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Abstract—In this work, we present a data science system to model and visualize student flow patterns based on electronic student

data of a university. Our system is called eCamp. The datasets used by eCamp were previously disconnected and only maintained and

accessed in a siloed manner by independent campus offices. At a campus-level, our models and visualization show how students

make choices among hundreds of potential majors, as students gradually progress towards their sophomore, junior, and senior year.

At a department-level, the student flow patterns revealed by eCamp show how each course plays a different role within a curriculum.

eCamp further dives down to the granularity of the exact classes offered in each semester. At that level, eCamp shows how students

navigate from one set of classes in one semester to another set in a subsequent semester. Previously, comprehensive information

about student progression patterns at all of these level was simply unavailable. To that end, we also demonstrate how insights into

such student flow patterns can support analytical tasks involving student outcomes, student retention, and curriculum design.

Index Terms—Big data applications, data analysis, data visualization
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1 INTRODUCTION

IN this work, we propose methods to model and visualize
university student flow patterns on three levels: 1) on a

campus level, where students flow through hundreds of
potential majors, 2) on a department level, where students
flow through various core and general parts of a degree pro-
gram’s curriculum, and 3) on a classes level, where students
plan and flow through classes from one semester to the
next, based on their academic goals and progress.

Insights about these student flow patterns can help fac-
ulty and institutions better design, support, deliver, evalu-
ate and fund college education. The same insights also help
students make better choices, and help advisers provide
more targeted and more informed advices.

We gain these insights from electronic student records
data. In particular, this work is based on data of 145,000
students over a period of 16 years from the University of
Tennessee, Knoxville.

Using a data science approach, we address key tradi-
tional problems faced by decision makers. First, even
though many individuals in an organization may own vari-
ous pieces of the information, few have a clear, confident,
and complete view of the situation. Second, when sophisti-
cated designs and mechanisms are in place, continuous
improvement and optimization can be hard because the
measure of how well the intended outcomes are achieved
lacks contextual specificity and quantitative rigor. Third,
while population-scale or individual-level characteristics
may be known, it can be hard to bridge those understand-
ings under a common framework.

Furthermore, there is an increasingly wider gap between
how a system, such as a university, should function versus
how the system is functioning. On one hand, the design of
how a university provides education has been influenced
cumulatively over decades by many people holding differ-
ent perspectives. The design was also shaped by priorities
and challenges at different times. The intermixed effects
of evolving philosophy, rules, policies, and practices are
hard to quantify. On the other hand, students flowing
through the university system will make choices and take
actions based on subjective goals of their own. Their
behavior is hard to predict. It seems very likely that data
science could be the only feasible way to provide “the full
picture”.

In thiswork,wemodel and visualize student flow at differ-
ent levels. These student flows were previously unknown,
even though the raw data actually exists. For example, at a
campus level, different degree programs are organized
administratively into colleges, and the common hypothesis
and advising guidelines are that students would choose their
college first and then their major. However, as data would
reveal, the flow of the student population over a typical 4-
year span of college enrollment does not abide by college
boundaries. At a department level, even though we can build
a course prerequisite graph from the course catalog, and one
might expect that the student flow correspond to that graph,
datawould also show otherwise. Similar examples abound.

We have implemented our methods in a system called
eCamp. At the campus level, we show how college freshmen
as a population start their college life taking general educa-
tion courses together, and gradually divide and specialize
into their chosen degree programs as they rise through soph-
omore, junior and senior years. At a department level,
eCamp models course-course relationships in a degree pro-
gram and visualizes the student flows of each curriculum.
At the classes level, eCamp reveals how success and/or fail-
ure in a class correlates with academic performance in other
classes in the same and following semesters.
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eCamp can help answer various questions about college
education. Academic departments and faculty can use it to
understand what courses are the most critical for students’
long-term academic achievements in the major. Students
can use eCamp to understand implications of their current
grades so that they can better plan their next semesters.
New students can better guide the search for their most suit-
able majors and know the time limits by which they need to
commit to their choice to graduate on time.

We discuss the background of this work in Section 2. The
application needs and the motivation of this work are in
Section 3. Our modeling approach is described in Section 4.
The visualization and analytics parts of eCamp are shown
in Section 5. Finally, we discuss domain user feedbacks in
Section 6 and conclude in Section 7.

2 RELATED WORK

2.1 Application Background

The university is a “man-made” complex system that serves
a fundamental role in shaping the modern society. How to
make universities work better is a growing focus, especially
in the United States [1], [2]. It’s hard to gain a clear and com-
prehensive understanding of how a university functions, in
part because universities produce the most valuable and
also the most unique and complex product for the society—
the human capital, the students.

It seems clear, however, without gaining a better under-
standing of the intrinsics of a university, simply making
more monetary investment does not lead to significant
improvements [3], [4]. To that end, the availability of elec-
tronic records, as captured by various university databases,
has enabled using data science to gain the much needed
insights. The development of the first version of eCamp [5]
was motivated by this research premise.

Researchers have already developed many tools to ana-
lyze university databases [6], [7], [8], [9], [10], [11], [12], [13].
For example, DynMap models the topics in a course as a
concept map to help inspect how well students understand
the course content. [13]. CourseVis uses web log data from
WebCT, a course management system, to track and visual-
ize student progress in a course, especially for distance
learning settings [12]; the system was later extended to help
instructors see social, cognitive, and behavioral aspects of
their students [11] within a course.

There are also previous works that studied course-course
relationships. For example, Siirtola et al. showed student
progress in the context as prescribed by the catalog [14].
Gama et al. visualized student grades in relation to which
semesters the courses were taken [15]. Wortman et al. used
graphs to explore patterns in how students’ grades change
as they retake courses in computer science [16].

eCamp aims to reveal student flow patterns on a univer-
sity-scale. In [5], we first targeted administrators and faculty
as users, and hence focused on campus-level and depart-
ment-level flow patterns. In this work, we extend eCamp to
include students as targeted users and added a novel per
semester-level visualization of student flow.

Compared to other existing systems, the kind of data
used in eCamp is the primary difference. To our knowledge,
eCamp is the first data science research system built based
on university-wide student population data.

2.2 Technical Background

There are three main entities in our dataset: majors, courses,
and students. Major and courses have a natural and codified
relationship in the university catalog. How the student pop-
ulation take overlapping courses that belong to different
majors can suggest how strongly the majors are similar to
each other, especially for new students such as freshmen
and sophomores. As students progress through their degree
programs, the courses they take become more specialized,
thus gradually reducing the feasibility of switching majors.

At a campus-level, eCamp models major-major relation-
ships as a hierarchy based on the above heuristics. Visualiz-
ing hierarchies has been well studied. Two traditional
methods are to use Dendrograms and TreeMaps [17]. How-
ever, the hierarchies modeled by eCamp have a temporal
aspect, which cannot be handled by Dendrograms nor Tree-
Maps. Due to that reason, we also consider Radial trees,
which can effectively show how biological species evolve
over time as in phylogenetic trees [18], [19]. However, radial
trees have a limitation. They cannot easily visualize how
different portions of entities go through the hierarchy.

Sunburst graphs can address this limitation of radial
trees. For example, PathRings has used sunburst graphs
for showing biological pathways [20]. Sunburst graphs can-
not effectively show flow information, however. A popular
method to address the need of showing flow information,
especially temporal flow, is to use Sankey diagrams [21],
[22] or Sankey-like structures [23], [24]. Based on the litera-
ture, we decided to use a variation of a radial tree which is
also combined with Sankey-like edges to better convey stu-
dent flow through time.

At a department-level, eCamp models student flow as
represented by correlations between courses. We use
Pearson’s coefficient for course-course grade correlation.
The resulting department-level curriculum graph for each
degree program is a directional acyclic graph. As typically
done in the field, we render the department-level curricu-
lum graph as a node-link diagram [25].

At a per semester-level, eCamp looks at student flow
through classes. A class is defined as a course taken in a
specific semester. At this level, eCamp models temporal
class relationships as a multilayer graph with interlayer
edges [26]. Visualizing multilayer graphs are often chal-
lenging due to their multidimensional structure. DiffAni
used a diff technique to compare timesteps of a dynamic
graph [27]. Stein et al. created a pixel-based technique to
show the changes in a dynamic graph [28]. Burch et al. com-
bined a timeline with matrix cells to show graph changes.
Although, matrix-based methods have the advantage of
staying readable for large graphs [29], previous methods
mostly focused on how edges change in a dynamic graph.
In eCamp, we need to focus on class relationships within
semesters, which characterizes a single graph layer, and
also inter-semester relationships between classes. Hence,
we employ a novel matrix-based visualization of the graph
that incorporates interaction and mouse-hover gestures to
show dynamic relationships. Interactive matrices have been
used in similar contexts before such as in OnSet to show
the relationship between elements across multiple sets [30].
We take the interaction component further by combining
it with queries.
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3 DESIGN CONSIDERATIONS

3.1 Overview

eCamp models how students flow through a university’s
degree programs in order to visualize actual population-
scale patterns of how a university serves students. The visu-
alized patterns show both confirmation and surprises in
regard to how the university is designed and intended to
work versus how the university is actually working.

Fig. 1 shows an overview of the data pipeline. We model
relationships on three levels of abstraction. On a campus-
level, we look at how different majors overlap and differ.
On a per department-level, we look at how various courses
in a curriculum have intended and unexpected effects on
student success. Finally, on a classes level, in relation to
each student’s current academic performances, we look
at how the availability and scheduling of classes in each
semester can either enable or limit the student’s choices.
The resulting models are then visualized in ecamp through
three types of visualizations (shown in Fig. 2).

3.2 The Data

Universities are similar to many large organizations. While
there is a common system to maintain electronic data,
many different campus offices maintain and use only
some isolated components of the database. It is important
that the organization apply a comprehensive data science
approach to gain true situational awareness on multiple
levels.

Specifically, many universities, including the University
of Tennessee, use Banner [31] to maintain their central
databases. Banner is an information system for universities
that facilitates admission, registration, and curriculum
management processes. We obtained an anonymized copy
of the Banner database from the time span of 1996-2012.
Table 1 shows the primary kinds of data in the dataset.
Overall, there are records from 144,798 students in over
400 majors.

Graduate records show which students have successfully
graduated from each major. Naturally, a portion of the
student population has not graduated by 2012. While some
of those students were dropouts, many of them remained
in school after 2012.

In Banner, each major is identified by a major code.
Graduation records reference major codes. When a degree
program is revamped, a new major code may be issued
to the degree program. Due to this reason, the names of
each major included as part of major information may not
be unique. Our models use major codes as the only identi-
fier. However, our visualization use major names as labels
for usability reasons.

Student grades data provides detailed information about
all of the classes taken by each student, including the final
grade as well as when the student took each class.

In eCamp, we draw a significant distinction between a
class versus a course. A course is an abstract entry in the cat-
alog of a degree program. A class is actually taught in a par-
ticular semester, by a particular instructor, and taken by a
set of students. A class is the actual instantiation of a course.
In fact, “courses” do not exist in our dataset. We have to
aggregate all class offerings of the same course together
to obtain the information about a course.

The distinction between course and class is important
because of our multi-level modeling. When studying major-
major relationships, we need to consider courses shared by
the majors. When studying curriculum structure, we need to
use courses as the finest granularity as well. When modeling
student progression patterns on a per-semester level, we have
to study classes and how students flow through classes.

3.3 Analytics Needs

While developing eCamp, we met with various potential
users to understand how a better situational awareness may
benefit them.Wemet students, faculty, as well as departmen-
tal and campus level administrators, including the former
Vice Provost of the University of Tennessee, Knoxville.

The Provost’s office seek analytics to better evaluate the
effect of existing advising programs on improving student
retention and reducing time-to-graduation. This would be
especially beneficial because current advising programs are
divided and executed by the campus as a whole, by individ-
ual colleges and by individual departments. Advisers from
all of the advising programs may hold different and some-
times conflicting perspectives.

At the campus level, there is also a pressing need to
understand how success in general education courses may
affect a student’s success in different majors. In addition,
students can change majors. This kind of cross-discipline

Fig. 1. Overview of eCamp’s data pipeline. The data and relationship
modeling are detailed in Sections 3 and 4 respectively. The student flow
visualization and analytics components are discussed in Section 5.

Fig. 2. An overview of the visualizations in eCamp is shown. (A) shows
a view of the campus level radial tree depicting student choices with
regard to their major. (B) shows the relationship between courses in
a curriculum using a node link diagram. (C) shows student flow through
classes using an interactive matrix.

TABLE 1
eCamp Dataset Informtion

Category Number of Entries Size (MB)

Graduation Records 100,239 33
Student Grades 4,723,835 461
Major Information 436 < 1
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mobility is a natural occurrence on a college campus. There
is very limited information on how to best provide transi-
tional advising to such students at different stages of their
decision and transition process.

At the department level, a recurring focus is to more
accurately understand how students progress through the
curriculum of each major. While the catalog can serve as a
reference, it remains a subjective exchange of “lore” and
“feeling” when needing to identify which courses truly play
their intended roles in the curriculum. Examples of such
roles are gate keeping courses, core courses that serve as the
basis for other courses, and peripheral courses that diversify
students’ knowledge. In addition, all degree programs want
to improve student success, retention, and diversity. There
is a great desire for having a data-driven approach that can
model and visualize the corresponding barriers.

At classes level, students and advisers face a routine task.
That is, based on a student’s past and current academic
progress, what courses are the best for the student to take in
the next semester? Currently, most of such decisions are
made according to experience, gut-feel, and sometimes
even just hear-say. In particular, based on low grades that a
student has achieved in different courses, can the data
objectively identify bad choices that will hurt a student’s
chance for long-term success?

As a result of analyzing these analytics needs, we have
focused on modeling and visualizing three levels of student
flow patterns: (i) student flow through all of the degree pro-
grams on a campus level, (ii) student flow through the cur-
riculum structure within a degree program, and (iii)
student flow through classes on a per semester level.

4 MODELING STUDENT FLOW

In this section, we describe the modeling part of our overall
data pipeline (Fig. 1).

4.1 Modeling Goals

In our dataset, there are three main academic entities—
majors, classes, and students. A fourth entity, course, can be
created by aggregating classes information. In Sections 4.2,
4.3, and 4.4, we model a variety of relationships between
these entities. We use these relationships to visualize stu-
dent flow at campus, department, and classes level. In the
following, we describe the details of each of these levels.

4.1.1 Campus Level

For a university as a whole, at first, new students fall in a sin-
gle group where everyone has the option to choose any of the
majors offered. As students take different courses each semes-
ter, the set ofmajors they can potentially choose fromnarrows
quickly. At the same time, the student population also start to
diverge, paths start to emerge and continue to become nar-
rower and more specialized because the courses being taken
aremore andmore specific to particularmajors.

In reality, especially for new students, their first semester
on campusmay entail a lot of undecidedness. Some students
may remain undecided for a longer period of time. They
may also change their majors. Hence, even though a student
may have an intended or declared major at the point, that
information is not reliable for our purpose. We need to infer

students’ intended major based on how courses are shared
among majors, and model student choices throughout their
stay on campus.

Students can change their majors. These changes come
with an overhead, because not all courses that a student has
taken are relevant to their new intended majors. The further
along one gets in an intended major, the more overhead there
will be for the student, especially if the student plans to gradu-
ate on time. On a campus-level, some degree programs
require that a student specialize in that program as early as
possible. Some other majors would allow students much
more time to sample other disciplines before deciding to
specialize. Most administrators, faculty, and even students
would assume that to be true, however, few truly know
towards which end each major would fall in that spectrum.
We intend that our model will be helpful for answering these
kinds of questions.

4.1.2 Department Level

From outside each department, a degree program may be
described by the set of courses required by the program.
From inside each department, what defines a degree pro-
gram is on a deeper level—the structure among the courses,
i.e., the structure of each curriculum.

In eCamp, we model how courses relate to each other,
not according to the pre-requisite or co-requisite structure
specified in a course catalog, but instead by grade correla-
tions as observed for the student cohort of the degree pro-
gram, as well as the natural order in which the students
actually take the courses.

The modeled structures are based on actual student out-
comes. They may be different from the intended structure
as specified in the catalog. When that happens, the differen-
ces will help reveal gaps between the “design intentions”
and the “in situ realities”.

The visualizations will help to change academic
decisions from completely “experience-based” and “idea-
driven” to “evidence-base” and “data-driven”.

4.1.3 Classes Level

The time horizon of campus-level decisions is on decade-
scale. For department-level decisions, especially those
related to curriculum design and adjustments, the time scale
is normally 2-3 years due to typical catalog update cycles.

A much faster and more personalized kind of decisions
have to be made each semester. That is, next semester, what
is the set of courses that will be the best for each student to
take. There can be a rich set of optimization criteria. Clearly,
the decision has to also consider each student’s past and
current academic progress.

In fact, many of the campus-level patterns are not rele-
vant to these per semester decisions. Neither are the depart-
ment-level considerations of the curriculum. The data
analytics need to help answer questions like: “I got a C in
COSC 140, should I attempt to take COSC 302 and COSC
311 at the same time next semester?”

We observe that there are common groups of courses that
are often taken together, and there are natural sequences as
well. These structures can be modeled on a per-semester
level. In addition, we query the model to reveal how success
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or failure in one class relates to success or failure in other
courses. The visualization can serve as a data-driven advi-
sor for each student’s personalized scheduling questions.

4.2 Major-Major Relationship

Among all courses taken by students in any major, many of
those courses are shared by multiple other majors. In other
words, degree programs can and do have an overlapping
relationship with one another. The overlaps can be large for
new students, but then diminish as students start to take
courses that are more specific to their own major.

We model the major-major overlapping relationships
based on student records from those who have graduated,
so that we can derive the set of courses that can be associ-
ated with each major.

4.2.1 M-Value

We first estimate the degree to which students in a single
major will take a set of courses. Given a major A and a set of
courses C, the estimate,MA, is

MA ¼
X
ci2C

sA

Sci

�� ��
2
Aj j ; (1)

where sA is the number of students from major A in the
course ci, jAj is the total student population of major A.
Sci ¼ sm1

; sm2
; . . . ; smn

� �
is a vector of counts of students in ci

from all of the n different majors. Sci

�� ��
2
is the Euclidean norm

of the vector Sci and is computed as Sci

�� ��
2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
k¼1 s

2
mk

q
.

In Equation (1), sA
jAj corresponds to the probability that

students in major A take course ci. The per-course scores
are then tallied up across the whole set of courses to form
the overall M-Value for the major.

Some courses are taken by a much broader group of stu-
dents than others. For example, introductory English
courses have very little specificity in terms of majors,
because they are shared by the entire student population.
The additional term Sci

�� ��
2

is introduced to reduce the
weight of those general courses. This means that the final
M-Value metric will be weighted towards courses which
are shared between small sets of majors. A high M-Value
means the given course set Courses has a high specificity to
a major. If the students in a major are not taking the courses
in Courses, the M-Value will be low.

The M-Value essentially measures the affinity between a
major and a set of courses. In other words, on the basis of a
fixed set of courses, C, one can compute the affinity measure
of all of the majors on campus with that set of courses, C.
For example, if the course set C consists entirely of bio-
engineering courses, the M-Values computed for each major
can help to rank the similarities of all of the majors on cam-
pus with bio-engineering.

4.2.2 Major-Major Relationship Graph

Using the M-Value, we can capture the similarity between
all majors on campus. This similarity for two majors, A and
B is calculated as

MA;B ¼ M 0
A þM 0

B

2
; (2)

where M 0
A is calculated for major A according to Equa-

tion (1), but using the course set taken only by students in
major B. MB is calculated for major B, but using the course
set taken only by students in major A.

Suppose major A is computer science and major B is
math. Then M 0

A measures the affinity between the major of
computer science and the math major’s courses. M 0

B meas-
ures the affinity between the major of math and the com-
puter science major’s courses. MA;B is an average of those
two metrics and is the same value asMB;A.

One can now gain a more precise control of the model by
controlling which set of courses are used to compute the
M-Values. For example, one can make major-major compari-
sons based on stages of a student’s education, by including in
the course set,C, only those courses taken typically by the stu-
dent population during the corresponding stage (such as
freshman year versus sophomore year or later). The resulting
major-major similarities computed using M-Values will then
vary from freshmen, sophomore, junior to senior year.

Conceptually, it is desired to then model and visualize
majors gradually diverging from each other as time pro-
gresses for the student population on a per-semester basis,
and observe how students move or dropout along the way.

The algorithm is essentially top-down clustering, begin-
ning with all majors in a single group, with the result being
a tree. At each stage (i.e., academic semesters during fresh-
man, sophomore, junior, and senior year), an M-Value simi-
larity matrix is calculated using each semester’s courses.

The tree is initialized to have only the root node with all
majors belonging to it. Then, the process proceeds step by
step. Starting with the first semester of the freshman year—
the courses typically taken during that semester are chosen,
and a similarity matrix is produced. In each step, one new
level in the tree is created.

The process then proceeds to the next stage-the second
semester during freshman year. The above process is recur-
sively repeated, treating the leaf nodes (first-semester divi-
sion) as sets of majors to further divide, selecting courses
typically taken by that group of students as the basis to
determine how to make the division through clustering.
This process continues through all eight semesters in a 4-
year tenure of each student.

In each step, tree nodes are partitioned using a similarity
matrix based on M-Values that are computed from course
sets specific to that semester. In addition, when a tree node
contains only one major, it is not further subdivided.

The hierarchy of majors that results from this algorithm
has a very clear interpretation. Fig. 3 is a rendering of the
hierarchy as a Sankey-like radial graph. Each leaf node cor-
responds to a single major, and each internal node repre-
sents that the set of majors below it were considered to be
similar majors at that semester.

This hierarchy of majors also shows how earlier choices
made by students lead, or limit, them to certain majors as
they progress towards graduation. This effect of temporal
bifurcation cannot be captured through traditional methods.

4.2.3 Student Dropout Patterns

While junior and senior students usually have a “declared”
major, they can still change their major without going to the
registrar’s office to update their records. In addition,
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although freshman and sophomore students may also have
a “declared major”, many of them are in an exploration
stage of their studies and they may be taking preparation
courses that can lead to a few different majors. Effectively,
their final major is unclear at that point.

Both of these situations can cause significant data quality
issues if we analyze solely based on their “declared” majors.
When it comes to analyzing for patterns of student drop-
outs, we need to make best-effort estimates of a student’s
intended major based on the data available.

For this, we look at the courses that the students have
taken and measure the amount of overlap between those
courses and the courses of each potential major. This over-
lap ratio represents a confidence value for our model. The
higher this ratio is for a major, the more likely it is that they
were pursuing that major.

Counting the number of estimated dropouts for a major
can introduce uncertainties. For example, the intention of a
student that has only taken two courses are more unclear
than a student that drops out after having taken ten courses.
Another potential caveat with this approach is a scenario
where a student has changed major without updating his/
her major in the university records, and then dropped out.
By the data, it is difficult to not count the dropout as the pre-
vious major.

We account for these potential issues by showing the
average confidence value for each major in a tooltip. The
tooltip is shown when a user hovers over a major.

In Table 2, we show the top-5 majors in the database by
number of graduates, and the average degree of overlap
between courses taken by dropouts versus the full curriculum
of the best-matchedmajor. If the average overlap is high, then
these are more likely to have intended to graduate from that
major. If the average is low, then it is likely that these students
are dropping out early in their studies. This could hint that
general education courses are causing the dropout rather
than specialty courses in the departments.

The total number of estimated dropouts for each major is
shown in the major-major graph using a red and gray bar.
The percentage of the red bar over the gray bar represents
the dropout percentage.

4.3 Course-Course Relationship

In academic departments, student progression is typically
represented by pre-requisite relationships in course cata-
logs. However, many courses do not have pre-requisites.
Additionally, some pre-requisite rules are not always
enforced. Therefore, the actual progression of students can-
not be captured effectively. In our available data, we found
that student grades are the closest variable that when com-
bined with temporal information about courses, can repre-
sent progression and success in a major. Specifically, we
quantify how the courses taken by students in a major are
structured with respect to when courses are taken by the
students, as well as how courses are correlated in terms of
student grades. With this knowledge, per-major curriculum
structures can be determined. We believe other variables,
such as instruction style, grading practices, rigor, etc. can
help make the measure of student progression more accu-
rate. However, these variables were not available.

For this purpose, we first calculate course-to-course
correlation of student success. We then determine which
courses are most-highly correlated with all other courses
and at what point in time each course is taken.

4.3.1 C-Value

The approach for determining course correlations is the
C-Value metric. The C-Value, informally, measures the sim-
ilarity between two sets of grades, while accounting for the
size of these sets. To begin the formal discussion, the
C-Value is heavily based upon the Pearson Correlation
Coefficient (PCC), which is commonly used for studying
linear correlation between variables.

Let X be a collection of grades for course A, and Y be the
collection of grades for course B. For these sample popula-
tions the PCC, rA;B, can be described as the sample covari-
ance of X and Y divided by the product of the sample
variance ofX and the sample variance Y . This yields

rA;B ¼
PNA;B

i¼1 ðXi � �XÞðYi � �Y ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNA;B

i¼1 ðXi � �XÞ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNA;B

i¼1 ðYi � �Y Þ2
q ; (3)

where �X and �Y are the sample means for X and Y , respec-
tively, NA;B is the number of students who took both
courses A and B, andXi, Yi are specific student grades.

Fig. 3. Campus-level student flow. Each leaf node corresponds to a sin-
gle major. The thickness of the paths corresponds to the number of stu-
dents progressing through the corresponding nodes. The computer
science major is highlighted in red towards the right of the visualization.

TABLE 2
Top Five Majors by Number of Graduates

Major Name # of
Graduates

Estimated #
of Dropouts

Average
Overlap

Psychology 3092 159 63.71%
Political Science 1263 52 61.40%
Journalism 1094 51 72.79%
Comm. Studies 1012 59 70.93%
Biochemistry 826 12 75.70%

The average overlap shows the average percent of overlap between courses of
students that dropped out and the courses of the major.
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By using PCC, one can see the correlation between
courses based on how students performed within both of
these courses. However, in this use case, PCC is insufficient
without a final step. Consider a situation where only five
people took a course typically unrelated to a major and then
all went on to do well academically in the major. One might
incorrectly determine that this course is highly correlated
with success in the major. To correct for this, the final C-
Value, is scaled byNA;B, producing

CA;B ¼ NA;B � rA;B: (4)

In this work, we seek specific course-course relationships
that are unique to a selected student population using the
pairwise C-Value. For example, consider MATH 141, and
PSYC 110 as two courses. The C-Value between those two
courses could be different based on whether we are looking
at the electrical engineering students who took them or the
math majors. This can be the case even if the grades within
each individual course could all be similar (e.g., follow a
normal distribution), because the subset of students queried
for C-Value calculation would differ.

Specifically, in Equation (3), the set of students used to
query for grades in Course A and B is determined by the
analytics. It is also possible that the set of students who
have taken both courses is almost empty. In that case, the
C-Value will become very small (after being weighted by
Equation (4)), which then indicates, as far as the student
population in question is concerned, that course A and B
are likely to be unrelated because the students taking those
courses are likely to be mutually exclusive.

Furthermore, it is likely that, two courses may exhibit a
high correlation when exactly the same student population
take two courses offered by the same instructor. In that
case, grading habits of the instructor will affect the C-Value.
Nonetheless, in this case, those correlations are usually not
expected according to course catalogs, in which case, the
C-Value does reveal data insights of previously unknown
information (example in Section 6).

4.3.2 Per-Major Course-Course Relationship Graph

Calculating pairwise C-Value results in a similarity matrix
in which each cell represents the C-Value between two
courses. This information is most classically stored as a sim-
ilarity matrix. To present the information visually, there are

two common design choices. First, rendering the informa-
tion as an adjacency matrix. Second, to render it as a node-
link diagram or other variations of graph models. Because
university administrators and students are primarily non-
technical users of analytics, we opted for the node-link dia-
gram (shown in Fig. 4). As shown in previous work, node-
link diagrams are more easily understood by non-engineers
and researchers [32], [33]. We also preferred node-link dia-
grams for their added flexibility [34], to encode additional
measures (e.g., number of failures in a course, degree of
being a representative course, and gender distribution) into
the visualization to support more analytical tasks.

The graph helps capture success progression through a
major in two stages. First, courses that represent overall suc-
cess in a major can be defined as those that correlate most
with all other courses of the major. With this in mind, we
can sort courses based on how representative they are of
success in a particular major. We call the most representa-
tive courses, “core courses”. Returning to the similarity
matrix notion of the C-Value results, this is done by finding
the rows/columns with the highest sum. Second, we can
calculate where a course fits temporally in the real-world
curriculum. This is done by determining the average time,
or semester, during which students take the course. Looking
at core courses and their correlations, administrators can see
if in practice the courses exhibit the logical organization that
they had intended for them (visualized in Section 5.2).

4.4 Class-Class Relationship

The progression of students through a major is represented
by the classes that they take. We define a class as a course
taken in a specific semester. Every student takes a different
set of classes each semester and therefore creates a unique
path for themselves. Although students and faculty have a
lore and feel of what some of these paths should look like
based on the catalog, the real paths that students take as
groups is mostly unknown.

Similar to how we build other models, again we use stu-
dent population data to model course groups (in the same
semester) and course sequences (across consecutive semes-
ters). In this setting, a single path is a sequence of sets of
courses taken by an individual. The aggregate of all paths
show that some courses are “co-taken” by many students,
and also some courses are “post-taken” after other courses.

Fig. 4. Per curriculum student flow diagram. Thicker edges between courses show higher between-course correlation in student grades for students
who took both classes. The major shown here is computer science. The “core courses” are MATH 300, COSC 302, MATH 251, COSC 311, COSC
360, and COSC 380. The size of the nodes corresponds to the percentage of students failing the class. Inside each node, the red portion corre-
sponds to the ratio of female students, while the blue shows the ratio of male students in the class. The nodes show that the core courses in computer
science tend to have less female students than peripheral courses.
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These co-taken and post-taken patterns can be further
augmented with information of student grades. For exam-
ple, for students who have attained a low grade in one
particular course, what are the most common grades
achieved in all of the co-taken courses (i.e., the same
semester) and the post-taken courses (i.e., in the subse-
quent semesters).

We model co-taken and post-taken relationships between
sets of courses as a weighted multilayer graph, in which the
layer dimension represents time, and inter-layer edges can
exist [26]. As a multilayer graph, at each semester (time-
step), courses may be taken together by the same students.
In a graph, this relationship can be represented as weighted
edges where the weights represent the number of students
co-taking the classes. Inter-layer edges between timesteps
represent post-taken relationships.

Mathematically, based on the definition from [26], our
multilayer graph takes the form of M ¼ ðVM;EM;WM; V; LÞ,
in which V is a set of vertices, and L is a sequence of d layers.
Then, VM � V � L1 � . . .� Ld, and defines which layers,
each vertex is present in. Subsequently, EM ¼ VM � VM

defines the edges between the vertices, andWM is a function
mapping edges fromEM to weights.

We now map this definition to our data. For each major,
V defines the set of all courses for that major, while L repre-
sents the semesters. Thus, VM tells us which courses are
offered in the each semester. Finally, EM defines intra-layer,
and inter-layer edges between the courses. In this graph, a
vector u takes the form of ðu;aÞ, where a is a canonical vec-
tor representing which layer u belongs to. Therefore, for
ðu;aÞ and ðv;bÞ, an edge is intra-layer (shows co-taken rela-
tionships), if a ¼ b. Otherwise, the edge shows a inter-layer
relationship that depicts one course being taken after the
other in a different semester.

Visualizing multilayer graphs is challenging due to
clutter and the extra dimension that time entails. We
have designed a novel visualization technique to show
course-based relationships. Our technique is based on a
dynamic matrix which we call a path matrix (detailed in
Section 5.3).

5 VISUALIZING STUDENT FLOW

Based on the models constructed in Section 4, we describe
how to visualize the student flow at campus-level, depart-
ment-level, and classes-level.

The student flow at campus-level conveys student choices
andmobility among all degree programs (Section 5.1). At the
department level, the visualization of student flow reveals
how courses within a department are structured and what
role each course plays (Section 5.2). At the classes level,
focusing on actual class offerings, we visualize the actual
temporal paths taken by the student population and allow a
variety of hypothesis-driven and interactive filters in the
visualization (Section 5.3). We demonstrate analytics results
using these visualizations in Section 5.4.

eCamp’s user interface uses D3.js and is fully web-based.
eCamp’s backend system uses a regular Linux desktop. We
implemented all of the data processing and modeling com-
ponents in Python. Starting from scratch, the overall back-
end processing requires less than 10 minutes to run.

5.1 Campus-Level Student Flow

Fig. 3 shows the campus-level student flow. The visualiza-
tion is based on the temporal hierarchy of majors con-
structed in Section 4.2.2. The center of the visualization is
the root of the tree of majors. It is the starting point for all of
the new students: before their first semester on campus
when they have the over 400 majors to choose from.

In this hierarchy, each leaf node is a major, and each tree
level corresponds to a semester, i.e., the first semester of
freshman year, the second semester of freshman year, the
first semester of sophomore year, etc. The tree edges collec-
tively map out the student flow from the root to leaf nodes.
Every step along any particular path, the potential choices
of majors become narrower. Eventually when a path reaches
a leaf node, a student on this path will be virtually exclusive
for that major due to his or her past coursework. The width
of the path corresponds (in a logarithmic manner) to the
size of the student population remaining on that path.

This visualization shows how degree programs are simi-
lar in advancing students towards graduation. The tree
nodes show points in time where students encounter critical
decisions with regards to which majors they would like to
follow. At these critical decision points, the courses students
take may significantly limit their future options.

This visualization also shows dropout patterns. When a
student drops out, the student’s intended major can be pre-
dicted using the method described in Section 4.3.2. Each blue
node on the path signifies that the subgroup has “traveled”
together through themajor hierarchy and reached a newmile-
stone, a new semester. The gray and red line segments shown
for each major represent the percentage of students who have
dropped out of their intended major. When the red line seg-
ment equals the gray line segment in length, it means 100 per-
cent dropout. Correspondingly, when the red line segment is
half of the gray line’s length, it means 50 percent dropout.
When the user hovers over a major, a popup tooltip displays
the actual number of students that have graduated or
dropped out, as well as the confidence percentage for the
dropout estimation. The opacity of the red dropout bars also
reflects the confidence value.

A large monitor is required to better use the radial graph
visualization. Zooming and panning is also supported and
assists users in viewing the different branches as well as the
dropout patterns. Additionally, clicking on a major dives in
and shows the student flow diagram for that major.

From a design perspective, other detail-on-demand tech-
niques can be useful too. However, with this work focusing
on the modeling aspect of student progression, we believe a
thorough study of these techniques calls for future research
and is out of the scope of this paper.

5.2 Student Flow Through Each Curriculum

There are many courses involved in the curriculum of a
degree program. However, they are not necessary from the
department that offers the degree program. For example,
computer science students at the University of Tennessee
normally take courses from almost 30 different departments.

From a curriculum design point of view, seeing how the
students flow through all of the courses in a curriculum
would be beneficial, especially to see those courses that are
taken by the student population frequently.
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Fig. 4 shows such a student flow visualization for the
computer science major. The node link diagram shows for
each course which courses it is correlated the most strongly
with, as well as the order in which they are taken.

This visualization shows correlations between courses. In
the node-link diagram, each node is a course and each link
represents a grade correlation between two courses, mod-
eled as the course-course relationship described in Section
4.3. To help users identify strong links, link thickness is
scaled according to C-Values.

Since there is a C-Value between all course pairs, this has
the potential to introduce significant visual clutter. To avoid
clutter, we allow users to filter out weaker graph edges by
thresholding based on C-Value. By default, without a deter-
mined threshold value, the visualization shows the mini-
mum spanning tree with maximum edge weights of the
node-link diagram. In other words, for each course (node),
the chosen edge that connects it to the diagram is the one
with the most correlation (weight).

This visualization also shows how much of a “core” role
each course plays and the typical order in which students
take the courses in the curriculum. These two pieces of
information are encoded into the courses’ horizontal and
vertical positions in the diagram.

The horizontal position of a node indicates the average
time at which the course is taken by the student population
(from left to right). On the vertical dimension, courses that
have the highest total correlation to all other courses in the
major are placed at the center. Those courses are normally
considered as the “core courses”. Courses that have less over-
all correlation with the rest of the curriculum are considered
peripherals. They are gradually placed away from the center.
eCamp allows users to control the number of “core courses”.
In essence, this number represents the maximum number of
courses that can be placed exactly at the vertical center of the
diagram. Guided by these layout rules, the rest of the layout
process is simply an automated spring-force approach.

The flexibility of the node-link diagram allows us to
expose various course-related measures in the visualization,
encoded within the nodes. Given the importance of gender
diversity in the education system [35], we opted for show-
ing gender distributions for each course. Each node in the
graph shows student gender distribution as a pie chart, in
which the blue color represents the percentage of male stu-
dents and the red color represents females. To support dis-
covery of bottleneck courses (i.e., those with the most
failures), the size of each node represents the normalized
percentage of failures in that course. For example in Fig. 4,
we can see that math courses tend to be the bottleneck for
computer science students. To help users see more contex-
tual information about each course, when a user clicks on a
node, extra information such as the exact number of stu-
dents and grade distributions are also shown.

In this visualization, we can find insights to many curric-
ulum design questions. For instance, one example is quality
of student preparation—how students are progressing
through the general education courses before they reach the
department’s core classes. Another example is whether the
gate keeping courses, which will typically appear as bottle-
neck courses, are indeed appearing at appropriate locations
as how the faculty has envisioned.

5.3 Student Flow Through Classes

A course as defined in a curriculum only abstractly exists in
the catalog. The actual instances of a course are those classes
offered in different semesters. Although some core classes
are offered every semester, most classes are not.

Student flow on a per semester granularity shows how a
curriculum is executed. Since students take multiple classes
per semester, the exact student paths on a per-semester
time scale cannot be studied on a per-course level.

As described in Section 4.4, the collective paths that stu-
dents take can be modeled as a weighted multilayer graph.
We present a novel dynamic matrix to show the relation-
ships within this graph. We call the resulting visualization a
path matrix.

Fig. 5 shows a path matrix for three courses of the Com-
puter Science major (from Spring 2001 to Fall 2004). The col-
umns in the path matrix represent different semesters. Each
row is a course. Each cell is a class in a semester.

Hovering over a cell selects the corresponding class. We
call the selected class the reference class. Cells that corre-
spond to the reference class’ co-taken classes and post-taken
classes are also highlighted. Again, co-taken classes are
those classes that are typically taken in the same semester
by students who are taking the reference class. Similarly,
post-taken classes are classes that are typically taken in sub-
sequent semesters by students in the reference class. The
highlight colors in the co-taken classes and post-taken clas-
ses correspond to how many students in the reference class
have taken the co-taken and post-taken classes. The number
of students is also shown inside each cell.

As described in Section 4.4, the co-taken and post-taken
relationships are modeled as edges of a multilayer graph,
which are not easy to visualize because of their multidimen-
sional structure. In a path matrix, we essentially use interac-
tivity to substitute the complexity of visualizing an extra
dimension. By hovering over different cells, users see vary-
ing groups of co-taken and post-taken classes. Note that
visualizing the post-taken relationship is essentially show-
ing interlayer edges in a multilayer graph.

The first outcome of the path matrix is helping adminis-
trators determinewhether students are indeed taking classes
according to intended requirements. However, in addition

Fig. 5. A path matrix showing three courses of the computer science
major in the span of 8 semesters. The path matrix changes color as
users hover over different cells. In this example, the Data Structure and
Algorithms course (COSC 140) is selected. Therefore, the color of all
cells represent the number of students who took those courses and had
previously taken the selected class.

518 IEEE TRANSACTIONS ON BIG DATA, VOL. 7, NO. 3, JULY-SEPTEMBER 2021

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on July 11,2021 at 18:31:44 UTC from IEEE Xplore.  Restrictions apply. 



to showing raw student paths, the path matrix enables
further queries on top of themodel.

In the path matrix, we can filter by a particular group of
students. For example, when hovering over a class, instead
of selecting all of the students in that class, we can select stu-
dents who got a low grade in that class, and further visual-
ize those students’ average grades in post-taken classes. The
same notion can be applied towards filtering successful stu-
dents. This filtering allows one to see how students’ suc-
cess/failure in each class affect the curriculum.

The student flow in the pathmatrix can be compared to the
catalog. Although the catalogwas not included in our original
data, we manually collected pre-requisite and co-requisite
information from the computer science catalog and added
the information to the path matrix. When a reference class
is selected, we annotate the rows that correspond to pre-
requisite or co-requisite courseswith a label.

5.4 Analytics Results

5.4.1 Major Exploration Advising

Students who wish to explore different options before choos-
ing a major must be made aware of how the courses they
choose to take limit their options of which majors they may
pursue. As an example, using campus-level student flow
visualization, Fig. 6 shows that students who are potentially
interested in electrical engineering have a very limited time in
which to commit to it, otherwise their graduation might be
delayed. As another example, Fig. 7 shows that students have
five semesters to choose between industrial engineering and
mechanical engineering, and still graduate on time. Many
of the discoveries from the campus-level student flow visuali-
zation call into question the university’s one-size-fits-all pol-
icy that require students to declare a major after 45 credit
hours. It is obvious that the amount of time allowed should be
tailored according to students’ academic interests.

5.4.2 Major Mobility Advising

Another common advising task is helping students who
wish to change majors. Consider a third-semester computer
engineering student who comes to the adviser and
expresses a desire to change majors due to a lack of interest
in continuing computer engineering. Instead of just relying
on experience, the adviser can use the campus-level student
flow visualization to explore options along with the student.

First, the adviser locates the path from the root node to
the node of depth 3 that contains computer engineering.
Depth 3 corresponds to the third semester. Fig. 6 shows that
path. Then, the adviser records each of the child majors
from this node, and presents them to the student. Since at
this point these majors have overlapping coursework, the
student should be able to switch to any of them easily.

Consider another hypothetical situation. What if the
computer engineering student cannot pass the second-
semester physics course? In this case, it is likely in the
student’s best interests to change majors.

Even though the campus-level visualization can be used
again to determine which majors would be a good fit for the
student, the adviser must also consider the student’s prob-
lems with Physics. Using the curriculum-level diagrams for
each of the majors identified, the adviser notices that in the
sociology major the physics course is not close to the core
courses, and recommends to the student that he or she
consider switching to it.

5.4.3 Per-Major Dependency on External Courses

eCamp’s ability to show overall course correlations at a
department level has led to discovering various patterns
about their curricula.

When we look at a curriculum visualization, one of the
first patterns that can be seen is the location of bottleneck
courses. For example, Fig. 8 shows the initial courses in the
communication studies major. We can easily see that most
of the students in this major that take College Algebra

Fig. 6. This branch of the radial graph contains the university’s computer
and electrical engineering majors. These majors split apart from most
other majors by the end of the 1st semester. Additionally, the psychology
branch can be seen with a large number of students flowing through.

Fig. 7. This branch of the radial graph shows the path towards mechanical engineering and industrial engineering. Students have until the fifth
semester to choose between the two.

Fig. 8. The beginning of the communication studies curriculum. College
Algebra (MATH 119), can be seen as the first bottleneck, although it has
low correlation with the first core course (PSYC 110).
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(MATH 119), fail. However, we can also see that this course
does not have a strong correlation with the core courses of
the major (specifically, with PSYC 110). This calls into ques-
tion the status of the course. If College Algebra is indeed
important in the major, then maybe more introductory alge-
bra classes should be required before taking it.

In the CS major, Fig. 9 shows that the Calculus
sequence as a whole demonstrates correlation with two of
the computer core courses, Linear Algebra (MATH 251),
and Discrete Mathematics (COSC 311). When seeing
general education sequences that affect student success in
a major, the authors feel that it presents a good opportu-
nity to encourage collaborations between the major-level
and university-level student support infrastructures.
We believe, whether these courses should be core courses
in the CS curriculum is an interesting retention question,
since they do not correlate with student success in non-
theoretical CS courses. Also, many CS graduates will not
engage in tasks requiring theoretical CS knowledge in
their future jobs.

Another example of strong course connections is for
microbiology students between two courses: Biochemistry I
(BCMB 401) and General Genetics (BIOL 240). The connec-
tion between the two is highlighted in red in Fig. 10. These
two courses seem different on surface, yet grades show a
strong correlation in student performance in these two
courses. Discussion with microbiology students revealed
that although the two topics do differ in subject matter, they
both require similar thought processes, placing emphasis
on critical thinking and understanding over memorization.
While this finding is practically just “how things are” to

senior microbiology students, new students as well as cam-
pus-level advisers are unaware of these correlations.

5.4.4 Comparing Curriculum Designs

The department student flow also helps discover the why
behind some campus-level patterns. For example, in the
campus-level visualization (Fig. 6), we can see that students
of many majors have the option of moving to the psychol-
ogy major up until their fourth semester. In constrast,
changing majors to computer science must happen by the
second semester if students want to graduate on time.

The reason for this contrast cannot be determined from
within campus-level student flow visualization alone. How-
ever, when we look at the department student flow visuali-
zation for the psychology major (Fig. 11), we can see that
the core courses are towards the end of the major and stu-
dents coming from other majors can fit in easily. In contrast,
as we saw in Fig. 4, computer science curriculum have the
gate keeping courses and core courses starting very early.
This shows how the psychology major is more welcoming,
and could be a potential reason for why so many students
graduate as psychology majors.

5.4.5 Student Progression

When we viewed eight semesters of the computer science
major’s student flow through classes, we saw many impor-
tant relationships between courses that were seldom noticed
before. For example, we noticed that a typical path for stu-
dents is taking COSC 102, COSC 140, and COSC 160 in con-
secutive semesters. This can be seen in Figs. 5 and 12 in
different semesters. However, the matrix also tells us that
some students have taken COSC 140 and COSC 160 in the

Fig. 9. Course correlations between the Calculus sequence (MATH 141,
142, 241) and the core courses. The core courses can be spotted by the
straight horizontal line and high correlation between them (bottom-right).

Fig. 10. A thick edge with high correlation is highlighted in red between
Biochemistry I (BCMB 401) and General Genetics (BIOL 240). General
Genetics is a core course in this curriculum, while Biochemistry I is a
peripheral course that, is typically taught in later semesters.

Fig. 11. Overview of the Psychology major. The majority of the core courses in the major are towards the end of the curriculum (circled in green). In
contrast to the computer science major, most of the classes in Psychology comprise of female students.

Fig. 12. Typical path from COSC 102 to COSC 160. Most students take
these courses in consecutive semesters. However, some students have
taken COSC 140 and COSC 160 in the same semester.
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same semester. When we filter the matrix to show failures
and average grades (Fig. 13), we can see that students who
failed at COSC 140 but had taken COSC 160 in the next
semester, generally did better than those who took both
classes in the same semester. This suggests that perhaps
COSC 140 should be a pre-requisite of COSC 160.

Similarly, Fig. 14 shows that, students who failed in Data
Structures (COSC 302), also performed poorly in Systems
Programming (COSC 360). Looking at other semesters, we
saw that failing Data Structures was one of the most cata-
strophic events in the path matrix, suggesting its impor-
tance as a pre-requisite. By looking at the left hand side
labels of the matrix, we can see that Data Structures is now
a pre-requisite of COSC 340, and COSC 360. However, at
the time that our data was collected, this was not the case
and students had taken the courses in the same semester.

We can also filter the path matrix based on success.
Fig. 15, shows the average grade of students who got a
grade of C or better in COSC 140, in Spring 2002. We can
again see that students who took the 100 level classes con-
secutively, generally performed better. Hovering over other
semesters, we noticed that students who do well in COSC
140 (Data Structures and Algorithms I), generally perform
better in most other courses. However, we also observed
that COSC 311 (Discrete Structures) had lower grades com-
pared to other courses, regardless.

6 DOMAIN USER FEEDBACK

Here we present more detailed observations derived by two
domain experts and feedback from graduate students.

The first domain expert was our department head,
who is intimately familiar with Electrical Engineering’s

curriculum. The second is a faculty member who recently
served as Vice Provost of the university, whose priorities
are improving student retention and time-to-graduation.
Both began to ask questions on a university-wide and per-
major basis, that they had not previously considered.

The former Vice Provost felt that the per curriculum
visualizations are useful for evaluating majors in terms of
how welcoming they are to students switching to them.
For example, she mentioned that Classical Civilization is
often considered a found major, where students who
graduate with this major did not enter the university
planning to do so. In such a major, core courses would
ideally be very late in the curriculum, which was the case
for Classical Civilization. In contrast, engineering depart-
ments prefer for students to commit very early, so it
would be best for their core courses to be much earlier in
the curriculum.

She thought that the radial graph was interesting to uni-
versity-wide administrators as it showed major branches of
study available in the university. Specifically, she saw four
main arms of majors and noted that the number of students
graduating from each of these arms was very uneven. This
led her to ask questions regarding how the university is dis-
tributing resources, and whether or not this distribution
matched the goals of the university.

She also felt that first-year advisers’ work would bene-
fit from access to the campus-level student flow visualiza-
tion. Specifically, she saw that the Journalism and
Communications majors maintained shared curricula
until very late in the student career. This means that stu-
dents are likely to choose one of these majors before they
have taken courses which would help them determine
which major is best suited to their interests. Hence, it is
important for first-year advisers to make sure that stu-
dents are informed that they should keep an open mind
about which major they like the most, as it should still
remain possible to switch between these majors very late
into the curriculum.

Our department head examined the curriculum student
flow diagram for Electrical Engineering, and saw patterns
that he had expected and patterns that he had not. One find-
ing was that some of the courses showing strong grade

Fig. 13. A section of a path matrix, showing average grades for those
who failed in COSC 140. In this filtered path matrix, the red color corre-
sponds to an average grade close to F. The colormap can be seen at
the top of the image.

Fig. 14. A path matrix showing how three students who took COSC 302
and COSC 360 and failed in the first, also failed in the latter. While this
happened in 2003, the new curriculum has indeed made COSC 302 a
pre-requisite of COSC 360.

Fig. 15. A path matrix filtered by success. The matrix shows that suc-
cessful students mostly take COSC 140, COSC 160, COSC 302, and
COSC 311 in a sequence, while students who take the two latter courses
in the same semester usually get lower grades.
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correlations had the same instructor. He expressed a prefer-
ence that course success be independent of instructors and
instead be driven by the course’s material. Additionally, he
expressed surprise that the courses meant to serve as gate-
keeping courses for Electrical Engineering did not seem to
significantly affect the remaining curriculum, which led
him to wonder why that was the case.

Based on feedback from students, we learned that per-
sonal experience seems to play a role in helping a user better
identify, and validate patterns in the visualizations. To stu-
dents, the ability to validate seems so important that we feel
familiarity with the university affects how valuable a user
may find the student flow visualizations.

For example, a student in computer science used the
path matrix and quickly noticed that successive takes of
the first three courses in computer science lead to better
grades over time, which corroborates with his personal
experience that those skills can be learned as long as the
proven structure is followed. Another graduate student
in computer engineering noticed that computer engineer-
ing has a curriculum structure that is more spread-out
and less organized than that of computer science, how-
ever. The visualizations also showed her that the gender
diversity problem in computer engineering is significantly
worse than that in computer science. One can then
hypothesize how well structured a curriculum is, may
affect a department’s ability to retain a more diverse stu-
dent population.

Regarding improvements to eCamp, the former Vice
Provost noted that it would be useful to see how flow dif-
fers between students with different financial back-
grounds. She noted that students from low-income
backgrounds are considered to be at higher risk of not
graduating, and it would be interesting to be able to see
where these students are typically struggling. Addition-
ally, she suggested building tools to predict when stu-
dents are changing majors and what majors they are
changing to, as this could hint at why so many students
take longer than 4 years to graduate.

7 CONCLUSION AND DISCUSSIONS

In this paper, we have taken a data science approach to inte-
grate and make sense of previously disparate electronic stu-
dent records. Our framework models relationships amongst
multiple types of entities, in order to visualize student flow
at campus, departmental, and per-semester levels. Our sys-
tem, eCamp, enables university personnel and students to
ask and answer complex questions using the data.

As future work, we’d like to build a deeper set of ana-
lytics using more contextual information, by expanding
eCamp to incorporate additional data sources such as
instructor information of each class, student financial aid
information, and student admission information (such as
SAT scores).

In addition, based on our visualization results, for future
work one can consider more graph-centric measures and
graph comparison algorithms to unravel even more com-
plex relationships at a university. We believe the use of time
has played a key role in our models and suggest that future
work consider including that aspect as well.
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