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Abstract—We investigate two closely related successive refine-
ment (SR) coding problems: (i) In the hypothesis testing (HT)
problem, bivariate hypothesisH0 : PXY againstH1 : PXPY , i.e.,
test against independence is considered. One remote sensor col-
lects data streamX and sends summary information, constrained
by SR coding rates, to a decision center which observes data
stream Y directly. (ii) In the one-helper (OH) problem, X and Y

are encoded separately and the receiver seeks to reconstructY

losslessly. Multiple levels of coding rates are allowed at the two
sensors, and the transmissions are performed in an SR manner.

We show that the SR-HT rate-error-exponent region and the
SR-OH rate region can be reduced to essentially the same entropy
characterization form. Single-letter solutions are thus provided in
a unified fashion, and the connection between them is discussed.
These problems are also related to the information bottleneck (IB)
problem, and through this connection we provide a straightfor-
ward operational meaning for the IB method. Connection to the
pattern recognition problem, the notion of successive refinability,
and two specific sources are also discussed. A strong converse
for the SR-HT problem is proved by generalizing the image
size characterization method, which shows the optimal type-two
error exponents under constant type-one error constraints are
independent of the exact values of those constants.

Index Terms—Entropy characterization, error exponent, hy-
pothesis testing, image size characterization, information bottle-
neck, one-helper problem, successive refinement.

I. I NTRODUCTION

In conventional successive refinement (SR) source coding,
a source stream is encoded into more than one description in
a progressive order such that later descriptions can be usedto
refine the early ones, resulting in progressive reconstructions
of improving qualities. As such, it can be conveniently formu-
lated as a rate-distortion problem. In addition to the fundamen-
tal problem of characterizing the rate-distortion region,also of
interest is the condition under which such a progressive coding
requirement does not cause any performance loss, compared
to a single stage coding system. These questions were the
focus of early works [1]–[3]. The rate-distortion problem
with various extensions has subsequently been thoroughly
researched, among which are the notable work by Effros [4],
[5] and by Tuncel and Rose [6]–[8].

The successive refinement coding structure is clearly appeal-
ing in multimedia delivery systems, since such a framework
allows a single copy of the multimedia content on the server
to satisfy requirement by users with different communication
capabilities. However, the importance of successive refinement

Chao Tian was with School of Computer and Communication Science,
Ecole Polytechnique Federale de Lausanne, Lausanne, CH1015, Switzerland.
He is now with AT&T Labs–Research, Florham Park, NJ 07932.

Jun Chen is with the Department of Electrical and Computer Engi-
neering, McMaster University, Hamilton, ON, Canada L8S 4K1 (email:
junchen@ece.mcmaster.ca).

10
. HvsH

Y

X R

Fig. 1. Hypothesis testing with one remote sensor.

coding goes well beyond this single specific application, and
in the present work we investigate several such cases which
deviate from the traditional rate-distortion setting. In the
remainder of this section, we review related previous work on
the hypothesis testing (HT) problem and the one-helper (OH)
problem; the successive refinement version of these problems
in consideration and our contribution are also outlined. Formal
problem definitions are given in the next section.

A. The hypothesis testing problem

The information theoretic formulation of the hypothesis
testing problem under communication constraint first appeared
in the award-winning article by Ahlswede and Csiszár [9],
and the problem can be described as follows (see also Fig.
1). Source streamX is observed by a remote sensor who
communicates to the receiver under certain rate constraint
R < H(X), and the receiver, which observes another de-
pendent source streamY , wishes to distinguish between the
two hypothesesH0 : PXY and H1 : QXY . The problem is
to characterize the exponent of the type-two error (H1 is true
but the detector judges otherwise), when the type-one error
(H0 is true but the detector judges otherwise) is less than a
pre-specified probabilityǫ.

For the case thatQXY = PXPY , i.e., testing against inde-
pendence, single letter characterization of the error exponent
was given in [9] for an arbitraryǫ ∈ (0, 1). This is the
equivalence of the “strong converse” result encountered in
Shannon theory as pointed out by Ahlswede and Csiszár, in
comparison to the “weak converse” for which only the case
ǫ → 0 is considered. For a general alternative hypothesis
QXY , single letter lower and upper bounds were provided, yet
a complete characterization was not found. Many subsequent
works extended or strengthened the results in [9], for example,
when both sensors are remote, or when type-one error is
constrained to satisfy certain error exponent requirement. The
review article by Han and Amari [10] provides a comprehen-
sive summary of literature on this topic.

In this work we consider the same distributed setting as in
[9] with one remote sensor, however, the receiver, instead of
waiting for the completion of the rateR transmission to make
a single decision in the end, wishes to form a preliminary
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Fig. 2. Lossless one-helper problem.

decision based on a subset of the description, and may (or
may not) wait for the completion of the transmission to form
a final decision. The remote sensor encoder thus has to take
this requirement into consideration. This problem clearlyhas
practical meaning in distributed hypothesis testing system with
delay constraint, and will be referred to as the successive
refinement hypothesis testing (SR-HT) problem.

We shall focus on the testing against independence case in
this work, and provide a single letter characterization of the
rate-error-exponent region. Furthermore, it is shown thatthe
result holds independent of the exact value of the constant
type-one error constraints, i.e., the strong converse result is
established. Interestingly, when the type-one error constraints
are sufficiently large, it can be shown that the progressive
encoding requirement does not cause any performance loss
compared to single stage coding, in terms of type-two error
exponent. It is worth mentioning that the proof for the strong
converse is not a trivial generalization of the proof in [9].
It appears that the covering lemma in [11], which is an
important tool in proving the strong converse for the single
stage case, is not sufficient for the successive refinement
setting. To circumvent this difficulty, we generalize the image
size characterization method [12] to provide the desired proof.

B. The one-helper source coding problem

The lossless one-helper (OH) source coding problem was
considered independently by Wyner [13] and by Ahlswede and
Körner [14], which can be described as follows (see also Fig.
2). Two correlated sourceX andY observed by two sensors
are encoded separately into descriptions of rateRX andRY ,
respectively. The decoder wishes to reconstructY losslessly
based on information received from both sensors. A conclusive
result was provided in [13][14] for the achievable rate region
of this problem. The lossy version of the one-helper problem
is more difficult, for which the only solved special case is
the Gaussian source problem under the quadratic distortion
measure [15].

We extend the above lossless one-helper problem to the
successive refinement setting (referred to as the SR-OH prob-
lem). Note that in this extension the requirement on the
reconstruction is still lossless, but the encoding is done in
an SR fashion, and thus the decoder receives SR information
regarding the source from either of the two encoders; we
believe this is a natural generalization of the SR notion from
the conventional rate-distortion setting. Though in this work
we mainly use this problem as an “enabler” to the hypothe-
sis testing problem, it is indeed well motivated in practice.
Observe that in the original problem, the two sources are

encoded and transmitted separately to the receiver. As suchone
particular sensor encoder might not have accurate information
as to what the capacity of the communication link is between
the receiver and the other sensor, or even whether the other
link is reliable or not. If the link between one sensor and
the receiver fails after certain amount of data is successfully
transmitted, the data from the other sensor will not be sufficient
for the receiver to recover from this failure, when the existing
coding scheme for the OH problem [13][14] is used. One
solution is that instead of fixing one final operating point
(RX , RY ), the sensors choose several possible operating rate
pairs and the information is transmitted progressively, such
that as long as the received information from both sensors is
sufficient jointly, the decoding procedure can be performed.
In the situation described above, the refinement information
from the other sensor with working communication link can
then compensate for the lost information. This approach is
also applicable when one of the communication links suffers
unexpected delay or degradation of quality, and the other
sensor with working link can help reduce this delay by
sending additional information. In a sense, this successive
refinement coding structure makes the system more robust to
communication link failure; problems in a similar vein can be
found in [16] and [17]. In this work, we shall show that the
achievable rate region for the SR-OH problem has essentially
the same entropy characterization form as that of the SR-HT
problem, and also provide a conclusive single-letter solution
for this problem.

C. Motivation and structure of the paper

In addition to the clear application of the two problems
which have not been treated before in the literature, one of our
main motivations is that these problems are closely relatedand
it is beneficial to make a unified investigation of them. The
connection has been recognized for the single stage case in
[9], and we show that it continues to hold for the successive
refinement case. In fact, it appears difficult to establish the
direct half of the hypothesis testing problem directly, but
through this relation the proof is rather straightforward,which
is exactly the approach taken in [9]. It will also be shown that
a single codebook exists which is good for these problems.
Furthermore, existing results in one problem can be readily
applied to the other problem to give rather non-trivial results.
For example, the successive refinability of the doubly sym-
metric binary source for the hypothesis testing can be derived
directly from a result by Wyner [18].

These two problem are related to the pattern recognition
problem [19]–[23] and the information bottleneck problem
[24]. In fact, the entropy characterization problem extracted
from the problems being considered also readily provides
an operational meaning for the information bottleneck (IB)
method [24]. Though several attempts were made to formalize
and clarify the operational meaning of the IB function [25],
[26], our approach is more straightforward and intuitive. This
shows the importance of the IB method, as it is not merely
useful as a classification tool [27], but has roots in many
information theoretic problems.
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The Gaussian source is given special consideration, and it
is shown that lattice encoding together with an approximation
to the Neyman-Pearson detector, namely the weighed distance
difference detector, is asymptotically optimal for this problem.
Large deviation technique is used to establish this result.

The rest of the paper is organized as follows. In Section II
we provide formal definitions for the problems. In Section
III the main results are presented. In IV the concept of
successive refinability is defined, and sufficient and necessary
conditions are provided. The doubly symmetric binary source
is investigated in this context. In Section V the Gaussian source
is considered and we provide a lattice approach for this case.
Section VI gives the strong converse proof for the hypothesis
testing problem. Finally Section VII concludes the paper.

II. N OTATION AND PRELIMINARIES

Let X andY be two finite sets. LetXn be the set of all
n-vectors with components inX . Denote an arbitrary member
of Xn as xn = (x1, x2, ..., xn), or alternatively asx. Upper
case is used for random variables and vectors. A discrete
memoryless source (DMS)(X , PX) is an infinite sequence
{Xi}

∞
i=1 of independent copies of a random variableX in X

with a generic distributionPX andPX(xn) =
∏n

i=1 PX(xi).
Similarly, let (X ,Y, PXY ) be a discrete memoryless two-
source with generic distributionPXY ; the subscript will be
dropped when it is clear from the context asP (X,Y ). Without
loss of generality, we assumePX(x) 6= 0 for any x ∈ X and
similarly for PY . The cardinality of a setS is denoted as|S|.

In this work only two stage systems will be considered.
To distinguish between the two problems when necessary, the
subscripts “ht” and “oh” are used for “HypothesisTesting”
and “One-Helper”, respectively.

A. Successive refinement for hypothesis testing

Let the two hypotheses be given as follows

H0 : PXY = (PXY (x, y))x∈X ,y∈Y ,

H1 : QXY = PX × PY = (PX(x)PY (y))x∈X ,y∈Y ,

wherePX andPY are the marginal distributions ofPXY . In
other words, we are to test against independence.

Definition 1: An (n, ǫ1, ǫ2, β1, β2,M1,M2) SR-HT code
consists of two encoding functions

f1 : Xn → IM1
, f2 : Xn → IM2

, (1)

whereIM = {1, 2, ...,M} and two detectors specified by the
decision setA1 ⊆ IM1

× Yn andA2 ⊆ IM1
× IM2

× Yn as:

gt,1(i1, y
n) =

{

H0 (i1, y
n) ∈ A1;

H1 otherwise,

gt,2(i1, i2, y
n) =

{

H0 (i1, i2, y
n) ∈ A2;

H1 otherwise,

such that the type-one errors at the two stages do not exceed
fixed ǫ1, ǫ2 ∈ (0, 1), respectively; i.e.,

Pf1(Xn)Y n(A1) ≥ 1 − ǫ1,

Pf1(Xn)f2(Xn)Y n(A2) ≥ 1 − ǫ2,

and the type-two errors at the two stages do not exceedβ1, β2,
respectively; i.e.,

QXY (A1) = Pf1(Xn) × PY n(A1) ≤ β1,

QXY (A2) = Pf1(Xn)f2(Xn) × PY n(A2) ≤ β2.

Definition 2 (Achievable rates-error exponents):A rate
and type-two error exponent quadruple(R1, R2, E1, E2)
is said to be(ǫ1, ǫ2)-achievable with fixedǫ1, ǫ2 ∈ (0, 1),
if for any ǫ > 0 and sufficiently largen, there exists an
(n, ǫ1, ǫ2, β1, β2,M1,M2) SR-HT code such that

1

n
log M1 ≤ R1 + ǫ,

1

n
log M2 ≤ R2 + ǫ,

−
1

n
log β1 ≥ E1 − ǫ, −

1

n
log β2 ≥ E2 − ǫ.

Denote all the(ǫ1, ǫ2)-achievable quadruple asRht(ǫ1, ǫ2),
and this is the region we seek to characterize. Clearly we have
Rht(ǫ1, ǫ2) ⊆ Rht(ǫ

′
1, ǫ

′
2) if ǫ1 ≤ ǫ′1, ǫ1 ≤ ǫ′2, and thus the

following limit is well-defined.
Definition 3: The weakly achievablerate-error-exponent

regionRht is

Rht ,
⋂

ǫ1>0,ǫ2>0

Rht(ǫ1, ǫ2).

In Section VI we show that the strong converse holds true that
Rht(ǫ1, ǫ2) is essentially independent of(ǫ1, ǫ2), and thus a
characterization ofRht is almost a sufficient characterization
of Rht(ǫ1, ǫ2).

For convenience, define the error-exponent-rate function
E(R) as the single-stage achievable error exponent with rate
no larger thanR, which was shown in [9] to be

E(R) = max
U

{I(U ;Y )|U ↔ X ↔ Y,

I(X;U) ≤ R, |U| ≤ |X | + 1}. (2)

As shown in [9],E(R) is independent of the type-one error
constraint taken value in(0, 1).

B. Successive refinement for the one-helper problem

Definition 4: An (n,M1,M2,MY,1,MY,2,∆1,∆2) SR-
OH code for source(X ,Y, PXY ) consists of four encoding
functions

f1 : Xn → IM1
, f2 : Xn → IM2

,

fY,1 : Yn → IMY,1
, fY,2 : Yn → IMY,2

,

and two decoding functions

gh,1 : IM1
× IMY,1

× IMY,2
→ Yn,

gh,2 : IM1
× IM2

× IMY,1
→ Yn,

such that

Pr(Y n 6= gh,1(f1(X
n), fY,1(Y

n), fY,2(Y
n))) ≤ ∆1,

Pr(Y n 6= gh,2(f1(X
n), f2(X

n), fY,1(Y
n))) ≤ ∆2.

Definition 5: A rate quadruple(R1, R2, RY,1, RY,1+RY,2)
is said to be SR-OH achievable, if for anyǫ > 0 and suffi-
ciently largen, there exist an(n,M1,M2,MY,1,MY,2, ǫ, ǫ)
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SR-OH code, such that

1

n
log M1 ≤ R1 + ǫ,

1

n
log M2 ≤ R2 + ǫ,

1

n
log MY,1 ≤ RY,1 + ǫ,

1

n
log MY,2 ≤ RY,2 + ǫ.

Denote the set of SR-OH achievable rate quadruples asRoh,
and we seek to characterize this region for this problem. For
easier comparison with the other problem, the last component
of the rate vector is written as the sum-rate, instead of the
individual rateRY,2. However it is straightforward to verify
thatRoh is sufficient to provide a complete characterization if
we were to define an achievable rate quadruple as the vector
of (R1, R2, RY,1, RY,2).

For the single stage system, denote the minimum achievable
rate at theY encoder for a givenX encoder rateR asRoh(R),
which is shown in [13], [14] to be

Roh(R) = min
U

{H(Y |U)|U ↔ X ↔ Y,

I(X;U) ≤ R, |U| ≤ |X | + 1}. (3)

From (2) and (3), it is clear that

Roh(R) + E(R) = H(Y ). (4)

This suggests there is an intimate connection between the
single stage hypothesis testing problem and the one-helper
problem, and we shall explore this connection in the successive
refinement coding case.

III. M AIN RESULTS

In the remainder of the work, for a given regionR to
be characterized, we shall useR∗ to denote its single letter
characterization form, and̂R∗ to denote its entropy charac-
terization form. Our plan to characterize the regionsRht and
Roh is as follows. First we provide an entropy characterization
form of Rht, then give two equivalent forms ofRoh: one is a
single letter characterization while the other is in the entropy
characterization form. Through the entropy characterization
form, the SR-HT problem and SR-OH problem are shown
to have intimate connection, by which a single letter char-
acterization is established. Further connections betweenthe
problems, the new interpretation of the operational meaning
of the information bottleneck method, and the relationshipto
the pattern recognition problem investigated in [19], [21]are
subsequently discussed.

A. Entropy characterization form ofRht

It is convenient to introduce the setFn as the collection of
functions with domainXn. First we define the following set

R̂∗
ht , CL

⋃

n

R̂∗
ht,n,

where

R̂∗
ht,n =

⋃

f1,f2∈Fn

{

(R1, R2, E1, E2) : R1 ≥
1

n
log |f1|,

R1 + R2 ≥
1

n
log |f1| +

1

n
log |f2|,

E1 ≤
1

n
D(Pf1(Xn)Y n ||Pf1(Xn)PY n),

E2 ≤
1

n
D(Pf1(Xn)f2(Xn)Y n ||Pf1(Xn)f2(Xn)PY n)

}

,

where

D(P ||Q) ,
∑

x∈X

P (x) log
P (x)

Q(x)

is the Kullback-Leibler information divergence. Note that
⋃

n R̂∗
ht,n is not necessarily a closed set, and thus we take

its closure, denoted byCL.
We can now follow the approach taken by Ahlswede and

Csisźar and use Stein’s lemma [28] to establish a relation be-
tweenRht(ǫ1, ǫ2) andR̂∗

ht, which leads to a characterization
of Rht as a corollary.

Theorem1:
a) Rht(ǫ1, ǫ2) ⊇ R̂∗

ht, for all ǫ1, ǫ2 ∈ (0, 1).
b) Rht ⊆ R̂∗

ht.
This theorem is a generalization of the one given in [9], and

the proof is thus omitted; interested readers can refer to [29]
for more details. With Theorem 1 and the definition ofRht,
it is straightforward to see that the following corollary istrue.

Corollary 1: Rht = R̂∗
ht.

Note further that
1

n
D(Pf1(Xn)Y n ||Pf1(Xn)PY n) =

1

n
I(f1(X

n);Y n)

= H(Y ) −
1

n
H(Y n|f1(X

n)),

and
1

n
D(Pf1(Xn)f2(Xn)Y n ||Pf1(Xn)f2(Xn)PY n)

=
1

n
I(f1(X

n)f2(X
n);Y n)

= H(Y ) −
1

n
H(Y n|f1(X

n)f2(X
n)).

Thus it follows that

R̂∗
ht,n =

⋃

f1,f2∈Fn

{

(R1, R2, E1, E2) : R1 ≥
1

n
log |f1|,

R1 + R2 ≥
1

n
log |f1| +

1

n
log |f2|,

H(Y ) − E1 ≥
1

n
H(Y n|f1(X

n)),

H(Y ) − E2 ≥
1

n
H(Hn|f1(X

n)f2(X
n))

}

.

B. Two equivalent characterizations ofRoh

Next two equivalent characterizations ofRoh are given. One
of them is in a single letter form, while the other is in the
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entropy characterization form. Through the latter form, itwill
be clear there is an intimate connection betweenRoh andRht.

Define the regionR∗
oh to be the set of all rate quadruples

(R1, R2, RY,1, RY,1+RY,2) for which there exist random vari-
ables(U, V ) in finite alphabetsU ,V such that the following
conditions are satisfied.

1) (U, V ) ↔ X ↔ Y is a Markov string.
2) The non-negative ratesR1, R2, RY,1 andRY,2 satisfy:

R1 ≥ I(X;U), R1 + R2 ≥ I(X;U, V ),

RY,1 ≥ H(Y |U, V ), RY,1 + RY,2 ≥ H(Y |U).

3) The alphabetsU , V satisfy

|U| ≤ |X | + 3, |V| ≤ |X |2 + 3|X | + 1.

Note that the regionR∗
oh is a closed set since entropy

and mutual information are both continuous functions of each
argument. We have the following theorem.

Theorem2: Roh = R∗
oh.

In the proof of this theorem, we only outline the random
coding argument for the achievability of the region; the
converse is by generalizing the proof for the single stage
case in [30], thus it is omitted (see [29] for details). It
is worth pointing out that the achievability is proved by
strategically combining the coding schemes for the original
one-helper problem [13][14], the incremental Slepian-Wolf
coding approach (see [31]–[34]), and the successive refinement
source coding problem [2], [3].

Proof:
Let δi, i = 1, 2, 3 be small positive quantities. Fix a prob-

ability distributionPUV XY = PXPUV |XPY |X . First generate
2n(I(X;U)+δ1) codewords single-letter-wise according to the
distribution PU , and denote the codebook asCu. For each
of theseU codewords, generate2n(I(X;V |U)+δ2) codewords
according toP (V |U), and denote the codebook asCv(un)
for each un ∈ Cu. This will be the codebook for the
encoder observing sourceX. For the encoder observingY ,
first construct a two-level nested binning structure, such that
each coarser bin contains2nI(Y ;V |U) smaller bins, with a
total of 2n(H(Y |U,V )+δ3) coarser bins; this induces a total of
2n(H(Y |U)+δ3) finer bins. Assign eachyn uniformly at random
into one of finer bins. The codebooks are revealed to both the
encoders and decoders.

During encoding, with high probability the encoder observ-
ing xn can find a codewordun(i) ∈ Cu that is jointly typical
with xn, and the indexi is sent to the decoder as the first
stage description; for the givenun(i) codeword, again with
high probability there exists avn(j|i) ∈ Cv(un(i)) that is
jointly typical with xn andun(i). The indexj is sent as the
second stage information. At the encoder observingyn, the
coarse bin indexk to which yn belongs is sent as the first
stage information, while the finer bin indexl within the coarser
bin is sent as the second stage information. The first decoder,
with indices i, k, l decodes, if it finds a uniqueyn sequence
in the (k, l)-th finer bin that is jointly typical withun(i);
the second decoder, with indicesi, j, k, decodes if it finds
a uniqueyn sequence in thek-th coarser bin that is jointly
typical with un(i) and vn(j|i). Using a similar argument as

for the original one-helper problem (see for example [30]),it
can be shown that the above coding scheme succeeds with
probability arbitrarily close to 1.

Next we give another characterization ofRoh. Define the
following set

R̂∗
oh = CL

⋃

n

R̂∗
oh,n,

where

R̂∗
oh,n =

⋃

f1,f2∈Fn

{(R1, R2, RY,1, RY,1 + RY,2) :

R1 ≥
1

n
log |f1|, R1 + R2 ≥

1

n
log |f1| +

1

n
log |f2|,

RY,1 ≥
1

n
H(Y n|f1(X

n)f2(X
n)),

RY,1 + RY,2 ≥
1

n
H(Y n|f1(X

n))

}

.

We have the following theorem.
Theorem3: Roh = R̂∗

oh = R∗
oh.

Proof: To proveRoh ⊇ R̂∗
oh, we can either apply the

(incremental) Slepian-Wolf coding scheme [31] on the super-
sourceY n with two degraded side informationf1(X

n) and
(f1(X

n)f2(X
n)), or apply Heegard-Berger coding theorem

[33] on the super-source; note here(f1(X
n), f2(X

n), Y n) are
i.i.d. random variables across blocks. The details are omitted.

To seeRoh ⊆ R̂∗
oh, we write

nRY,1 ≥ H(fY,1(Y
n)) ≥ H(fY,1(Y

n)|f1(X
n)f2(X

n))

= I(Y n; fY,1(Y
n)|f1(X

n)f2(X
n))

(a)

≥ H(Y n|f1(X
n)f2(X

n)) − n log |Y|∆1 − Hb(∆1)

where (a) is by applying Fano’s inequality. The other condition
on the sum rate can be proved similarly.

C. Connection between the SR-HT and SR-OH problems

Define thepartially skewed reflectionoperator as follows.
Definition 6: For a real quadruple(a1, a2, a3, a4), its

partially skewed reflection operation under a two-source
(X ,Y, PXY ) is given by

P(a1, a2, a3, a4) = (a1, a2,H(Y ) − a4,H(Y ) − a3).

The partially skewed reflection of a set of quadruplesS is
given by

P(S) = {P(a1, a2, a3, a4) : (a1, a2, a3, a4) ∈ S}.

Since P is clearly a bijection and preserves Euclidean
distance, it is an isometry. From Theorem 1, Theorem 3 and
the corresponding entropy characterization expressions,we
have the following corollary.

Corollary 2: Rht = P(Roh).
The isometryP implies the two regions are congruent. Since

Roh is convex,Rht is also convex. This fact does not directly
follow from the time-sharing argument as often seen in source
coding, because the time-sharing argument does not directly
apply in the SR-HT problem. Furthermore, since a single
letter characterization ofRoh is available, we thus readily find
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a single-letter characterization forRht; for convenience we
denote it asR∗

ht.
The connection among the two problems can be further

strengthened. For an arbitrary point on the boundary ofRht,
by the isometry ofP, there is one point on the boundary of
Roh. Using the entropy characterization form, it is clear that
there exists an optimal sequence of functionsf1, f2 ∈ Fn, in
the sense that the values of

(
1

n
log |f1|,

1

n
log |f2|,

1

n
I(Y n; f1(X

n)),

1

n
I(Y n; f1(X

n)f2(X
n)))

approach the particular operating points for SR-HT, as well
as the corresponding point for SR-OH problem. Denote the
concatenation of these functions withm suchn-blocks asfm

1

and fm
2 . It is seen that whenm is sufficiently large (with

the sequence of codef1, f2 ∈ Fn), the sequence of codes
(fm

1 , fm
2 ) ∈ Fmn is indeed approaching optimum. Thus we

have the following theorem.
Theorem4: For any particular points in Rht and the

corresponding pointP(s) ∈ Roh, there exists a sequence of
optimal coding functions(f1, f2) ∈ Fln , where ln → ∞ as
n → ∞, in the sense that they approachs, and there exists a
corresponding sequence of coding functionsfY,1, fY,2 ∈ Fln ,
such that the sequence of these four coding functions ap-
proaches the pointP(s) ∈ Roh.

It is now clear that the two problems are closely related
and can be treated together. In Section IV, we consider the
notion of successive refinability in the two settings together,
and derive necessary and sufficient conditions; a binary source
example will also be considered in this context.

D. The strong converse result for the SR-HT problem

ThoughRht can be characterized in a single-letter form as
above, this is not sufficient to characterizeRht(ǫ1, ǫ2) with
arbitrary ǫ1, ǫ2 ∈ (0, 1). As it turns outRht(ǫ1, ǫ2) is almost
independent of(ǫ1, ǫ2). We have the following strengthened
result, the converse part of which is proved in Section VI using
the method of types.

Theorem5: For anyǫ1, ǫ2 ∈ (0, 1) such thatǫ1 + ǫ2 < 1,
Rht(ǫ1, ǫ2) = Rht. On the other hand, for anyǫ1, ǫ2 ∈ (0, 1)
such thatǫ1 + ǫ2 > 1, we have

Rht(ǫ1, ǫ2) = {(R1, R2, E1, E2) :

E1 ≤ E(R1), E2 ≤ E(R1 + R2)}. (5)

Note the caseǫ1 + ǫ2 = 1 is not included. This is similar
to the source-channel separation results when the entropy rate
is exactly equal to the channel capacity, the behavior is not
known. The achievability result for the caseǫ1 + ǫ2 < 1 is
implied by Theorem 1, and next we give the achievability
proof for the other case.

Proof of achievability for Theorem 5:
Since E(R1) and E(R1 + R2) are achievable type-two

error exponents with coding rateR1 andR1 + R2 for single
stage coding, respectively, it follows that there exist encoding
functions f ′

1 and f ′
2, and the corresponding detectorsg′t,1

andg′t,2 to approach this performance. Denote the acceptance

regions asA′
1 and A′

2, and type-two errors byf ′
1 and f ′

2 as
β′

1 and β′
2, respectively; note that the type-one errorsǫ′1 and

ǫ′2 can be made arbitrarily small whenn is sufficiently large.
We now construct a two-stage system using these functions.

Given fixedǫ1 and ǫ2 such thatǫ1 + ǫ2 > 1, we partition the
Xn space into two non-intersecting setsA and B, such that
Pn

X(A) > 1− ǫ1 andPn
X(B) > 1− ǫ2; with sufficiently large

n such a partition is always possible. Note thatPn
X(A) +

Pn
X(B) = 1. The encoding is performed as follows. In the

first stage, ifx ∈ A, then f ′
1 is used; ifx ∈ B, then send

the first nR1 bits of f ′
2. In the second stage, ifx ∈ A, we

send a fixed codeword of lengthnR2; if x ∈ B, then we
send the remainingnR2 bits of f ′

2. An additional prefix bit
is added to indicate which setx is in, and this induces a
negligible rate increase for long block codes. With this prefix
bit, the first stage decoder uses the following decision set,
which indeed utilizes onlyn(R1) bits (plus the one prefix bit)
of the description

C1 = (A × Yn) ∩ A′
1.

For the second stage detector, the following decision region is
used

C2 = (B × Yn) ∩ A′
2.

It remains to show the error probabilities are as claimed. Note
that Pf ′

1
(Xn)Y n(A′

1) ≥ 1 − ǫ′1 and the inequalityPn
X(A) >

1 − ǫ1 is strict, thus by applying the union bound

Pf1(Xn)Y n(C1) ≥ Pn
X(A) − ǫ′1 ≥ 1 − ǫ1,

when n is sufficiently large, i.e.,ǫ′1 is sufficiently small.
Similarly for the second stage

Pn
f1(Xn)f2(Xn)Y n(C2) ≥ Pn

X(B) − ǫ′2 ≥ 1 − ǫ2,

when n is sufficiently large sincePn
X(B) > 1 − ǫ2. For the

type-two errors, we have

Pf1(Xn)P
n
Y (C1) ≤ Pf ′

1
(Xn)P

n
Y (A′

1) = β′
1

Pf1(Xn)f2(Xn)P
n
Y (C2) ≤ Pf ′

1
(Xn)f ′

2
(Xn)P

n
Y (A′

2) = β′
2.

This indeed implies the claimed result and the proof is
complete.

E. Connection to the pattern recognition problem

The successive refinement pattern recognition (SR-PR)
problem was formulated independently by Tuncel [19] and
by Westover and O’Sullivan [23]. In this setting, a two-source
(X ,Y, PXY ) is an environmentE for a pattern recognition
system. The pattern domain isXn and the noisy observation
domain isYn. We provide a brief problem definition below,
and more details can be found in [19]–[23].

Definition 7: An (n,Mc,1,Mc,2) instance of the environ-
ment E consists ofMc,1Mc,2 n-length sequences inXn,
labeled asXn(1),Xn(2), ...,Xn(Mc,1Mc,2).

Definition 8: An (n,Mc,1,Mc,2,M1,M2,∆1,∆2) SR-PR
code for an environmentE consists of two encoders

f1 : Xn → IM1
, f2 : Xn → IM2

,
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and two classifiers

gr,1 : I
Mc,1

M1
× Yn → IMc,1

,

gr,2 : I
Mc,1Mc,2

M1
× I

Mc,1Mc,2

M2
× Yn → IMc,1Mc,2

.

We denoteJ1(m) = f1(X
n(m)) and J2(m) = f2(X

n(m));
furthermore denote the collection of codewords asC1 andC2

for an (n,Mc,1,Mc,2) instance of the environment, i.e.,

C1 = {J1(1), J1(2), ..., J1(Mc)}

C2 = {[J1(1), J2(1)], [J1(2), J2(2)],

..., [J1(Mc,1Mc,2), J2(Mc,1Mc,2)]} .

In the recognition phase of the system, the pattern occurs
uniformly at random in the pattern pool given in the enrollment
phase. More precisely, a random patternW1 ∈ IMc,1

occurs
either uniformly at random in theMc,1 given patterns where
the first level description will be used, or a random pattern
W2 ∈ IMc,1Mc,2

occurs uniformly at random in theMc,1Mc,2

given patterns where both levels of descriptions will be used.
For a given system, the error probability for the first levelPe,1

and that for the second levelPe,2 satisfy, respectively,

∆1 ≥ Pe,1 , Pr{gr,1(C1, Y
n(W1)) 6= W1},

∆2 ≥ Pe,2 , Pr{gr,2(C2, Y
n(W2)) 6= W2}.

Note that both(C1, C2) and (W1,W2) are random quantities.
Definition 9: A rate vector(R1, R2, Rc,1, Rc,1 + Rc,2) is

SR-PR achievable, if for anyǫ > 0 and sufficiently largen
there exists an(n,Mc,1,Mc,2,M1,M2, ǫ, ǫ) code such that

1

n
log Mc,1 ≥ Rc,1 − ǫ,

1

n
log Mc,2 ≥ Rc,2 − ǫ

1

n
log M1 ≤ R1 + ǫ,

1

n
log M2 ≤ R2 + ǫ.

Denote the set of achievable rate quadruples for SR-PR
as Rpr, and a characterization was given in [19][23]. By
comparing the expression provided there, it is not difficultto
seeRpr = Rht. In fact, the entropy characterization approach
given in this work provides a simple alternative proof for the
pattern recognition rate region.

F. An interpretation of the information bottleneck method

The information bottleneck function was given in [24] as

Rib(R) = min
I(U ;Y )≥R, U↔X↔Y

I(U ;X), (6)

which is exactly the definition of the inverse function ofE(R)
in (2) if we ignore the cardinality bound. This similarity
motivates the following definition of an information bottleneck
code, extended to its successive refinement version.

Definition 10: An (n,M1,M2, RI,1, RI,2,∆1,∆2) SR-IB
code for source(X,Y ) consists of two classification functions

f1 : Xn → IM1
, f2 : Xn → IM2

,

such that
1

n
I(Y n; f1(X

n)) ≥ RI,1 + ∆1,

1

n
I(Y n; f1(X

n)f2(X
n)) ≥ RI,2 + ∆2.

Definition 11: A rate quadruple(R1, R2, RI,1, RI,2) is
said to be SR-IB achievable, if for anyǫ > 0 and sufficiently
large n, there exists an(n,M1,M2, RI,1, RI,2, ǫ, ǫ) SR-IB
code, such that

1

n
log M1 ≤ R1 + ǫ,

1

n
log M2 ≤ R2 + ǫ.

Denote the set of achievable rate quadruples for SR-IB as
Rib, and thus this is the region of interest. The following
theorem is immediate.

Theorem6: Rib = Rpr = Rht.
Proof: We only need to show that̂R∗

ht = Rib. The
inclusionRib ⊆ R̂∗

ht is rather trivial by the definitions. For the
inclusion in the other direction, observe that for any fixed-rate
SR-IB code of lengthk, by taking itsl-fold product codes, we
can easily show that

I(f1(X
n
1 ), f1(x

2n
n+1), ..., f1(x

ln
n(l−1)+1);Y

ln
1 )

= lI(f1(X
n
1 );Y n

1 )),

Thus we haveR̂∗
ht ⊆ Rib, which establisheŝR∗

ht = Rib.
The above formalization of the operational meaning of the

IB function essentially states that we can understand the IB
problem as a source coding problem subject to a constraint
on the normalized mutual information between the codeword
and the remote source vectorY n, instead of the usual single-
letter distortion measure familiar in the rate-distortiontheory.
Moreover, the IB problem is not uncommon in multi-terminal
systems, though it might appear in certain disguise, as shown
by the problems in consideration.

IV. SUCCESSIVE REFINABILITY IN SR-HT AND SR-OH

A. Successive refinability

Similar to the notion of successive refinability in the rate-
distortion setting, we can introduce the following notionsfor
the two problems considered in this work. These notions
capture whether the progressive coding requirement causes
loss of performance with respect to single-stage coding.

Definition 12: A source is successively refinable for hy-
pothesis testing (with(ǫ1, ǫ2)) and one-helper coding, respec-
tively, with rateR1 andR2 if

(R1, R2, E(R1), E(R1 + R2)) ∈ Rht(ǫ1, ǫ2),

(R1, R2, Roh(R1 + R2), Roh(R1)) ∈ Roh.

Note we can also defineweakly successive refinabilityfor
SR-HT as(R1, R2, E(R1), E(R1 +R2)) ∈ Rht. This weaker
notion will be useful when Gaussian source is considered, for
which Theorem 5 does not apply because of its reliance on
the method of types. Using the characterization ofRht(ǫ1, ǫ2),
we have the following theorem for the SR-HT problem.

Theorem7: 1) If ǫ1, ǫ2 ∈ (0, 1) such thatǫ1 + ǫ2 < 1,
a two-source(X ,Y, PXY ) is successively refinable for
SR-HT with rateR1 and R2, if and only if there exist
random variablesU andV in finite alphabetsU andV
such that

a) Y ↔ X ↔ V ↔ U is a Markov string.
b) I(X;U) = R1 andI(Y ;U) = E(R1).
c) I(X;V ) = R1 + R2 andI(Y ;V ) = E(R1 + R2).
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2) If ǫ1, ǫ2 ∈ (0, 1) such thatǫ1 + ǫ2 > 1, a two-source
(X ,Y, PXY ) is always successively refinable for SR-
HT with rateR1 andR2.

Proof: Note that part (2) follows directly from Theorem
5, and thus we only consider part (1). Because of the relation
Rht(ǫ1, ǫ2) = Rht = R∗

ht for this case,R∗
ht is sufficient to

characterize the region. Note that in the definition ofR∗
ht we

can always add in the Markov string conditionX ↔ V ↔ U

by letting V = (U, V ), which does not change any involved
information quantities. This necessitates increasing thecar-
dinality bound ofV, and it is trivial to see that a size of
(|X | + 3)(|X |2 + 3|X | + 1) suffices. This observation alone
provides the following alternative definition ofR∗

ht as the set
of quadruples(R1, R2, E1, E2) for which there exist random
variables(U, V ) in finite alphabetsU ,V such that:

1) Y ↔ X ↔ V ↔ U is a Markov string.
2) The non-negative rate quadruple satisfies:

R1 ≥ I(X;U), R1 + R2 ≥ I(X;V ),

E1 ≤ I(Y ;U), E2 ≤ I(Y ;V ).

3) |U| ≤ |X | + 3, and |V| ≤ (|X | + 3)(|X |2 + 3|X | + 1).

Now the necessity and sufficiency both follow directly from
this characterization.

The results can clearly be extended to SR-OH with virtu-
ally no change (without the second part); we thus omit the
statement of such a theorem.

B. The doubly symmetric binary source

Consider the following hypothesis:X = Y = {0, 1} and
0 ≤ p0 < 0.5,

H0 : PXY (x, y) =
1

2
(1 − p0)δx,y +

1

2
p0(1 − δx,y),

H1 : PX(x)PY (y) =
1

4
.

For H0, the probability distributionPXY can essentially be
understood as there is a binary symmetric channel (BSC) with
crossover probabilityp0 with input X and outputY , and the
input X is of distribution Bernoulli12 (denoted as Bern( 1

2 )).
In [18], Wyner showed that the optimal forward test channel

for the single stage one-helper problem is given byU =
X ⊕ N , where ⊕ is modulo 2 addition andN is a Bern
(H−1

b (1 − R)) random variable, independent of everything
else; hereH−1

b (·) denotes the inverse of the binary entropy
function Hb(p) with p ∈ [0, 0.5], and R is the coding rate
at encoder observingX. It is seen that when successive
refinement coding is used, we can chooseU = X ⊕N1 ⊕N2

andV = X ⊕N1, whereN1 is of Bern(H−1
b (1−R1 −R2))

and N2 is a Bernoulli random variable such thatN1 + N2

is of Bern(H−1
b (1 − R1)); such anN2 always exists since

H−1
b (1 − R1) ≥ H−1

b (1 − R1 − R2). N1 and N2 are inde-
pendent of each other and everything else. By the optimality
of this forward test channel shown in [18],(U, V ) clearly
satisfies the conditions in Theorem 7, and thus for the SR-HT
problem (as well as successive refinement pattern recognition
problem and the information bottleneck problem), it is indeed
successively refinable with any rateR1 andR2.

This example highlights the power of treating these prob-
lems together. In [19] the same result was given for the pattern
recognition problem, and the derivation is rather non-trivial.
By recognizing the relation among these problems, we simply
invoke the existing result in [18] to avoid such difficulty.

V. THE GAUSSIAN SOURCE

Until this point, we have only considered discrete memo-
ryless sources. The results however can be extended to more
general source such as the Gaussian source. It is not difficult
to verify that the converse proof for the SR-HT problem can
be established using the almost identical line of derivation
as in the SR-OH problem by boundingI(Y n; f1(X

n)) and
I(Y n; f1(X

n)f2(X
n)) directly. Next we provide an achiev-

ability proof using a lattice strategy for the SR-HT problem;
one can also invoke the result on the pattern recognition prob-
lem directly to obtain such a proof, however the method below
is more constructive. ForH0, let the distributionPXY be given
as Y = X + N , whereX ∼ N (0, σ2

x) and N ∼ N (0, σ2
N )

are independent; forH1, X and Y are independent with the
distributions given by the marginal distribution ofPXY .

Before considering the lattice strategy, let us derive an
explicit outer bound forRht. We have that

I(U ;Y ) = h(Y ) − h(X + N |U)

(a)

≤ h(Y ) −
1

2
log[2πeσ2

N + exp(2h(X|U))]

= h(Y ) −
1

2
log[2πeσ2

N + exp(2h(X) − 2I(X;U))]

(b)

≤ h(Y ) −
1

2
log[2πeσ2

N + 2πeσ2
x exp(−2R1)]

=
1

2
log

σ2
x + σ2

N

σ2
N + σ2

x exp(−2R1)
,

where (a) is by applying the conditional form of the entropy
power inequality [35] and (b) is becauseI(X;U) ≤ R1.
Similarly we have

I(UV ;Y ) ≤
1

2
log

σ2
x + σ2

N

σ2
N + σ2

x exp[−2(R1 + R2)]
.

The construction relies on the entropy-coded dithered quan-
tization (ECDQ), the details of which can be found in [36]–
[38]. An n-dimensional lattice quantizer is formed by a lattice
Λn. The quantizerQn(·) maps each vectorx ∈ ℜn into the
lattice pointλi ∈ Λn that is nearest tox. The region of all
n-vectors mapped into a lattice pointλi ∈ Λn is the Voronoi
region

V (λi) = {x ∈ ℜn : ||x − λi|| ≤ ||x − λj ||,∀j 6= i} .

The ditherZ is ann-dimensional random vector, independent
of the source, and uniformly distributed over the basic cellV0

of the lattice which is the Voronoi region of the lattice point
0. The dither vector is assumed to be available to both the
encoder and the decoder. The normalized second momentGn

of the lattice characterizes the second moment of the dither
vector

1

n
E||Z||2 = GnV 2/n,
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Fig. 3. Encoder based on ECDQs.

whereV denotes the volume ofV0. Both the entropy encoder
and the decoder are conditioned on the dither sampleZ;
furthermore, the entropy coder is assumed to be ideal. The
dithered lattice quantizer represents the source vectorX by
the vectorW = Qn(X + Z) − Z.

Now we describe the coding system using ECDQs, which is
essentially a two-stage quantization system, with the additional
detectors at the decoder. Note that instead of the distortion
of each length-n block, we are interested in the detection
performance using multiple such length-n blocks. The system
consists of two stages. The first stage takes inputX and passes
it through an ECDQ module. The outputW = Qn(X +

Z1) − Z1 is scaled byα =
−σ2

x

σ2
x+σ2

1

and added withX. The
resulting vectorX + αW is passed through another ECDQ
whose output is given asQn(X + αW + Z2) − Z2, where
Z1 andZ2 are independent. Note here we slightly abuse the
notations by allowingQn to be a lattice quantizer scaled by
different constant, which are reflected by the variance ofZ1

and Z2, denoted asσ2
1 and σ2

2 , respectively. The system is
depicted in Fig. 3. The detectors do not make a decision on
oneX block of length-n, but do so after receiving many such
blocks.

Under the reconstruction using ECDQ, the output is dis-
tributed asX + N1, and the noise vectorN1 is distributed
uniformly over the basic cell ofΛn. If N1 was a Gaussian
vector, we would be able to explicitly derive the Neyman-
Pearson detector, and analyze its performance. Though this
is not the case, the lattice quantization noise is nevertheless
quite close to Gaussian for high-dimensional quantizers, thus
it is likely the Neyman-Pearson detector derived assuming
Gaussian distribution will provide near optimal performance,
which turns out to be indeed the case. Next we use large
deviation method to analyze the performance of such an
approximation. Some necessary notations and results from
[39], [40] are reviewed first. For simplicity the single stage
case is investigated first, after which the generalization to the
two-stage case is straightforward.

For a latticeΛn, the covering radiusRu is the radius of the
smallestn-dimensional ball to cover the Voronoi regionV0.
The effective radiusRl is the radius of a sphere having the
same volume asV0. We will need the following quantity

ǫ(Λn) , log

(

Ru

Rl

)

+
1

2
log 2πeG∗

n +
1

n
,

whereG∗
n is the normalized second moment of ann-sphere. It

was shown by Rogers [41], [42] that there exist lattices which

satisfy

log
Ru

Rl
→ 0,

as n → ∞. This implies that for such latticesǫ(Λn) → 0 as
n → ∞.

Denote byB(Ru) a ball of radiusRu and let σ2
u be the

second moment per dimension ofB(Ru); denote the variance
of N1 per dimension asσ2

1 . The following lemma was proved
in [39] (Lemma 6 and Lemma 11).

Lemma1: Let G1 ∼ N (0, σ2
u · In), then for Rogers-good

lattices, the density of the noise distributionpN1
and pG1

satisfy

1

n
log

pN1
(x)

pG1
(x)

≤ ǫ(Λn). (7)

Furthermore we have

n + 2

n
σ2

u ≥ σ2
1 ≥

(

Ru

Rl

)2

σ2
u. (8)

This lemma implies that the probability density ofN1 can
approximately be upper bounded by a Gaussian distribution,
whose variance is almost the same as that of the quantization
noiseσ2

1 whenn is sufficiently large.

Let us assumeN1 indeed has an independent Gaussian
distribution and derive the Neyman-Pearson detector under
this assumption. We have the likelihood ratio for length-n

sequences

p(X + N1,Y )

p(X + N1)p(Y )
=

p(Y |X + N1)

p(Y )

= exp



−
‖Y − σ2

x

σ2
x+σ2

1

(X + Z1)‖2

2(σ2
N +

σ2
xσ2

1

σ2
x+σ2

1

)



 exp

(

‖Y ‖2

2(σ2
N + σ2

x)

)

.

Thus the Neyman-Pearson detector makes decision by thresh-
olding the following quantity

T = (σ2
N + σ2

x)

∥

∥

∥

∥

Y −
σ2

x

σ2
x + σ2

1

(X + Z1)

∥

∥

∥

∥

2

− (σ2
N +

σ2
xσ2

1

σ2
x + σ2

1

) ‖Y ‖2
.

This quantity is essentially a weighted distance difference in
the Euclidean space. It is straightforward to verify that the
expectation of this quantity under the two hypotheses is given
by

E(T |H0) = 0, E(T |H1) = 2n
(σ2

x + σ2
N )σ4

x

σ2
x + σ2

1

.

Now we take m blocks of n-dimensional ECDQ, and
consider a length-mn source block. Choose the threshold as
mnδ, where δ is a small positive quantity the meaning of
which will be clear later: ifT ≤ mnδ, hypothesisH0 is
accepted. To bound the type-two error exponent, define the
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following new random variable

T ′ = (σ2
N + σ2

x)

∥

∥

∥

∥

Y −
σ2

x

σ2
x + σ2

1

(X + G1)

∥

∥

∥

∥

2

− (σ2
N +

σ2
xσ2

1

σ2
x + σ2

1

) ‖Y ‖2
.

Using the Gaussian distribution approximation in Lemma 1
gives

β1 = Pr(T ≤ mnδ|H1) ≤ Pr(T ′ ≤ mnδ|H1) exp(mnǫ(Λn)),

which is straightforwardly seen becauseY , X and N1 are
mutually independent, and so areY , X and G1 under
hypothesisH1; furthermore the bound given in Lemma 1 is
uniform.

The moment generating function ofT ′ can be computed as

λT ′(t) = E[exp(tT ′)]

= EY

[

EX ,G1
[exp(tT ′)|Y ]

]

(a)
= (1 − 2ct)−

mn
2 EY

[

exp(−b‖Y ‖2) exp(
a‖Y ‖2

1 − 2ct
)

]

(b)
= (1 − 2ct − 2a2t + 2abt − 4abct2)−mn/2

where we have defined

a , σ2
x + σ2

N , b , σ2
N +

σ2
xσ2

1

σ2
x + σ2

1

,

c ,
(σ2

x + σ2
N )(σ2

x + σ2
u)σ4

x

(σ2
x + σ2

1)
2

,

and (a) is true because conditioned onY , T ′ has a non-
central Chi-square distribution; (b) is true by recognizing again
the Chi-square distribution. The moment generating function
exists whenever

1 − 2ct > 0, and1 − 2ct − 2a2t + 2abt − 4abct2 > 0. (9)

By applying the Chernoff bound fort ≤ 0, it follows that

Pr(T ′ ≤ mnδ|H1) ≤ exp(−mntδ + λT ′(t)).

This implies the error exponent satisfies

E1 ≥ tδ +
1

2
log(1 − 2ct − 2a2t + 2abt − 4abct2) − ǫ(Λn).

(10)

Optimizing overt to maximize the second term in (10), we
have

E1 ≥ t∗δ − ǫ(Λn)

+
1

2
log

(

σ4
x(2σ2

x + σ2
1 + σ2

u)2

4(σ2
x + σ2

1)(σ2
x + σ2

u)(σ2
xσ2

1 + σ2
xσ2

N + σ2
Nσ2

1)
+ 1

)

(11)

where

t∗ =
−(2σ2

x + σ2
1 + σ2

u)(σ2
x + σ2

1)

4(σ2
x + σ2

N )(σ2
x + σ2

u)(σ2
xσ2

1 + σ2
xσ2

N + σ2
Nσ2

1)
.

Define the right-hand-side of (11) asE∗
1 . It can be easily

checked that both the conditions in (9) are satisfied. We
can chooseδ sufficiently small, as long as it is positive;

furthermore, by Lemma 1, and by makingn sufficiently large,
ǫ(Λn) can be made arbitrarily small, andσ2

u → σ2
1 , thus we

have

E∗
1 →

1

2
log

(σ2
x + σ2

N )(σ2
x + σ2

1)

σ2
xσ2

1 + σ2
xσ2

N + σ2
Nσ2

1

,

which is indeed the optimal value. It remains to show that the
type-one error can be made arbitrarily small. This is straight-
forward by observing that each length-n ECDQ quantization
is independent of the others, and by the law of large numbers,
whenm is sufficiently large, with high probability the sample
average concentrates near its expected value, which is zero
under hypothesisH0. It is clear that choosing a sufficiently
small but positiveδ can drive the type-one error arbitrarily
small whenm is large.

The above method can be used to bound the second stage
error exponentE2 by substituting quantization noiseN2 sim-
ilarly with an appropriate Gaussian random vector; the details
are thus omitted. We note that strictly speaking, a system
based on ECDQ is not a fixed-rate-coded deterministic system,
thus it is not within the problem definition. Nevertheless,
this randomized system can indeed be used to assert the
existence of a fixed-rate and deterministic system of the same
performance; see [29] for details.

VI. PROOF OF THECONVERSE FORTHEOREM 5

In this section the converse proof of Theorem 5 is given by
generalizing the image size characterization approach taken by
Csisźar and K̈orner [12]. Since this proof relies heavily on the
methods of types, the blowing-up lemma and some related
concepts, we provide a brief review on these results in the
Appendix. More details on the method of types can be found
in [12]. In the remainder of this section we assume the readers’
familiarity with Section 1.2, 1.5 and 2.1 of [12]; familiarity
with Section 3.3 will also be helpful.

A. Two lemmas

For a given probability distributionPXY which induces the
channelV n : Xn → Yn, the setB ⊆ Yn is called anη-image
of the setA ⊆ Xn over the channelV n if V n(B|xn) ≥ η for
everyxn ∈ A (see [12] page 101). The collection ofη-images
of the setA is denoted asB(A, η). The following quantity is
related to the minimum type-two error probability associated
with setA

kV n(A,Q, η) =
minB∈B(A,η) Qn

XY (A,B)

Pn
X(A)

where QXY is the alternative hypothesis distribution; for
the test against independence problem, since the alternative
hypothesis is independence, we have

Qn
XY (A,B)

Pn
X(A)

=
Pn

X(A)Pn
Y (B)

Pn
X(A)

= Pn
Y (B).

In the sequel, only this case will be considered, and thus
kV n(A,Q, η) is simply written as kV n(A, η). Note that
kV n(A,Q, η) is a generalization of the minimum cardinality
of the η-images in [12], which was used to prove the channel
coding theorem.
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The following two lemmas are important for the converse
proof. The first lemma essentially states that1

n log kV n(A, η)
is independent ofη for sufficiently largen, while the second
lemma provides a way to bound this quantity. Denote the letter
y ∈ Y with the minimum probability inPy asymin, which is
strictly positive as assumed, and defineτ , − log PY (ymin).

Lemma2: For everyδ, ǫ′, ǫ′′ ∈ (0, 1), we have for any set
A ⊆ Xn

∣

∣

∣

∣

1

n
log kV n(A, ǫ′) −

1

n
log kV n(A, ǫ′′)

∣

∣

∣

∣

< δ,

whenevern ≥ n0(|X |, |Y|, PY (ymin), δ, ǫ′, ǫ′′).

Proof: Supposeǫ′ > ǫ′′. Clearly we have

1

n
log kV n(A, ǫ′) ≥

1

n
log kV n(A, ǫ′′).

Let B be an ǫ′′-image of A which achieveskV n(A, ǫ′′).
Then by the blowing-up Lemma A-3, there exists a se-
quence ln with ln

n → 0 such that for sufficiently large
n > n0(|X |, |Y|, ǫ′, ǫ′′)

V n(ΓlnB|xn) ≥ ǫ′ if V n(B|xn) ≥ ǫ′′,

whereΓlnB is the Hammingl-neighbourhood ofB (see (A-
1)). This meansΓlnB is anǫ′-image ofA, and it implies that

kV n(A, ǫ′) ≤ Pn
Y (ΓlnB).

Take this sequence of{ln} as that in Lemma A-2, then
for sufficiently largen > n1(|X |, |Y|, PY (ymin), δ, ǫ′, ǫ′′), we
have that

1

n
log Pn

Y (ΓlnB) −
1

n
log Pn

Y (B) ≤ δ.

and it follows that
1

n
log kV n(A, ǫ′) ≤

1

n
log Pn

Y (ΓlnB)

≤
1

n
log Pn

Y (B) + δ =
1

n
log kV n(A, ǫ′′) + δ,

which completes the proof.

Lemma3: For any setA ⊆ Xn, consider a random vector
X̂n = (X̂1, X̂2, ..., X̂n) distributed overA and let the random
vector Ŷ n = (Ŷ1, Ŷ2, ..., Ŷn) be connected withX̂n by the
channelV n : Xn → Yn, which is induced byPXY . Then for
everyδ > 0, 0 < η < 1, we have

1

n
D(PŶ n ||P

n
Y ) + δ ≥ −

1

n
log kV n(A, η),

whenevern ≥ n0(|X |, |Y|, PY (ymin), δ, η).

Proof: In light of Lemma 2, we only need to show that
there exists anη0 = η0(|Y|, PY (ymin), δ) such that

1

n
D(PŶ n ||P

n
Y ) + δ ≥ −

1

n
log kV n(A, η0),

if n ≥ n1(|Y|, PY (ymin), δ).

Let B ∈ Yn be anη0-image ofA that achieveskV n(A, η0).
Then by the data-processing inequality for divergence, we have

D(PŶ n ||P
n
Y ) ≥ α log

α

β
+ (1 − α) log

1 − α

1 − β
,

where

α , PŶ n(B), β , Pn
Y (B) = kV n(A, η0).

SinceB is anη0-image ofA, we have

α =
∑

xn∈A

PX̂n(xn)Pr{Ŷ n ∈ B|X̂n = xn}

≥
∑

xn∈A

PX̂n(xn)η0 = η0.

Thus we have

1

n
D(PŶ n ||P

n
Y ) ≥ −

Hb(α)

n
−

η0

n
log kV n(A, η0), (12)

where againHb(·) is the binary entropy function.
Notice the following simple fact

D(PŶ n ||P
n
Y )

=
∑

yn∈Yn

PŶ n(yn) log
PŶ n(yn)

Pn
Y (yn)

= −H(Ŷ n) −
∑

yn∈Yn

PŶ n(yn) log Pn
Y (yn)

≤ −
∑

ŷn∈Yn

PŶ n(yn) log Pn
Y (yn

min) = nτ,

whereτ was defined before Lemma 2.
It follows from (12) that

−
1

n
log kV n(A, η0)

≤
1

n
D(PŶ n ||P

n
Y ) +

Hb(α)

nη0
+ [

1

nη0
−

1

n
]D(PŶ n ||P

n
Y )

≤
1

n
D(PŶ n ||PY n) +

1

nη0
+ [

1

η0
− 1]τ.

By choosing an appropriateη0, e.g.η0 = 2τ+δ
2(δ+τ) , the following

inequality is satisfied

1

nη0
+ [

1

η0
− 1]τ ≤ δ

whenevern ≥ n1(|Y|, PY (ymin), δ) and the proof is complete.

B. Converse proof of Theorem 5

Now we are ready to prove the converse of Theorem 5,
which establishes the complete characterization ofRht(ǫ1, ǫ2).
We shall be considering several probability distributionsin this
proof, and the regionR∗

ht will be written asR∗
ht(X,Y ), in

order to emphasize the dependence on the particular distri-
bution in consideration. Only the caseǫ1 + ǫ2 < 1 needs to
be considered, since for the other case the strong converse
result apparently follows from that in [9]. Let the channel
V n : Xn → Y n be that induced byPXY . We will take the
Delta-convention in [12] (p. 34) and suppress the dependence
of all the small quantities onn. Note also that the sets defined
below such asA1, A2, B1, B2, C are all in fact sequences of
sets indexed byn, however we are suppressing it for simplicity.
In this subsection alone, we uset for the time index, andi
and j for the encoding function values.

Proof of the converse for Theorem 5:
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For any two encoding functionsf1, f2 ∈ Fn with two sets
A1 ⊆ f1(X

n) × Yn andA2 ⊆ f1(X
n) × f2(X

n) × Yn such
that

Pf1(Xn)Y n(A1) ≥ 1 − ǫ1, Pf1(Xn)f2(Xn)Y n(A2) ≥ 1 − ǫ2,

we may assume that

A1 =

|f1|
⋃

i=1

i × Gi, Gi ⊆ Yn, i = 1, 2, ..., |f1|,

A2 =

|f1|,|f2|
⋃

i=1,j=1

(i, j) × Gi,j ,

Gi,j ⊆ Yn, i = 1, 2, ..., |f1|, j = 1, 2, ..., |f2|.

Define the following sets

B1 =

{

xn : xn ∈ Xn, V n(Gf1(xn)|x
n) ≥

1 − ǫ1 − ǫ2

1 + 3ǫ1 − ǫ2

}

B2 =

{

xn : xn ∈ Xn,

V n(Gf1(xn),f2(xn)|x
n) ≥

1 − ǫ1 − ǫ2

1 + 3ǫ2 − ǫ1

}

.

Since we have

1 − ǫ1 ≤ Pf1(Xn)Y n(A1)

=
∑

xn∈Xn

Pn
X(xn)V n(Gf1(xn)|x

n)

=
∑

xn∈B1

Pn
X(xn)V n(Gf1(xn)|x

n)

+
∑

xn∈Bc
1

Pn
X(xn)V n(Gf1(xn)|x

n)

≤ Pn
X(B1) + (1 − Pn

X(B1))
1 − ǫ1 − ǫ2

1 + 3ǫ1 − ǫ2
,

it follows that

Pn
X(B1) ≥

3 − 3ǫ1 + ǫ2

4
.

Similarly, we have that

Pn
X(B2) ≥

3 − 3ǫ2 + ǫ1

4
.

This implies that

Pn
X(B1 ∩ B2) ≥

3 − 3ǫ1 + ǫ2

4
+

3 − 3ǫ2 + ǫ1

4
− 1

=
1 − ǫ1 − ǫ2

2
> 0.

By the property of typical sequences given in Lemma A-1, it
follows that for anyδ′′ such that

0 < δ′′ <
1 − ǫ1 − ǫ2

2
,

we have for anyδ′ > 0

Pn
X(B1 ∩ B2 ∩ Tn

[X]δ′) ≥ δ′′,

whenevern ≥ n0(|X |, δ′′). Next we find a single type in the
intersectionB1 ∩ B2 ∩ Tn

[X]δ′ with the maximum probability,
and denote this type asP0. Since there are less than(n+1)|X |

types in total, it follows that

Pn
X(B1 ∩ B2 ∩ Tn

P0
) ≥

δ′′

(n + 1)|X |
. (13)

From this point on we essentially consider only this single
type. For simplicity, defineC , B1∩B2∩Tn

P0[X]. Furthermore,
for any xn ∈ Tn

[X]δ′ , we have that

Pn
X(xn) ≤ exp(−n(H(X) − δ1)), (14)

whereδ1 → 0 asδ′ → 0, it follows

1

n
log |C| ≥ H(X) − δ2, (15)

whereδ2 → 0 asδ′ → 0.

The functionsf1 and f2 clearly partition the setC into
|f1||f2| non-intersecting subsets; denote those sets asCi,j .
Assign a uniform distributionPX̂n onto the setC, and denote
the resulting random variablef1(X̂

n) asT1, whereX̂n is the
random variable uniformly distributed onC by distribution
PX̂n ; similarly, denotef2(X̂

n) as T2. Let Ŷ n be connected
with X̂n by the channelV n : Xn → Yn. Apparently
(T1, T2) ↔ X̂n ↔ Ŷ n forms a Markov chain.

It is clear that we have

log |f1| ≥ H(T1) = I(T1; X̂
n)

= H(X̂n) − H(X̂n|T1)

= log |C| − H(X̂n|T1)

(a)

≥ n(H(X) − δ2) − H(X̂n|T1)

= nH(X) − nδ2 −
n

∑

t=1

H(X̂t|T1X̂
−
t ), (16)

where we have used (15) in (a). Similarly, we have

log |f1| + log |f2| ≥ nH(X) − nδ2 −
n

∑

t=1

H(X̂t|T1T2X̂
−
t ).

(17)

Notice thatGi is in fact a 1−ǫ1−ǫ2
1+3ǫ1−ǫ2

-image for the setCi ,
⋃

j Ci,j . We can now bound the type-two error at the first
stage as follows

β1 ≥
∑

xn∈C

Pn
X(xn)Pn

Y (Gf1(xn))

=

|f1|
∑

i=1

Pn
X(Ci)P

n
Y (Gi)

≥

|f1|
∑

i=1

Pn
X(Ci)kV n

(

Ci,
1 − ǫ1 − ǫ2

1 + 3ǫ1 − ǫ2

)

≥

|f1|
∑

i=1

Pn
X(Ci) exp

(

−D(Ŷ n||Y n|T1 = i) − nδ
)

,

where the last step we used Lemma 3; note that conditioning
is needed here for the divergence term, however it is related
only to theŶ n term by limiting T1 = f1(X̂

n) = i. It further
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follows

β1 ≥

|f1|
∑

i=1

Pn
X(Ci) exp

(

−D(Ŷ n||Y n|T1 = i) − nδ
)

(a)
= Pn

X(C)

|f1|
∑

i=1

|Ci|

|C|
exp

(

−D(Ŷ n||Y n|T1 = i) − nδ
)

(b)
= Pn

X(C)

|f1|
∑

i=1

PX̂n(Ci) exp
(

−D(Ŷ n||Y n|T1 = i) − nδ
)

(c)

≥ exp(−nδ)

× Pn
X(C) exp



−

|f1|
∑

i=1

PX̂n(Ci)D(Ŷ n||Y n|T1 = i)



 ,

where (a) and (b) are due to the fact that the setC consists of
sequences of the same type andPX̂n is a uniform distribution
on C, and in (c) we used the convexity of functionexp(·).
It is worth noting that the bounding above turns out to be
tight suggests that the distribution of̂Y n given T1 = i is
approximately the same for each value ofi; this in turn implies
that the setC is partitioned in an approximately uniform
fashion into sets of similar structure byf1 (and f2). Now
it follows

−
1

n
log β1 ≤

1

n

|f1|
∑

i=1

PX̂n(Ci)D(Ŷ n||Y n|T1 = i) + δ3

where δ3 = δ − 1
n log δ′′

(n+1)|X| , and we used the fact
Pn

X(C) ≥ Pn
C(B1 ∩B2 ∩C) and (13). We continue the chain

of inequalities as follows

−
1

n
log β1 − δ3 ≤

1

n

|f1|
∑

i=1

PX̂n(Ci)D(Ŷ n||Y n|T1 = i)

=
1

n

|f1|
∑

i=1

PX̂n(Ci)
∑

yn∈Yn

PŶ n|T1=i(y
n) log

PŶ n|T1=i(y
n)

Pn
Y (yn)

=
1

n

|f1|
∑

i=1

∑

yn∈Yn

PX̂nŶ n(Ci, y
n) log PŶ n|Ti=i(y

n)

−
1

n

|f1|
∑

i=1

∑

yn∈Yn

PX̂nŶ n(Ci, y
n) log Pn

Y (yn)

= −
1

n
H(Ŷ n|T1) −

1

n

∑

yn∈Yn

PŶ n(yn) log Pn
Y (yn) (18)

BecausePn
Y is a product distribution, we have

∑

yn∈Yn

PŶ n(yn) log Pn
Y (yn)

=
∑

yn∈Yn

PŶ n(yn)
n

∑

t=1

log PY (yt)

=
∑

yn∈Yn

n
∑

t=1

PŶ n(yn) log PY (yt)

=

n
∑

t=1

∑

yn∈Yn

PŶ n(yn) log PY (yt)

=
n

∑

t=1

∑

yt∈Y





∑

yn:yn(t)=yt

PŶ n(yn)



 log PY (yt)

=
n

∑

t=1

∑

yt∈Y

PŶt
(yt) log PY (yt)

=

n
∑

t=1

[−H(Ŷt) − D(Ŷt||Yt)].

Resuming from (18) it follows that

−
1

n
log β1 − δ3

≤ −
1

n
H(Ŷ n|T1) +

1

n

n
∑

t=1

[H(Ŷt) + D(Ŷt||Yt)]

=
1

n

n
∑

t=1

[H(Ŷt) − H(Ŷt|T1Ŷ
−
t ) + D(Ŷt||Yt)]

≤
1

n

n
∑

t=1

[H(Ŷt) − H(Ŷt|T1X̂
−
t Ŷ −

t ) + D(Ŷt||Yt)]

(a)

≤
1

n

n
∑

t=1

[H(Ŷt) − H(Ŷt|T1X̂
−
t ) + D(Ŷt||Yt)]

=
1

n

n
∑

t=1

[I(Ŷt;T1X̂
−
t ) + D(Ŷt||Yt)],

where (a) is due to the Markov strinĝYt ↔ (T1X̂
−
t ) ↔ Ŷ −

t .
By a similar manner, we can get

−
1

n
log β2 ≤

1

n

n
∑

t=1

[I(Ŷt;T1T2X̂
−
t ) + D(Ŷt||Yt)] + δ3. (19)

Now introduce a random variableJ uniformly distributed
over the setIn, and independent ofT1, T2, X̂

n, Ŷ n. For
convenience introduce the following notations,

X = X̂J , Y = ŶJ , U = (J, T1, X̂
−
J ), V = (J, T2),

and it follows from (16) and (17) that

1

n
log |f1| ≥ H(X) − δ2 − H(X|U)

1

n
log |f1| +

1

n
log |f2| ≥ H(X) − δ2 − H(X|UV )
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Furthermore, we have

1

n

n
∑

t=1

[I(Ŷt;T1X̂
−
t ) + D(Ŷt||Yt)]

= I(ŶJ ;U |J) +
1

n

n
∑

t=1

∑

y∈Y

PŶJ |J=t(y) log
PŶJ |J=t(y)

PYJ |J=t(y)

(a)
= I(ŶJ ;U |J)

+
1

n

n
∑

t=1

∑

y∈Y

PŶJ |J=t(y) log
PŶJ |J=t(y)PŶJ

(y)

PYJ
(y)PŶJ

(y)

= I(ŶJ ;U |J) − H(ŶJ |J) + D(ŶJ ||YJ ) + H(ŶJ )

= I(ŶJ ;U |J) + I(ŶJ ;J) + D(ŶJ ||YJ )

= I(ŶJ ;U, J) + D(ŶJ ||YJ )

(b)
= I(ŶJ ;U) + D(ŶJ ||YJ )

= I(Y ;U) + D(Y ||Y ),

where (a) is becausePYJ
is in fact independent ofJ , and (b)

is becauseU = (J, T1, X̂
−
J ). Similarlly

1

n

n
∑

t=1

[I(Ŷt;T1T2X̂
−
t ) + D(Ŷt||Yt)] = I(Y ;UV ) + D(Y ||Y ).

And it follows that

−
1

n
log β1 ≤ I(Y ;U) + D(Y ||Y ) + δ3

−
1

n
log β2 ≤ I(Y ;UV ) + D(Y ||Y ) + δ3.

Clearly,

PX(x) =
1

n

n
∑

t=1

PX̂t
(x) =

1

n|C|

∑

x∈C

N(x|x), x ∈ X (20)

and by the definitions we have

PY |X = PY |X .

Furthermore, it is straightforward to check the Markov string
Y ↔ X ↔ (UV ).

So far we have proved the following

Rht(ǫ1, ǫ2) ∈ R∗
ht(X,Y )

+ [H(X) − H(X),H(X) − H(X),D(Y ||Y ),D(Y ||Y )],
(21)

for any ǫ1, ǫ2 ∈ (0, 1) and ǫ1 + ǫ2 < 1. The proof can be
completed by a continuity argument, ifPXY is sufficiently
close toPXY .

By (20), and the fact thatC ⊆ Tn
[X]δ′ , we have

|PX(x) − PX(x)| < δ′, x ∈ X .

as well asPY |X = PY |X . By the uniform continuity of in-
volved information quantities, it follows that ifδ′ is sufficiently
small, for every point(R1, R2, E1, E2) ∈ R∗

ht(X,Y ), there
exists a point(R1, R2, E1, E2) ∈ R∗

ht(X,Y ) that is arbitrarily
close to it (see [12] p. 322 for details). Note that here we need
to use again the positivity ofPY for the continuity to hold for
D(Y ||Y ). The proof is complete by asserting that suchδ′

indeed exists for any sufficiently largen.

VII. CONCLUSION

We investigated two closely related problems, namely suc-
cessive refinement hypothesis testing and successive refine-
ment lossless one-helper problem. It was shown that the the
rate-exponent region of the former and rate regions of the latter
are congruent to each other. The unified approach facilitates
the treatment and provides several non-trivial results. Wefocus
on the SR-HT problem, and a strong converse result is proved
for this problem. Gaussian problem was investigated in some
depth for the SR-HT problem. Moreover, a new operational
meaning of the information bottleneck method was revealed
by connection to the problems being considered, which is more
intuitive than previous given in the literature.

We believe the entropy characterization problem extracted
from these problems is fundamentally important, which has not
been fully explored. Future research along this direction may
provide results in other multi-terminal information theoretical
problems.

APPENDIX

Definition A-1: Given a setB ∈ Yn, the Hammingl-
neighborhood ofB is defined as the set

ΓlB , {y : y ∈ Yn, dH({y}, B) ≤ l}, (A-1)

wheredH(B,C) denotes the Hamming metric between two
setsB and C by extending the usual Hamming distance of
two sequencesdh(·, ·) as

dH(B,C) , min
y∈B,ŷ∈C

dh(y, ŷ)

LemmaA-1: For anyδ > 0, there exists a sequenceǫn → 0
depending only on|X | so that for every distributionP on X

Pn(Tn
[P ]δ) ≥ 1 − ǫn.

LemmaA-2: Given a sequence of positive integers{ln}
with ln

n → 0 and a distributionP on Y with positive
probabilities, there exists a sequenceǫn → 0 depending only
on {ln}, |Y| andminy∈Y P (y) such that for everyB ⊆ Yn

0 ≤
1

n
log |ΓlnB| −

1

n
log |B| ≤ ǫn,

0 ≤
1

n
log Pn(ΓlnB) −

1

n
log Pn(B) ≤ ǫn.

LemmaA-3 (Blowing up): To any finite setsX andY and
sequenceǫn → 0, there exists a sequence of positive integers
ln with ln

n → 0 and a sequenceηn → 1 such that for every
stochastic matrixW : X → Y and everyn, x ∈ Xn, B ⊆ Yn

Wn(B|x) ≥ exp(−nǫn) implies Wn(ΓlnB|x) ≥ ηn.
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