independent ofle;, e). We have the following strengthened Pfl(X")PZ(Cl) = Pfl(X")PY(Al)n* 6/1 /
result, the converse part of which is proved in Section Vihgsi PrixmpaxmPy(C2) < Pryxemypyxem Py (Az) = Ba.
the method of types. This indeed implies the claimed result and the proof is

Theoremb5: For anyeq, ez € (0,1) such thate; + €2 < 1, complete. -
Rht(e1, €2) = Rpe. On the other hand, for amyt, e; € (0,1)
such thate; + e; > 1, we have

Rht(ela 62) = {(R17 RQ; El? E2) :
Ey < E(Ry),F> < E(Ry + Ry)}. (5) The successive refinement pattern recognition (SR-PR)
) ) . . problem was formulated independently by Tuncel [19] and
Note the case; + ¢; = 1 is not included. This is similar py \westover and O’Sullivan [23]. In this setting, a two-sgeir
Fo the source-channel separation resuIFs when the entm!ay (X, ¥, Pxy) is an envionment€ for a pattern recognition
is exactly equal 'to th'el channel capacity, the behaV|or'|s "s‘%}stem. The pattern domain &" and the noisy observation
known. The achievability result for the case+ €2 < 1iS  gomain is)™. We provide a brief problem definition below,
implied by Theorem 1, and next we give the achievability,q more details can be found in [19]-[23].
proof for the other case. _ Definition 7: An (n, M. 1, M, ) instance of the environ-
.Proof of achievability for Theorem 5. ) ment £ consists of M., M., n-length sequences i,
Since E(R1) and E(R: + R») are achievable type-two 5pajeq asX™ (1), X™(2), ., X"(Mo1 M,.5).
error exponents with coding rate; and R; + Ry for single Definition 8: An (n J\7/[17 M. Ml MQ A1, As) SR-PR
stage coding, respectively, it follows that there existagticg code for an environmerﬁﬂcensiﬂste of7two,enc70ders
functions f{ and f;, and the corresponding detectogs,
andg; , to approach this performance. Denote the acceptance fi: X" =1y, fo: X" — Iy,

E. Connection to the pattern recognition problem



and two classifiers

L rMea n
gra - 11\41 XY — Im,
L gMe 1M 2 M 1M 2 n
gr2 Ly, Iy, XY" = In, M, -

We denoteJ;(m) = f1(X™(m)) and Jz(m) = f2(X"(m));
furthermore denote the collection of codewordsCasand C,
for an (n, M. 1, M, ) instance of the environment, i.e.,
C1 ={J1(1), J1(2), ..., J1(M.)}
Co = {[1(1), J2(1)], [/1(2), J2(2)],
eeey [Jl(Mc,lMc,Q)v JZ(MC,IMCQ)]} .

Definition 11: A rate quadruple(R;, Rs, Ry 1,Rr2) IS
said to be SR-IB achievable, if for ary> 0 and sufficiently
large n, there exists ann, My, Mo, Rr1,Rr2,€,¢) SR-IB
code, such that

1 1
—log M7 < Ry + ¢, —log My < Ro + €.
n n

Denote the set of achievable rate quadruples for SR-IB as
R, and thus this is the region of interest. The following
theorem is immediate.

Theorem6: R, = Rpr = R

Proof: We only need to show thaR}, = Rg. The
inclusionR;, C ﬁ;t is rather trivial by the definitions. For the

In the recognition phase of the system, the pattern oCCyfssion in the other direction, observe that for any fixate
uniformly at random in the pattern pool given in the enrolime gr_g code of lengttk, by taking itsi-fold product codes, we

phase. More precisely, a random pattéifi € I, , occurs

either uniformly at random in thé/. ; given patterns where
the first level description will be used, or a random pattern

Wy € Ing, 0., OCcurs uniformly at random in th&/. 1 M. »

can easily show that

I(fu(XT), fr(@in), oo Fr(@nf oy 0)i Y1)
= U(f1(XT); 7)),

given patterns where both levels of descriptions will beduse

For a given system, the error probability for the first lefel
and that for the second levél. , satisfy, respectively,

A1 > Pe,l Pr{gr,l(clvyn(wl)) 7é Wl}a
A2 > Pe,2 Pr{gr,2(027yn(W2)) 7& W2}
Note that both(C;,Cy) and (W7, W>) are random quantities.
Definition 9: A rate vector(Ry, Ra, Re.1, Req + Re2) is

SR-PR achievable, if for any > 0 and sufficiently largen
there exists arin, M. 1, M. 2, M7, M2, €, €) code such that

L
L

1 1
- log Mc,l > Rc,l — € - IOg MC,Q > Rc,2 —€
n n

1 1
710gM1§R1+6, 710gM2§R2+€.
n n

Denote the set of achievable rate quadruples for SR-FaI%
as R, and a characterization was given in [19][23]. B

comparing the expression provided there, it is not difficalt

seeR,, = Ry In fact, the entropy characterization approacﬁ)
given in this work provides a simple alternative proof foe th

pattern recognition rate region.

F. An interpretation of the information bottleneck method

The information bottleneck function was given in [24] as

Ryp(R) = min

I(U;Y)>R,U—X <Y

(6)

which is exactly the definition of the inverse functionBf R)

Thus we haveR}, C R;;, which establishe®}, = R;,. ®

The above formalization of the operational meaning of the
IB function essentially states that we can understand the IB
problem as a source coding problem subject to a constraint
on the normalized mutual information between the codeword
and the remote source vectbl?, instead of the usual single-
letter distortion measure familiar in the rate-distortibeory.
Moreover, the IB problem is not uncommon in multi-terminal
systems, though it might appear in certain disguise, as show
by the problems in consideration.

IV. SUCCESSIVE REFINABILITY INSR-HTAND SR-OH
A. Successive refinability

Similar to the notion of successive refinability in the rate-
istortion setting, we can introduce the following notidos

¥he two problems considered in this work. These notions

apture whether the progressive coding requirement causes
ss of performance with respect to single-stage coding.
Definition 12: A source is successively refinable for hy-
pothesis testing (withe;, e2)) and one-helper coding, respec-
tively, with rate R; and Ry, if

(R1, R2, E(R1), E(R1 + R2)) € Rueler, €2),
(R1, R2, Ron(R1 + R2), Ron(R1)) € Ron.

Note we can also defineeakly successive refinabilifgr
SR-HT as(Ry, R2, E(Ry), E(Ry + Ry)) € Ryt This weaker

in (2) if we ignore the cardinality bound. This similaritynotion will be useful when Gaussian source is considered, fo
motivates the following definition of an information bottleck Which Theorem 5 does not apply because of its reliance on

code, extended to its successive refinement version.
Definition 10: An (TL, M17 MQ, R[J, RLQ, Al, AQ) SR-IB

code for sourcé X, Y’) consists of two classification functions Theorem?7:

Ji: X" = I, fa: X" — Iy,
such that
1
gI(Yn§f1(Xn)) > Rii+ Ay,
1
I (XM R(XT) = Ria+ Ao

the method of types. Using the characterizatioRaf (e1, €2),
we have the following theorem for the SR-HT problem.
1) If €1,e2 € (0,1) such thate; + €2 < 1,
a two-source( X', ), Pxy) is successively refinable for
SR-HT with rateR; and Ry, if and only if there exist
random variabled/ and V' in finite alphabetd/ andV
such that

a) Y < X <V < Uis a Markov string.

b) I(X;U) =Ry andI(Y;U) = E(Ry).

c) I(X;V)=Ri+ Ry andI(Y;V) = E(R1 + Ra).



2) If €1,e5 € (0,1) such thate; + ¢2 > 1, a two-source  This example highlights the power of treating these prob-

(X,), Pxy) is always successively refinable for SRiems together. In [19] the same result was given for the patte
HT with rate R; and R». recognition problem, and the derivation is rather nonifiv
Proof: Note that part (2) follows directly from TheoremBy recognizing the relation among these problems, we simply

5, and thus we only consider part (1). Because of the relatimvoke the existing result in [18] to avoid such difficulty.

Rhni(e1,€2) = Ry = R}, for this caseR;, is sufficient to

characterize the region. Note that in the definitiorijf, we V. THE GAUSSIAN SOURCE

can always add in the Markov string conditigh— V «— U

o eting . — (1.1), whih coes . change any e, 11 1% bt e feve oy considered dscree mener
information quantities. This necessitates increasing dhe y '

dinality bound of v, and it is trivial to see that a size Ofgeneral source such as the Gaussian source. It is not difficul

9 ' : : to verify that the converse proof for the SR-HT problem can
(2] + 3)(|X] + 3| ] + 1) suffices. This observation alonebe established using the almost identical line of derivatio

provides the following alternative definition &7, as the set . :
: . as in the SR-OH problem by boundingY™; f;(X™)) and
of quadrupleq Ry, R», E1, E5) for which there exist random [(Y™; f1(X™) fo(X™)) directly. Next we provide an achiev-

iabl in finite alph h that: - . :
variables(U, V) in finite ?p abets/, V SL_JC that ability proof using a lattice strategy for the SR-HT problem
1) Vo X <V < Ulis a Markov string. _ one can also invoke the result on the pattern recognitioh-pro
2) The non-negative rate quadruple satisfies: lem directly to obtain such a proof, however the method below
Ry > I(X;U), Ri+ Ry > I(X;V), is more constructive. Fafi, let the distributionPxy be given
P . asY = X + N, whereX ~ N(0,02) and N ~ N(0,0%)
<I(v; <I(Y;V). : : Pl oV
B < I(V;0), By <I(V;V) are independent; fof/;, X andY are independent with the
3) [U| <|X|+3, and|V| < (|]X] +3)(JX|* + 3|x| +1). distributions given by the marginal distribution &y .
Now the necessity and sufficiency both follow directly from Before considering the lattice strategy, let us derive an
this characterization. m explicit outer bound forR ;. We have that
The results can _clearly be extended to SR-OH with yirtu- I(U;Y) = h(Y) — h(X + N|U)
ally no change (without the second part); we thus omit the @)

a 1
statement of such a theorem. h(Y) — 3 log[2mea?; + exp(2h(X|U))]

1
B. The doubly symmetric binary source =hY) -3 log[2mead, + exp(2h(X) — 21(X;U))]

Consider the following hypothesist = Y = {0,1} and (_i) h(Y) - llog[Qﬂ'eU?\, 4 2reo? exp(—2Ry)]
0 <pp<0.5, 2 z
1 1 _ L o +o%
Hy : Pxy(z,y) = 5(1 —P0)0z,y + §po(1 — Ozy), —3 % 0% 4+ o2 exp(—2R;)’
Hi : Px(z)Py(y) = 1_ where (a) is by applying the conditional form of the entropy
4 power inequality [35] and (b) is becaudé X;U) < Rj.

For Hy, the probability distributionPxy can essentially be Similarly we have
understood as there is a binary symmetric channel (BSC) with 1 o2 + o2
crossover probabilityy with input X and outputY’, and the HUV;Y) < 3 log — - 2NR TR
input X is of distribution Bernoullil (denoted as Bei#})). oy + 0 exp[—2(Ry + Ry)]

In [18], Wyner showed that the optimal forward test channel The construction relies on the entropy-coded dithered quan
for the single stage one-helper problem is given By= tization (ECDQ), the details of which can be found in [36]-
X @ N, where ® is modulo 2 addition andV is a Bern [38]. An n-dimensional lattice quantizer is formed by a lattice
(H;'(1 — R)) random variable, independent of everything\,. The quantizeiQ, (-) maps each vectar € R" into the
else; heref, '(-) denotes the inverse of the binary entropjattice pointA; € A, that is nearest te. The region of all
function Hy,(p) with p € [0,0.5], and R is the coding rate n-vectors mapped into a lattice poixt € A,, is the Voronoi
at encoder observingX. It is seen that when successivaegion
refinement coding is used, we can chodse- X ® N; & N, n .,
andV = X @ Ny, whereN; is of Bern H, (1 — Ry — Ry)) Vi) ={z e R": flo = Xill < [l — Al Vi # i} -
and N, is a Bernoulli random variable such thal; + N> The ditherZ is ann-dimensional random vector, independent
is of Bern(H, '(1 — Ry)); such anN, always exists since of the source, and uniformly distributed over the basic gl
H,'(1—Ry) > Hy'(1 — Ry — Ry). Ny and N, are inde- of the lattice which is the Voronoi region of the lattice piin
pendent of each other and everything else. By the optimality The dither vector is assumed to be available to both the
of this forward test channel shown in [18][, V') clearly encoder and the decoder. The normalized second mo@ent
satisfies the conditions in Theorem 7, and thus for the SR-F the lattice characterizes the second moment of the dither
problem (as well as successive refinement pattern recognitivector
problem and the information bottleneck problem), it is iede 1 ) 2/n
successively refinable with any rafey and R,. ~ElZ|]° = GV,




Zl

satisfy
R
Egé?gy 1% output log o — 07
R

X 0 z, asn — oo. This implies that for such latticegA,) — 0 as
! l n — o0.
Q N E(l;\tr;)py |2 output )
! o Denote byB(R,) a ball of radiusR, and lets? be the
second moment per dimension B{R,,); denote the variance
Fig. 3. Encoder based on ECDQs. of IN; per dimension as?. The following lemma was proved

in [39] (Lemma 6 and Lemma 11).

whereV denotes the volume dfy. Both the entropy encoder Lemmal: Let G; ~ N (0,02 - I™), then for Rogers-good
and the decoder are conditioned on the dither san#le lattices, the density of the noise distributigy)g\f1 andpG1
furthermore, the entropy coder is assumed to be ideal. Téatisfy

dithered lattice quantizer represents the source veXtdry 1 - (2)
the vectorW = Q,,(X + Z) — Z. —log N7 < e(Ay). (7)
Now we describe the coding system using ECDQs, which is nooPGy (z)

essentially a two-stage quantization system, with thetea@il Furthermore we have

detectors at the decoder. Note that instead of the distortio P R\?2

of each length: block, we are interested in the detection i 02> 0% > < “’) o2, (8)
performance using multiple such lengthblocks. The system n Ry

consists of two stages. The first stage takes idpwnd passes

it through an ECDQ module. The outp®# = Q,(X + This lemma implies that the probability density &, can
Z,) — Z; is scaled byo = g;igz and added withX. The approximately be upper bounded by a Gaussian distribution,

resulting vectorX + aW is ﬁaséed through another ECdehose variance is almost the same as that of the quantization
o, . -

whose output is given a8, (X + aW + Z,) — Z,, where NOis€oi whenn is sufficiently large.

Z, and Z, are independent. Note here we slightly abuse the

notations by allowing),, to be a lattice quantizer scaled by L€t US assumeV, indeed has an independent Gaussian
different constant, which are reflected by the varianceZef distribution and derive the Neyman-Pearson detector under

and Z,, denoted as? and o2, respectively. The system isthis assumption. We have the likelihood ratio for length-

depicted in Fig. 3. The detectors do not make a decision 8R4YENCES
one X block of lengthn, but do so after receiving many such p(X + N1,Y)  p(Y|X + Ny)
b'OCkz- ) coo, th . p(X + N1)p(Y) p(Y)
Under the reconstruction using ECDQ, the output is dis- o2 2
tributed asX + IN;, and the noise vectalN; is distributed _ exp [ — 1Y o2+o7 (X + 21l p ( Y2 ) .
uniformly over the basic cell of\,,. If Ny was a Gaussian 2(0% + Z00) 2(0% +02)
vector, we would be able to explicitly derive the Neyman- . o
Pearson detector, and analyze its performance. Though thf$/s the Neyman-Pearson detector makes decision by thresh-
is not the case, the lattice quantization noise is nevertise 0lding the following quantity

2

quite close to Gaussian for high-dimensional quantizénss t o2

- . . . _ 2 2 T

it is likely the Neyman-Pearson detector derived assuming 71 = (ox +03) [|Y — m(X +Z7)
Gaussian distribution will provide near optimal perforroan r ! 5 o

which turns out to be indeed the case. Next we use large (0% + 209301 2) 1Y )2
deviation method to analyze the performance of such an oz + 01

approximation. Some necessary notations and results framis quantity is essentially a weighted distance diffeeeirc
[39], [40] are reviewed first. For simplicity the single stagthe Euclidean space. It is straightforward to verify thag¢ th
case is investigated first, after which the generalizatotheé expectation of this quantity under the two hypotheses isrgiv

two-stage case is straightforward. by
For a latticeA,,, the covering radiug,, is the radius of the (02 + 02,)o
smallestn-dimensional ball to cover the Voronoi regidry. E(T|Hy) =0, E(T|H,)=2n—~ —N_%

2 2
The effective radiusR; is the radius of a sphere having the Oz + 01

same volume a%,. We will need the following quantity
Now we take m blocks of n-dimensional ECDQ, and

e(A,) £ log (R“) + llog 2meGY + 1, consider a lengthnn source block. Choose the threshold as
Ry 2 n mnd, where§ is a small positive quantity the meaning of
whereG?, is the normalized second moment ofasphere. It which will be clear later: ifT" < mnd, hypothesisH, is
was shown by Rogers [41], [42] that there exist lattices Whiaccepted. To bound the type-two error exponent, define the
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following new random variable furthermore, by Lemma 1, and by makingsufficiently large,

) 2 ¢(A,,) can be made arbitrarily small, angf — o7, thus we
T = (0% + 02) ‘Y—&(XjLGl) have
(o g
=T L, . (02 +03)(0% + of)
2 03201 2 Ef = glog 5 55 2 2
_(0N+0_2+02)||Y” . 2 Togor +oioy + ooy
x 1

. . L S which is indeed the optimal value. It remains to show that the
U'smg the Gaussian distribution approximation in Lemma t§7pe-one error can be made arbitrarily small. This is shraig
gives forward by observing that each lengthECDQ quantization

B1 = PHT < mnd|Hy) < PH(T" < mnd|Hy) exp(mne(Ay,)), is independent of the others, and by the law of large numbers,
o ) whenm is sufficiently large, with high probability the sample
which is straightforwardly seen becaus® X and N1 are 4yerage concentrates near its expected value, which is zero
mutually independent, and so af, X and G under ynder hypothesisd. It is clear that choosing a sufficiently
hypothesisH,; furthermore the bound given in Lemma 1 issma|l but positives can drive the type-one error arbitrarily

uniform. small whenm is large.

The moment generating function @f can be computed as The above method can be used to bound the second stage
error exponeni, by substituting quantization noig¥y sim-

A (t) = Elexp(t1"))] ilarly with an appropriate Gaussian random vector; theitteta
=Ey [E XG [exp(tT')|Y]] are thus omitted. We note that strictly speaking, a system
ol ) based on ECDQ is not a fixed-rate-coded deterministic system

@ (1—2ct)" 2 Ey {exp(b|y||2)exp(a”Y ) thus it is not within the problem definition. Nevertheless,

1 —2ct this randomized system can indeed be used to assert the
® (1 2ct — 242t + 2abt — 4abct2)7mn/2 existence of a fixed-rate and dgterministic system of theesam
performance; see [29] for details.
where we have defined
o252 V1. PROOF OF THECONVERSE FORTHEOREM 5
a® 02402 b2 o2 4 2L . . -
z N N o2+ o’ In this section the converse proof of Theorem 5 is given by
a (024 0%)(02 + 02)o generalizing the image size characterization approacmnthi

C

3 oY) 5 Csisar and Korner [12]. Since this proof relies heavily on the
(gw + 01) .

) N ) methods of types, the blowing-up lemma and some related
and () is true because conditioned &M 7* has a non- concepts, we provide a brief review on these results in the
central Chi-square distribution; (b) is true by recognizagain Appendix. More details on the method of types can be found
the Chi-square distribution. The moment generating famcti i [12]. In the remainder of this section we assume the reder
exists whenever familiarity with Section 1.2, 1.5 and 2.1 of [12]; familityi

By applying the Chernoff bound far< 0, it follows that ~A. Two lemmas
For a given probability distributio®xy which induces the
channelV" : X™ — )", the setB C )" is called am-image
This implies the error exponent satisfies of the setd C X" over the channeV™ if V"(B|z™) > n for
1 everyz™ € A (see [12] page 101). The collection pfimages
By 215+ 5 log(1 — 2ct — 2a°t + 2abt — 4abct®) — €(A,).  of the setA is denoted a®(A, ). The following quantity is
(10) related to the minimum type-two error probability assaeiat

oo - . with set A
Optimizing overt to maximize the second term in (10), we

have kyn(A,Q,n) =
E1 Z " — 6(An)

Pr(T' <mné|Hy) < exp(—mntd+ A (t)).

mingepa,n Q%y (4, B)
P%(A)

) 4(9g2 ) - where Qxy is the alternative hypothesis distribution; for
n log( — ‘721( Uw2+‘721 ;"Uu)Q 5 — + 1> the test against independence problem, since the alteznati
2 407 + 01)(0F + 03)(0301 + ofoy + oyo7) hypothesis is independence, we have

Xy (4,B) _ PR(A)Py(B) n
where " = - = Py(B).

P (A) P (A) v

. 2 2 2 2 2
t*t = (207 + 01+ 0)(0; + 01) ) In the sequel, only this case will be considered, and thus

4o + o )(0F + of)(0F0t + oZo} + oRor) kvn(A,Q,n) is simply written asky«(A,7n). Note that
Define the right-hand-side of (11) a8;. It can be easily ky-(A,Q,n) is a generalization of the minimum cardinality
checked that both the conditions in (9) are satisfied. VW the n-images in [12], which was used to prove the channel
can choosed sufficiently small, as long as it is positive;coding theorem.
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The following two lemmas are important for the converserhere
proof. The first lemma essentially states ttidbg kyn(A,n) a A pn B
is independent of) for sufficiently largen, while the second @ =Py (B), 8= Py(B) = kyn(A,m).
lemma provides a way to bound this quantity. Denote therlettgince B is an,-image of A, we have
y € Y with the minimum probability inP, asymin, Which is

strictly positive as assumed, and definé — log Py (ymin )- a= Y Pg,(a")P{Y" € B|X" = 2"}
zneA
Lemma2: For everyd, e, ¢” € (0,1), we have for any set c .
AcCxn 2 Z P (x"™)10 = 10-
) . aneA
—logkyn(A,€)— —logkyn(A,€")| <4, Thus we have
n n
1 n Hb(a) Tlo
whenevern > no(|X|, ||, Py (Ymin), 6, €, €). S D(Pya||PY) 2 —— = — —“logkyx(4,m0),  (12)
Proof: Suppose:’ > ¢”. Clearly we have where againH,(-) is the binary entropy function.
1 , 1 .y Notice the following simple fact
—logkyn(A,e") > —logkyn(A,€").
" " D(Py. || Py)
Let B be ane’-image of A which achieveskty (A, €”). B P ()] Py, (y")
Then by the blowing-up Lemma A-3, there exists a se- - z;} »(y")log P (ym)
yreyn

quencel, with % — 0 such that for sufficiently large N
n > no(|X], |V, €, €") =-HY") = Y Pp.(y")log PA(y")

VAT Bla") > € if VP(Bla") > ¢ e
= = <= > Ppuly")log PE(ypn) = 17,
whereT''» B is the Hamming/-neighbourhood of3 (see (A- greyn
1)). This meand» B is an¢’-image of A, and it implies that wherer~ was defined before Lemma 2
kyn(A,€) < PRI B). It follows from (12) that
Take this sequence ofl,} as that in Lemma A-2, then  — 1 log kyn (A, m0)
for sufficiently largen > n1(|X|, ||, Py (Ymin), 9, €, €”), we q Hy(o) L1
have that < —D(Py,||PP) + =22 4 [— — =]|D(Py... || PL
1 1 < LD(PrIB) + S H o [ = D)
EIOgP{/L(FlnB) - HIOgPQ(B) <. < lD(pA || Pyn) + 1 4 [i 1
. n v no 7o
and it follows that
1 1 By choosing an appropriatg, e.9.ny = % the following
- log kyn (A, €) < - log P{(I''" B) inequality is satisfied
1 1
< —log P}(B) + 6§ = —logkyn(A,€") + 6, i+[i—1]7'§5
n n nno 7o
which completes the proof. B whenevem > ny (||, Py (ymi), §) and the proof is complete.
Lemma3: For any setA C X, consider a random vector u

X" = (X4, Xy, ..., X,,) distributed overd and let the random
vector Y = (Y1,Ys,...,Y,) be connected withX” by the B. Converse proof of Theorem 5
channelV™ : X — ", which is induced byPxy. Then for  Now we are ready to prove the converse of Theorem 5,
everyd >0, 0 <n <1, we have which establishes the complete characterizatioR gf(e,, €z ).
We shall be considering several probability distributionthis
proof, and the regiok;, will be written asR;,(X,Y), in
order to emphasize the dependence on the particular distri-
) bution in consideration. Only the case + ¢2 < 1 needs to
Proof: In light of Lemma 2, we only need to show thatye considered, since for the other case the strong converse
there exists amo = no(|V], Py (ymin), ) such that result apparently follows from that in [9]. Let the channel
1 " 1 Vr . X™ — Y™ be that induced byPxy. We will take the
S D(Pyn||PY) +0 = ——log kv (4,m), Delta-convention in [12] (p. 34) and suppress the deperalenc
; } of all the small quantities on. Note also that the sets defined
itn= nl(‘y"Py(ymm)_ ) _ below such asd;, Ay, By, Bo, C are all in fact sequences of
Let B € V" be anng-image ofA that achievedy (A, 70).  sets indexed by, however we are suppressing it for simplicity.
Then by the data-processing inequality for divergence, aweh |, this subsection alone, we useor the time index, and
1—a« and j for the encoding function values.

n «
D(Py.||Py) = alog 3" (1—a)log -— 3 Proof of the converse for Theorem 5:

1 1
—D(Py.,.||Py)+ 0 > ——logkyn(A,n),
n n

whenevern > no(|X|, |V], Py (Ymin); 9, 7).




For any two encoding functiong,, fo € F,, with two sets
Al - fl(Xn) X yn andA2 - fl(Xn) X fQ(Xn) X yn such
that

Py (xmyyn (A1) > 1 — €1, Py (xnypo(xnyyn(A2) > 1 — e,

we may assume that

[ £1]
Ay =Jix G, GCY', i=12..f]

=1

[f1l;1f2]
A= | (,4) x Gij,

i=1 jfl

Gi; CY", i=1,2,..,fl, ji=12,..,|f|
Define the following sets
1761 — €9

Blz{ s e XM V(G amy|2™) >

|

T 14361 — e
Bg:{x”:xneé’(",

1-— €1 — €2
G ’Vl n -
v (). fa(am) ‘l‘ ) > 1+362—61}
Since we have
l—ea < Pfl(X")Y" (A1)
= Y PR )V"(Gyamla™)
xnrEeX™
™€ B,
+ Y PREMV(Gyoma™)
TLEBC
1-— €1 — €2
< P¥(B 1—-P%(Bp))———=
< PR(B) + (1= PR (Ba) g5 —
it follows that
PR (By) > i‘xﬁ'e?
Similarly, we have that
P (B,) > %
This implies that
3—-3 3-3
P2(By N By) > ate eta
4 4
1-— €1 — €9
=——7>0.
5 >

By the property of typical sequences given in Lemma A-1,

follows that for anyé” such that
0<d < _6;_62,

we have for any’ > 0

PY(BiN B2 NTx5) 2 0",

whenevemn > ng(|X],"). Next we find a single type in the
intersectionB; N Ba N T[’;(]é, with the maximum probability,
and denote this type &,. Since there are less thén-+1)!*
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types in total, it follows that
6//
(n+1)lxl”

From this point on we essentially consider only this single
type. For simplicity, defin€ £ BlﬂBgﬂTgo[X]. Furthermore,

Py (BiNByNTp ) > (13)

for any z” € T[ N5 We have that
Py (2") < exp(—n(H(X) - 61)), (14)
whered; — 0 asé’ — 0, it follows
1
~log |C| 2 H(X) ~ b, (15)

whered, — 0 aséd’ — 0.

The functionsf; and f, clearly partition the seC into
|f1|f2] non-intersecting subsets; denote those set€’as
Assign a uniform distributiorP,, onto the set”, and denote
the resulting random variablg (X™) asT}, whereX™ is the
random variable uniformly distributed o@' by distribution

Py..; similarly, denotefo(X™) asTy. Let Y" be connected
with X™ by the channelV™ : X" — Y. Apparently
(Th,Ts) < X™ < Y™ forms a Markov chain.
It is clear that we have

log|fi| > H(Ty) = I(T1; X™)

= H(X")— H(X"|TY)

= log|C| — H(X"|T)

(a) .

> n(H(X) = d2) — H(X"|T1)

=nH(X) —ndy —ZH(Xt‘TlX;)a (16)

t=1
where we have used (15) in (a). Similarly, we have

log | fi] +log | fo| = nH(X) —ndy — >  H(X,T1T2X; ).
t=1
a7

1—e;1— 62

Notice thatG; is in fact a{ A -image for the se€; =
U; Ci,;- We can now bound the type -two error at the first
stage as follows

B> Y PREMPHG )

aneC
[f1]
ljl 1—€1— €

> Py (Cikyn | Cfy ——————=

- Z X |4 ( 1 +3€1 _ €2>
i )

> Z (C)exp (~DV" ||y = i) - nd) ,

where the Iast step we used Lemma 3; note that conditioning

is needed here for the divergence term, however it is related
only to theY™ term by limiting 77 = f1(X™) = 4. It further
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follows BecausePy is a product distribution, we have

[f1l
%0 n . P, 10 P,
b1 > ZPX exp( DY™|Y™Ty =1) —n(S) %n g Py (")
[f1l n -
@ p Cil i = > Pra(y") Y log Py(y)
@ Z o] o (=" Ty = i) = o) e £
\fl = ZPA (y")log Py (yt)
® p N . o (y") log Py (y
u ZP . eXp( DY™||Y"|Ty :z)—né) o=
© = Py (y™) log P
> exp(—nd) g Zy )log Py (y1)
[f1]
x P%(C)exp ZP H(CODE YT =) |, = Py (y™) | log Py (y+)

where (a) and (b) are due to the fact that the(@eonsists of
sequences of the same type adg, is a uniform distribution
on C, and in (c) we used the convexity of functiemp(-).

It is worth noting that the bounding above turns out to be . N
tight suggests that the distribution 8f" given 7, = i is [~H(Y:) = D(Yi[[Y?)].
approximately the same for each valueahis in turn implies
that the setC' is partitioned in an approximately uniformResuming from (18) it follows that

Py (yt)log Py (y:)

Il
= 1[M)= HM
mM Ng

~
Il
—

fashion into sets of similar structure bft (and f;). Now 1
it follows — logf —
1 Al 1. A 1 & . .
1 _- n -

L log < Zp (CADY YTy = ) + 65 <——HY"|T) + ;{H(Yt) + D(V]|Y7)]
where 03 = & — Llog ;-5=r, and we used the fact - Z H(Y,|ThY,) + D(Yi||Y2)]
P3(C) > Pa(B1N Bg NC) and (13). We continue the chain
of inequalities as follows 1 5 5 e 5

? < Y IHE) - HYITXY) + DY)
|f1 t=1
1
— —logf —d3 < Py, (Ci)D(Y™||[Y™Ty = i) (@) 1 & .
n Z < =Y [HY) - HYTLX]) + D(Y|Y)]
|f1 P. ( n) n t=1
g —i Y n
== Z P, Z P ") log _Yrh=ild J 1
n n|T = z (0 = —
yreyn Py (y") n;[I(Yt,TlX ) + D(Yi[|V3)),
|f1 R . N
t Z Z Pgnyn(Ciry™) log Py i (y™) where (a) is due to the Markov string « (71X, ) < Y, .
i=1 yneyn By a similar manner, we can get
\fl n
1 1
1 Z S Penge (Cory™) log P2™) ——logfh < ~ > (YT X, ) + D(Vi][Yy)] + 05 (19)
i=1yreyn t=1
1 Crn 1 n n(, n
=——HY"|T) -~ > Pp.(y")log PP(y")  (18)
yneyn

Now introduce a random variablé uniformly distributed
over the setl,, and independent off}, 75, X", Y"™. For
convenience introduce the following notations,

Y:XJv ?:Y/J7 U:(JvThX;)v V:(JaTQ)v
and it follows from (16) and (17) that
1
—log | f1]
n

1 1
—log|fi| + = log|f2]
n n

v

H(X) — 6, — HX|U)

v

H(X) -6 — HEX|UV)



Furthermore, we have

- Z (Yi; T1 X, ) + D(Yi||Y2)]

~ 1 ~ PY \]:t(y)
=I1(YUlJ) + = Py (y)log 5"——
| n;yz@:, Yolr=t Py, 7=t(y)
2 175019)
1 & Py 1= W) Py, (y)
+— Py (y) log —2 4
”;yz@:/ e Py, (y) Py, (y)

)
I( ) — H(Y;|J) + D(Y;||Yy) + H(Y;)
= I(Y5;U|J) + I(Yy; J) + D(Yy||Yy)
I(Yy; U, J) + D(Y,||Yy)
= I(Yy;U) + D(Yy||Yy)
(Y;U) + D(Y]]Y),

I
~

where (a) is becausBy, is in fact independent of, and (b)
is becausd/ = (J, 711, X ). Similarlly

fz (Vs iTaX7) + D(V[Y)] = I(V;UV) + D(Y||Y).

And it follows that

1 _ _
—ﬁlogﬁl < I(Y;U)+ D(Y[|Y) + 03
1 _ _

Clearly,

n

1
Py(x):EZPr n‘C‘Zpr: zeX (20)

t=1 reC
and by the definitions we have

Pyix = Pyix.
Furthermore, it is straightforward to check the Markovrsiri
Y & X < (UV).

So far we have proved the following
Rit(e1, 2) € Rjy(X,Y)

+ [H(X) — H(X), H(X) — H(X), D(Y|]Y), D(Y[[Y)],

(21)

for any €;,e2 € (0,1) ande; + ea < 1. The proof can be

completed by a continuity argument, B~ is sufficiently
close toPxy.

By (20), and the fact thaf’ C T&]é” we have
|Px(x) — Pg(z)| <&, ze€AX.

as well asPy v = Py|x. By the uniform continuity of in-
volved information quantities, it follows thatéf is sufficiently
small, for every point(R1, Rs, F1, F2) € R}, (X,Y), there
exists a poin{ Ry, Rs, E1, Es) € R}, (X,Y) that is arbitrarily

14

indeed exists for any sufficiently large [ ]

VIl. CONCLUSION

We investigated two closely related problems, namely suc-
cessive refinement hypothesis testing and successive -refine
ment lossless one-helper problem. It was shown that the the
rate-exponent region of the former and rate regions of tierla
are congruent to each other. The unified approach facsgitate
the treatment and provides several non-trivial resultsfévas
on the SR-HT problem, and a strong converse result is proved
for this problem. Gaussian problem was investigated in some
depth for the SR-HT problem. Moreover, a new operational
meaning of the information bottleneck method was revealed
by connection to the problems being considered, which issmor
intuitive than previous given in the literature.

We believe the entropy characterization problem extracted
from these problems is fundamentally important, which hats n
been fully explored. Future research along this directi@ay m
provide results in other multi-terminal information thetical
problems.

APPENDIX

Definition A-1: Given a setB € Y™, the Hammingl-
neighborhood ofB is defined as the set

r'ep 2 {y:ye V", da({y}, B) <1}, (A-1)

where dg (B, C') denotes the Hamming metric between two
sets B and C' by extending the usual Hamming distance of
two sequencedy,(-,-) as

dg(B,C) =  min  dy(y,9)
YeB,YeC

LemmaA-1: For anyé > 0, there exists a sequeneg — 0
depending only onlX’| so that for every distributiod® on X

LemmaA-2: Given a sequence of positive integefs,}
with = — 0 and a distributionP” on Y with positive
probabilities, there exists a sequenge— 0 depending only
on {l,,}, |¥Y| andmin,cy P(y) such that for evenyB C Y™

1 1
0< =log|T""B| — —log|B| < e,
n n
1 1
0 < —log P"(I'""B) — ~log P"(B) < €,.
n n

LemmaA-3 (Blowing up): To any finite setst’ and) and
sequence,, — 0, there exists a sequence of positive integers
I, with l" — 0 and a sequence, — 1 such that for every
stochastlc matriXy : X — Y and everyn, x € X", B C )"

W™(B|x) > exp(—ne,) implies W™ (I''» B|z) > n,.
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