
Class 3: Training Recurrent
Nets

Arvind Ramanathan
Computational Science & Engineering, Oak Ridge
National Laboratory, Oak Ridge, TN 37830
ramanathana@ornl.gov

1

mailto:ramanathana@ornl.gov

Last class

Basics of RNNs

Recurrent network modeling

How to build a RNN and its different types

2

Quick Recap (1): Vanilla (E.g., Convolutional) nets

● Most convolutional nets are limited in their ability to represent data:
○ Take a fixed size input vector and output a fixed size vector

■ E.g., take image and classify
○ Only fixed number of layers/ computational steps

■ E.g., LeNet has five layers

● Efficient to train -- but representation is still limited to

neighborhood information
○ Does not capture potentially long range interactions

● Usually applicable in “discriminative” situations…
○ Referred to as “one-to-one” architectures

input

output

state

3

Quick Recap (2): RNN and its components

RNNs combine the input vector with their state
vector with a fixed (but learned) function to
produce a new state vector

Think of running a “fixed” program + some internal
variables on every input

RNNs represent programs: RNNs are Turing
complete -- meaning they can run any arbitrary
program!

usually want to
predict a vector
at some time
steps

x

y

R
N
N

4

Quick Recap (3): RNN + recurrence formula

x

y

R
N
N

New state Some function with
parameters W

Old state Input
vector at
time t

● We can process a sequence of vectors x by applying a recurrence formula at
every time step

● The same function and same set of parameters are used every time step.
5

A simple RNN
The state consists of a single hidden vector h:

x

y

R
N
N

6

Advancing / Unrolling the RNN → Computational
Graph Representation

h0

x1

fW h1

x1

fW h1

x1

fW h1
... ht

W

7

Example: Character level language model

Vocabulary: [h, e, l, o]

Example training
sequence:

“hello”

Input layer

1
0
0
0

h

0
1
0
0

e

0
0
1
0

l

0
0
1
0

l

0.3
-0.1
0.9

Wxhxt

1.0
0.3
0.1

0.1
-0.5
-0.3

-0.3
0.9
0.7

Whh

Hidden layer

8

Example:
Character level
language model

Vocabulary: [h, e, l, o]

Example training
sequence:

“hello”
Input layer

1
0
0
0

h

0
1
0
0

e

0
0
1
0

l

0
0
1
0

l

0.3
-0.1
0.9

Wxhxt

1.0
0.3
0.1

0.1
-0.5
-0.3

-0.3
0.9
0.7

Whh

Hidden layer

Output layer

1.0
2.2
-3.0
4.1

0.5
0.3
-1.0
1.2

0.1
0.5
1.9
-1.1

0.2
-1.5
-0.1
2.2

Why

e l l o

9

Example:
Character level
language model
sampling
Vocabulary: [h, e, l, o]

At test-time sample
characters one at a
time, feed back to
model

Input layer
1
0
0
0
h

0
1
0
0
e

0
0
1
0
l

0
0
1
0
l

0.3
-0.1
0.9

Wxhxt

1.0
0.3
0.1

0.1
-0.5
-0.3

-0.3
0.9
0.7

Whh

Hidden layer

Output layer 1.0
2.2
-3.0
4.1

0.5
0.3
-1.0
1.2

0.1
0.5
1.9
-1.1

0.2
-1.5
-0.1
2.2 Why

e l l o

0.03
0.13
0.00
0.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02

.08

.79

Softmax layer

10

Training your first RNN...

11

Let’s take a simple example and explore...

x

s

o

U

V

Output

W

Input x

s

o

U

V

x

s

o

U

V

x

s

o

U

V

x

s

o

U

V

x

s

o

U

V

x

s

o

U

V

12

Expanding log loss of the model...

W

U

V

13
http://www.wildml.com/2015/10/recurrent-neural-networks-tutorial-part-3-backpropagation-through-t
ime-and-vanishing-gradients/

How do we compute the gradients?

We need to compute gradients of the

error with respect to our parameters U,

V, W

Use Stochastic Gradient Descent

sum up the gradients at each time step

for one training example

W

U

V

14

Computing gradients at E3

W0

U0

V0

Z3 = Vs3

Important note: Gradient values at E3
depend only on the current timestep...

Computing gradient wrt V is easy….. 15

What about computing gradient wrt W?

W0

U0

V0

16

Unrolling the gradients through the
computational graph

17

Exactly the same backpropagation
algorithm -- key difference is that for W
at each time step we sum up the
gradients until that step

How do we write it in Python?

18

def bptt(self, x, y):
 T = len(y)
 # Perform forward propagation
 o, s = self.forward_propagation(x)
 # We accumulate the gradients in these variables
 dLdU = np.zeros(self.U.shape)
 dLdV = np.zeros(self.V.shape)
 dLdW = np.zeros(self.W.shape)
 delta_o = o
 delta_o[np.arange(len(y)), y] -= 1.
 # For each output backwards...
 for t in np.arange(T)[::-1]:
 dLdV += np.outer(delta_o[t], s[t].T)
 # Initial delta calculation: dL/dz
 delta_t = self.V.T.dot(delta_o[t]) * (1 - (s[t] ** 2))
 # Backpropagation through time (for at most self.bptt_truncate steps)
 for bptt_step in np.arange(max(0, t-self.bptt_truncate), t+1)[::-1]:
 # print "Backpropagation step t=%d bptt step=%d " % (t, bptt_step)
 # Add to gradients at each previous step
 dLdW += np.outer(delta_t, s[bptt_step-1])
 dLdU[:,x[bptt_step]] += delta_t
 # Update delta for next step dL/dz at t-1
 delta_t = self.W.T.dot(delta_t) * (1 - s[bptt_step-1] ** 2)
 return [dLdU, dLdV, dLdW]

A naive implementation

Includes two for loops
● One for time-range (sequence length)
● One for propagating the gradients

This should give you a sense of why BPTT is
expensive computationally

● A serial computation embedded within
what could be potentially parallel

Arbitrary length sequences can make it even
more expensive to compute backprop…

Problems galore with BPTT…

There is a product of gradients that propagates …

19

Your first tryst with the Vanishing Gradient…

20

Output aj from the jth neuron is σ(zj). Input is the weighted neurons

Why does vanishing gradient occur

21

A similar argument holds for “exploding”gradients

Let’s take a relatively complex example…

x

h

o

L

y

U

V
W

Loss

Target

Output

x

h

o

L

y

U

V

W

unfolding

x

h

o

L

y

U

V

W

t-1 t

x

h

o

L

y

U

V

W

t+1

● maps an input sequence of x values to
a corresponding sequence of output
o values

● A loss L measures how far each o is
from the corresponding training
target y

● The loss L internally computes y =
softmax(o) and compares this to the
target y

● Input to hidden connections
parametrized by a weight matrix U,

● Hidden-to-hidden recurrent
connections parametrized by a
weight matrix W ,

● Hidden-to-output connections
parameterize by a weight matrix

22

Forward Propagation

x

h

o

L

y

U

V

Loss

Target

Output

23

What is the total loss for the output sequence?

● Recall that training requires us to compute the gradients over this log likelihood (loss) function
● Expensive!!

○ Forward propagation from left to right of the unrolled graph
○ Backward propagation from right to left
○ O(\tau) computation is inherently serial; cannot be parallel, needs O(\tau) memory too

● New training algorithm: Backward propagation through time (BPTT)
● Same holds for recurrence between hidden units

24

Understanding the computational graph...

x

h

o

L

y

U

V
W

Parameters

25

Computing the gradients (1)

For each node N, we need to
evaluate gradient…

The gradient for all (i, t),
is as follows

We start working backward
from the end of the sequence.
At the final step h only has o as
its descendent.

x

h

o

L

y

U

V

Loss

Target

Output

26

Computing the gradients (2)

iterate backward in time to back-propagate
gradients through time

x

h

o

L

y

U

V

Loss

Target

Output
diagonal matrix calculating the
gradients along the elements of the
hidden unit

27

Computing gradients is hard…

At any given time t, there is a need to look τ steps behind to get the right gradients

The τ steps to be taken can be arbitrarily large:

● We may want to capture dependencies in the sequence long enough

● How long these dependencies are is unknown a priori

Training a RNN can be hard: need practical solutions to solve this problem

● Try to stop BPTT to some number of steps

● Change the internal network representation to ensure “gated” information flow

28

Solution 1: Truncate Backprop...

29

x

s

o

U

V

x

s

o

U

V

x

s

o

U

V

● Run forward and backward through
chunks of the sequence instead of
whole sequence

● Carry hidden states forward in time
forever, but only backpropagate for
some smaller number of steps

Loss

x

s

o

U

V

x

s

o

U

V

x

s

o

U

V

Loss

Solution 2: Handling vanishing/exploding
gradients by changing recurrent functions

The tanh () function has a gradient behavior

that can potentially vanish/explode

Replace the single tanh with additional

layers

Long Short Term Memory (LSTM)

Gated Recurrent Units (GRU)

30

x

s

o

U

V

x

s

o

U

V

x

s

o

U

V

“Gating” Information

31LSTM: Long Short Term Memory GRU: Gated Recurrent Units

Input

Forget

OutputCurrent
memory

Past
memory

Reset

Update

Long Short Term Memory (LSTM)

32http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM (1): Controlling information let through

33

Intuitively, forget gate keeps track of what
information to “lose”
Or how to weigh the information such that they
can be propagated further

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM (2): Controlling information let through

34

Next step is to keep track of what information we
are going to store in the cell
Sigmoid layer determines which values to update
Tanh creates a vector of new candidate values

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM (3): Controlling information let through

35

Next step: update the old cell state with the new cell
state
Ct-1 is already available, just a simple vector add is
sufficient to get this state

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM (4): Controlling information let through

36

Decide what we are going to ouput: determined by
a filter
sigmoid layer which decides what parts of the cell
state we’re going to output

Tanh decides what values should be output (by
quashing values between -1 and +1

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Variants of LSTM

37http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Variants of LSTM (2)

38http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Gated recurrent unit (GRU)

39http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Equivalence of LSTM and GRU

40

What you must have learned thus far...

General principles of a recurrent neural network (RNN)

Training an RNN comes with unique challenges:

● Propagating sequences makes it less amenable for parallel implementations

● Vanishing/exploding gradients can be a problem

Variants of a RNN cell using LSTM and GRU

Next class: building a minimal RNN for Language modeling

41

Thank you!!
ramanathana@ornl.gov

42

