IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 26, NO. 11, NOVEMBER 2020

3189

Embedding Meta Information into Visualizations

Alok Hota™, Student Member, IEEE and Jian Huang™, Senior Member, IEEE

Abstract—In this work, we study how to co-locate meta information with visualizations by directly embedding information into
visualizations. This allows for visualizations to carry provenance and authorship information themselves for reproducibility. We call
these self-describing visualizations—reproducible, authenticatable, and documentable. Self-describing visualizations can be used to
extend existing visualization provenance systems. Herein, we start with a survey of existing digital image watermarking literature. We
search for and classify watermarking algorithms that can support scientific visualizations. Using our payload-resilience testing
framework, we evaluate and recommend algorithms supporting various use cases in the payload-resiliency space, and present
guidelines for optimizing visualizations to improve payload capacities and embedding robustness. We demonstrate the efficacy of self-
describing visualizations with two sample application implementations: (1) adding an embedding filter as a part the standard rendering
pipeline, (2) creating a web reader to automatically and reliably extract provenance information from scientific publications for review

and dissemination.

Index Terms—Scientific visualization, reproducibility, visualization systems, digital image watermarking

1 INTRODUCTION

ADVANCEMENT of science depends on having results that
can be reproduced, peer reviewed, and improved. As
visualizations are an important part of today’s scientific
results, they need to meet the same veracity standards requ-
ired of all other scientific results.

A key step in doing so is to capture and record the prove-
nance information describing how each visualization has
been created. Because the process to create visualizations can
be complex, the provenance information is often neither com-
pact nor easy-to-manage. Thereby we often run into scenarios
where the visualizations are dissociated from the correspond-
ing provenance information.

Furthermore, scientists and researchers often revisit
previous results days or months later. Without meticu-
lous records-keeping, information on how a visualization
was created, its purpose, and its story can be lost to time
easily. Published visualizations, such as those in papers
and presentations, suffer from this problem, too, as there
is insufficient page space to fully describe visualization
provenance. As these papers and presentations are
shared, knowledge of how a particular visualization was
created is lost. Further, one will need to undergo a cum-
bersome and manual process to recreate results from a
publication, typically.

In this work, we explore how to embed meta information
directly into visualizations, i.e., the images themselves. We
call these self-describing visualizations—visualizations that
are reproducible, authenticatable, and documentable. This

o Theauthors are with the Department of Electrical Engineering and Computer
Science, University of Tennessee, Knoxville, TN 37996.
E-mail: ahota@uols.utk.edu, huangj@utk.edu.

Manuscript received 29 Oct. 2018; revised 6 Apr. 2019; accepted 20 Apr.
2019. Date of publication 14 May 2019; date of current version 6 Oct. 2020.
(Corresponding author: Alok Hota.)

Recommended for acceptance by E. Gobbetti.

Digital Object Identifier no. 10.1109/TVCG.2019.2916098

allows provenance information, author information, authe-
nticity information, etc. to be co-located with the visual-
izations they describe. The co-location in self-describing
visualizations additionally prevents unintentional, or even
intentional, changes to the provenance information.

Our goals are to: (1) embed information with minimal
visual impact on the visualization, (2) embed information
such that it travels with the visualization through publica-
tions, presentations, emails, and other media, (3) create a
process that is feasible as part of the visualization pipeline
(i.e., not as a manual process), and (4) extract the embedded
information reliably and enable new applications.

Our method of achieving these goals is to use digital image
watermarking. Watermarking is a well-studied concept in
image processing, but so far very rarely used for visualiza-
tions. Through our survey of the watermarking literature, we
discovered that most existing watermarking methods only
qualitatively embed information in images. Embedding prov-
enance information into visualizations requires quantitative
information embedding—embedding with bit-for-bit accuracy
upon extracting. Another discovery is that watermarking lit-
erature tends to focus on photographs of natural subjects
with a lot of detail and complexities, which makes hiding
information easier. Visualizations have very different charac-
teristics from photographs.

To understand characteristics of the data to be embedded,
we examined various existing ways of collecting provenance
information, ranging from lookmarks in ParaView [1], ses-
sion files in Vislt, VT files from VisTrails [2], and linked docu-
mentation from F1000Research, a recent online publication
platform. We discovered that provenance information varies
from tens of bytes to several kilobytes. Visualization water-
marking may need to provide different design choices
depending on the amount of information to embed. As a
result of this work, the algorithms we suggest are Entropy
Thresholding and Least Significant Bit with Optimal Pixel
Adjustment Process to cover these use cases.

1077-2626 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on July 11,2021 at 18:31:07 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-3595-3253
https://orcid.org/0000-0002-3595-3253
https://orcid.org/0000-0002-3595-3253
https://orcid.org/0000-0002-3595-3253
https://orcid.org/0000-0002-3595-3253
https://orcid.org/0000-0002-9288-0505
https://orcid.org/0000-0002-9288-0505
https://orcid.org/0000-0002-9288-0505
https://orcid.org/0000-0002-9288-0505
https://orcid.org/0000-0002-9288-0505
mailto:
mailto:

3190

We include a brief survey of existing image-processing
watermarking literature in Section 3. In Section 4, we clas-
sify visualization use cases within the two-dimensional pay-
load-resilience space. For each class, we test, analyze, and
recommend the most viable algorithms in Section 5. In
Section 6, we describe and demonstrate two reference
implementations of self-describing visualizations. First, a
rendering engine that includes watermarking as a natural
final step of rendering. Second, a web service that automati-
cally extracts watermarked information from PDF files that
use self-describing visualizations as figures. Finally, in
Section 7, we discuss our findings using external supporting
techniques, such as error-correcting codes, and possibilities
for metadata descriptors.

2 BACKGROUND

Having reproducible results is a cornerstone of science. This
applies to visualizations, where all techniques rely on infor-
mation external to the visualization. If a visualization is cop-
ied away from its original source, all ties to the information
are lost. Trial-and-error attempts to recreate such a visualiza-
tion can require parallel computation on a supercomputer [3].
self-describing visualizations—those which are reproducible,
authenticatable, and documentable-are to extend existing
provenance technologies by co-locating visualizations with
their provenance information. Thus embedding a verifiable
ground truth and historical documentation into the visualiza-
tion itself.

2.1 Reproducible Research

An integral part of the scientific procedure is being able to
reproduce results from previous works. The purpose is not
to show mistrust for the scientists or results, but to assert
the veracity of the work. Reproducibility, or full replicabil-
ity, is an important facet of robust research in all scientific
fields. However it is often cited as lacking in publications
[4], [5], [6], and studies assessing reproducibility are diffi-
cult to publish in top journals [7].

To address this gap, the National Science Foundation
(NSF) supports projects aiming to improve reproducibility in
computer systems and networking research [8]. New calls
require thorough data management and open access plans to
improve reproducibility studies. Additionally, there are open
solicitations by the NSF for Big Data projects focusing on
reproducibility and replicability in data science [9]. Peng
describes the need for a “culture of reproducibility” in the
computational sciences, and introduces a reproducibility
spectrum [6]. In this spectrum, publications should come
with executable code and data to meet the “gold standard”,
which would allow for results to be reproduced.

2.2 Reproducibility and Provenance in Visualization
Visualizations enable communicating complex features in
scientific data and as such should be held to the same stan-
dard as science. Perkel discussed interactive information vis-
ualizations in online publications supported by Plotly and
F1000Research [10] that improve reproducibility. For scien-
tific visualization, ParaView supports the use of lookmarks,
which can replicate full application state to return to a saved
point in analysis [1]. The analog in the Vislt visualization

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 26, NO. 11, NOVEMBER 2020

package is a session file, which can be created at any time to
provide a snapshot of the current analysis performed. This
can be used as a way of sharing how a final visualization was
created if provided with the data and a running application
to meet the gold standard.

More broadly, a way to maintain reproducibility in visual-
ization research is provenance, which generalizes capturing
histories of analyses. Ragan et al. characterize the various
types and purposes of provenance [11]. A widely-known sys-
tem in visualization for reproducibility is VisTrails [12],
which allows visualization reproduction [2]. In particular,
VisTrails captures actions during the exploration and analy-
sis process to create a workflow describing how a visual-
ization was achieved. This allows for maintaining the
authenticity of a visualization (i.e., who created this visualiza-
tion?) as well as documenting a visualization (how was it cre-
ated?) in a “vistrail” object. Vistrail metadata can be included
in a PDF file, allowing the final document to be linked to the
visualization source via a LATEX package.

Of course, both the provenance information and the origi-
nal computing environment are required for reproducibility.
An extension to VisTrails creates executable papers, wherein
full executable environments are available within a PDF [13].
The full environment allows for simplified linkages between
VisTrails and other computational platforms, such as ALPS
[14]. To this end, vistrail objects are mainly meant for com-
puter codes to understand and automate a toolchain to recre-
ate visualizations. In contrast, self-describing visualizations
can contain general, human-readable data, that are perma-
nently co-located with each visualization. These two techni-
ques should be used in conjunction.

2.3 Image File Metadata

In a way, we can consider the generalization of visualiza-
tions as images. A simple method of including any informa-
tion with any image is to add file metadata. The metadata
could contain authorship information, rendering parame-
ters, analysis, etc. and would be directly tied to the file. This
is the use case for Exif metadata in digital photography [15].
In a LATEX-based publication, this metadata would be pre-
served, allowing any reader to extract it.

The Exif standard extends JPEG, TIFF, and WAYV. Of these
only JPEG is a useful candidate in visualization. For broader
use in visualizations, the PNG standard would also have to
be extended to include the metadata. The XMP standard fits
this need as it allows for more media filetypes, and “sidecar”
metadata for unsupported types [16], [17].

There are fundamental issues with file metadata app-
roaches. If the file is copied or converted to another file type,
the metadata may be lost. Metadata may be purposefully
stripped from files by certain applications at the user’s discre-
tion. Using an image-space watermarking approach general-
izes the survivability of the embedded information. While
image file metadata would survive embedding in a PDF, it
would not survive indirect transmissions, such as screenshots.
In this work, we modify existing bitmap, PNG, or JPEG
images on a pixel-wise basis. Stripping the embedded data is
not possible without altering the image itself, which defeats
the purpose of the visualization. Data from these images can
be read even after a copy since information is embedded
within pixel values or frequency information.

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on July 11,2021 at 18:31:07 UTC from IEEE Xplore. Restrictions apply.

HOTA AND HUANG: EMBEDDING META INFORMATION INTO VISUALIZATIONS

| Watermark data

Inverse
transform

Transform
Watermarked image '

Original image 7

(a) Possible transformations include discrete Fourier, cosine, and
wavelet transforms. Some algorithms do not use a transformation
and so this step in the workflow is a no-op.

Provenance Rendering Generation Author &
data parameters script system info
[¥ I I I |
| Watermark data W
Tuned hyperparameter Inverse 1
pixel selection transform % ‘

RADiant
visualization/'

Transform

Original
visualization 7

(b) The watermark data is directly related to the image unlike
many traditional use cases. Additionally, for methods with a trans-
formation step, we need to tune hyperparameters to select good
regions of the image.

Fig. 1. (a) is an overview of the watermark embedding process, and (b)
shows the changes needed to target visualizations. We focus on sym-
metric methods in this work, thus extraction is the reverse of embedding.

3 SURVEY OF DIGITAL IMAGE WATERMARKING

Digital image watermarking (DIW) is a type of information
hiding within images. In the image processing community,
DIW is well studied, with a variety of techniques. Herein
we start with an overview of DIW as a whole and narrow
down to techniques that are viable for visualization.

Hiding information in an image is known as embedding a
watermark. A generalized conceptual process for embed-
ding is shown in Fig. 1a. Techniques may differ in how they
transform and inverse transform the image. Some techni-
ques do not transform the image at all, so these steps would
be no-operations.

Retrieving hidden information from an image is known
as extracting a watermark. In general, extraction is the
reverse of embedding. That is, these techniques are gener-
ally symmetric. Watermarking techniques based on crypto-
graphic methods may use asymmetric techniques [18], [19].
Such methods are attractive, but would require public keys
external to the visualization to decrypt embedded informa-
tion, which can be lost when sharing the visualization.

Watermarking for visualizations takes some special con-
sideration. We identified subprocesses of the embedding and
extracting process in order to create self-describing visualiza-
tions. Fig. 1b shows the crucial components in context of the
original watermarking workflow. The meta information
blocks (provenance data, rendering parameters, etc.) provide
the information needed to reproduce, authenticate, and
document a visualization. The specific data can be sourced
from the visualization application itself if watermarking is

3191

Fig. 2. Examples of original visualizations (top) with their watermarked
counterpart (bottom). (a) contains a qualitatively perceptible watermark
(red noise pattern), which can occur when the method’s hyperpara-
meters are set too high. (b) contains a qualitatively imperceptible water-
mark. Quantitatively, the image has a high peak signal-to-noise ratio of
43.15 when compared to the original, meaning the watermarked image
is visually similar to the original.

performed as a post-processing filter during rendering. Not
all types of meta information shown in Fig. 1b must be used.
Therefore the amount of embedded meta information
depends on the specific use case. Selecting the pixels to
embed data within is also crucial, and varies image to image.
We discuss these components in more detail in Section 4.1.

3.1 Imperceptibility

Digital image watermarking methods aim to imperceptibly
hide data within regions of an image. Qualitatively, percepti-
bility can be measured by simply looking at watermarked
images, for example. In Fig. 2a the visible red noise makes it
clear that the image has been modified, whereas Fig. 2b looks
like an untouched image (though it does contain a water-
mark). Quantitatively, perceptibility can be measured by cal-
culating the peak signal-to-noise ratio (PSNR) compared to
the original image. This is often used to benchmark the per-
formance of a watermarking technique. Fig. 2b has a fairly
high PSNR of 43.15, meaning it is close to the original com-
pared to the lower 27.61 for Fig. 2a.

Imperceptibility can be achieved by exploiting the human
visual system (HVS) in various ways. For example, data can
be encoded within least significant bits where the HVS is not
sensitive enough to detect variations in color [20], or to lever-
age the HVS' low sensitivity to alterations in high-frequency
luminance regions as compared to low-frequency luminance
regions [21]. In fact, the JPEG compression standard targets
similar regions of an image since loss of information in those
regions is less noticeable [22]. Fig. 3 shows a comparison
between an original visualization of supernova data com-
pared to an imperceptibly watermarked version using a
watermarking technique with a JPEG-like method to select
data regions.

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on July 11,2021 at 18:31:07 UTC from IEEE Xplore. Restrictions apply.

3192

Fig. 3. Left, an original visualization of a supernova simulation isosur-
face. Right, the same visualization watermarked with the ET [46]
method, which uses the 2D DCT space for embedding data. This allows
it to resist JPEG compression, while remaining imperceptible by taking
advantage of the human visual system’s low sensitivity to alterations in
high frequency regions.

3.2 Extractor versus Detector

During extraction, a watermark may be extracted or detected.
Detection simply requires that a watermark be detected in
the image at all, and does not require any information to be
retrieved. This is essentially 1-bit watermarking, as the detec-
tor returns a boolean value. Techniques may be extended to
multiple bits [23]. Even though the embedded bit(s) may be
highly resilient [24], detection-only methods are not applica-
ble to our use case. For this work we focus on multi-byte
methods with data extraction because we are targeting scripts
or keys as the embedded data.

Changes to a watermarked image, whether accidental or
intentional, are called attacks. Attacks to an image may result
in insertions or deletions to watermark data at the extractor. An
insertion occurs when the extractor determines that a bit (i.e.,
a 0 or 1) exists in the image when the watermark did not actu-
ally contain this bit. In contrast, a deletion occurs when the
extractor skips a bit that did exist in the watermark.

A critical requirement of DIW methods is synchronization
between the embedder and extractor. Synchronization means
that the embedder and extractor hide and seek data in the
same locations. With synchronization, the increase in error
(insertions) or loss of information (deletions) may be recover-
able through error coding or even ignored. However,
desynchronization is catastrophic to any method.

3.3 Variety of Resilience Profiles

The resiliency of a watermarking method measures resis-
tance to various attacks. Attacks could include compression,
introduced noise through transmission, etc. Fragile algo-
rithms are not resilient, a quality sometimes desired if
checking for (un)authorized usage [25].

A watermarking technique’s resiliency depends on a num-
ber of hyperparameters, e.g.,, which color channels or bit
planes are modified, which regions are selected, etc [26]. Tech-
niques that transform the image may acquire resiliency to
some attack profiles through properties of the transformation
space. Common benchmarking attacks include compression,
noise, affine transformations, cropping, and color alter-
ation [27]. A technique is considered resilient if an embedded
watermark can be reliably extracted from an image in the
presence of an attack.

Many methods, especially those that embed images
into images, have a relaxed stance on error in the watermark

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 26, NO. 11, NOVEMBER 2020

[28], [29]. In these algorithms, some degree of error is accept-
able because it is implicitly understood that a human will be
in the loop to assess the extracted watermark. We have a high
bar for resiliency when used for visualizations. Because we
are embedding scripts or authorization keys, we require bit-
for-bit accuracy at the extractor.

3.4 Image Space versus Transformation Space
Simple DIW methods operate directly in image space and
tend to have high payload size, but are more fragile. Some
minor alteration to the pixel data, such as compression, can
destroy the embedded data.

Advanced DIW methods use a transformation space to
embed watermark information. Common transformation
spaces include discrete Fourier, wavelet, and cosine spaces.
Each transformation space comes with a set of pros and
cons as well as a certain set of attacks to which it is resilient.
Some methods may use hybrid spaces to acquire even better
resilience [30], [31], [32].

3.4.1 Fourier Space Embedding

Discrete Fourier transform (DFT) space is a popular choice
for data embedding [24], [33], [34], [35], [36], [37]. Water-
mark bits can be embedded into selected frequency coeffi-
cients directly in DFT space. This avoids alterations caused
by compression algorithms, which primarily target high fre-
quencies, and avoids perceptual changes to low frequency
regions of the image.

DFT embedding is particularly attractive as it allows for
resiliency to geometric attacks-rotation, scale, and translation
(RST) through properties of the Fourier transform [33]. RST
resiliency often allows images to be physically printed and
still retain extractable watermarks [38]. Furthermore, since
the transformation represents the data completely in fre-
quency space, embedded bits may be spatially distributed
to different regions of the images.

For visualizations, we do not consider RST attacks to be
typical. This is especially the case since many publications
today that would include visualizations are published elec-
tronically as PDFs. As long as the PDF is not compressed, the
original image can be parsed from the PDF, which eliminates
any scaling issues. As a shortcoming, however, robust Fourier
methods could introduce noticeable artifacts depending on
the mapping used [33].

3.4.2 Wavelet Space Embedding

2D discrete wavelet transform (DWT) may be used for
embedding as well [31], [32], [39], [40], [41], [42]. The DWT
performs a horizontal and vertical downsampling operation
on the image, creating four subregions. This process can be
repeated on the lowpass subregion and produce multireso-
lution wavelet decomposition [39], [41]. Watermark data
can be embedded in the low frequency information and the
image is reconstructed. The wavelet used for downsam-
pling could be a simple Haar wavelet, or a Daubechies-fam-
ily wavelet as in the JPEG 2000 compression algorithm [43].
Embedding in the DWT space alone will result in data
being spatially spread through the reconstructed image. If
data is embedded in the kth resolution decomposition, then
that data will affect a 2" area in the image. This may lead to

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on July 11,2021 at 18:31:07 UTC from IEEE Xplore. Restrictions apply.

HOTA AND HUANG: EMBEDDING META INFORMATION INTO VISUALIZATIONS

highly noticeable artifacts. Moreover embedding in the
wavelet transformation space may help with JPEG 2000
compression resiliency, however this is not the typical com-
pression algorithm used to save JPEG images.

3.4.3 Cosine Space Embedding

The discrete cosine transform (DCT) is a Fourier-based
method which decomposes a signal into sinusoids with
only real components. 2D DCT is used by the JPEG standard
[22] to compress images, as well as the MPEG standard for
video [44]. This is an advantage for watermarking methods
using this transform [28], [45], [46], [47], [48]. Watermark
data can be embedded in the cosine space such that the
JPEG compression process has minimal effect to the data.
Fig. 3 shows an example of a visualization with data embed-
ded in the DCT space which can resist compression.

In watermarking, this transform is generally performed
upon small blocks of the image, usually 8 x 8 blocks [28], [49].
Data can be embedded in one or more of the resulting 64 coef-
ficients within these blocks. It is not necessary for every block
to be used for embedding. Instead, many techniques choose
certain blocks that contain either smooth [48] or textured [49]
regions. While this reduces the possible locations for data to
be hidden, it increases the robustness of the watermark.

Since the blocks are spatial subdivisions of the original
image, the watermark data is embedded in certain spatial
regions of the image. This can lead to weakness to cropping,
but we do not believe cropping is a likely attack in visualiza-
tions. We also do not believe heavy compression is a likely
attack, as this would destroy useful detail in the visualiza-
tion. However since saving visualizations as JPEG is com-
mon, resilience to light compression with default JPEG
encoding parameters is useful. Thus we take DCT-based
methods into consideration.

Most existing watermarking methods using DCT space
target grayscale images. For full-color visualizations, we
use the luminance channel for embedding. Individual color
channels may or may not contain enough information
depending on color map, shadow, background color, etc. to
guarantee that one channel will work for all visualizations.

3.5 Variety of Embedding Needs

The actual data that will be embedded is of special interest.
Payload size refers to the maximum number of watermark
data bits that can be embedded within an image. We require
methods that can effectively hide tens of bytes to multiple
kilobytes of payload to cover various use cases of visualiza-
tion meta information.

Using the nomenclature from Cox et al. [25], there are four
classifications of information hiding based on the message
itself. The first two are watermarking and non-watermarking
systems. These are defined as systems where the data is
related to the cover image and systems where the data is
unrelated to the cover image, respectively. The next two are
steganographic and non-steganographic systems. These are
defined as systems where the message’s existence is secret
and systems where the message’s existence does not need to
be secret.

For watermarking visualizations, we need a non-
steganographic watermarking system. The information is

3193

related to the cover image (provenance data) and it does
not need to be a secret that the watermark is present
(though it should be imperceptible).

3.5.1 Common Watermark Data Types

Many techniques focus on image-in-image watermarking
[28], [36], [50], [51]. These systems may be copyright-related,
where the watermark image is a logo of the authoring party.
Most methods use binary images, commonly for signatures
or simple logos, however some methods can embed full-
color watermark images as well [52], [53]. We can generalize
any watermark data type as an arbitrary bit sequence. In
theory this makes any image-in-image technique as viable
as other general methods.

However, there is a significant drawback with image-in-
image watermarking techniques. There is an implicit under-
standing that the extracted watermark is only qualitatively
assessed. That is, it is deemed acceptable that an extracted
image contains some errors, insertions, or deletions because
the human in the loop can still judge its visual similarity to
the intended watermark [29].

Since we are hiding provenance information, we require
bit-for-bit accuracy. Methods could use fingerprints [28] to
check if the image has a watermark or if it is altered. But
ultimately the method should have enough resiliency for
the bit sequence to arrive unaltered.

3.5.2 Quantity of Embedded Data

The maximum payload size of a cover image can depend on a
few factors. The first and most obvious is the size of the cover
image. For a w x h image with ¢ channels, the maximum pay-
load size for an image-space method could be calculated as
w X h x cassuming 1 bitis embedded per pixel per channel.

Transform-space methods may theoretically have the
same maximum payload size, but they are often used to
embed far fewer bits with a higher resiliency. Many trans-
form-space methods are image-adaptive; they restrict possible
locations to hide data based on the contents of the image.

If the use case in visualization is to store a full script or
program, an image-space method will be required. If a
higher resiliency is needed, it is likely that a transformation-
space method will be required at the cost of payload size.

3.5.3 Watermark Data Transformation

The watermark data may be transformed before embed-
ding. We briefly discuss two general classes of watermark
data transformation: those that transform the data signal
and error-correcting codes.

A common signal transformation is spread-spectrum cod-
ing [54]. This paradigm models the watermark data as a sig-
nal and spreads it over a wider frequency space [55]. One
method of spreading the watermark data is to multiply the
incoming watermark bit stream by a pseudorandom num-
ber stream in the embedder. The extractor then needs the
seed to regenerate the same pseudorandom number stream
to maintain synchronization. Spread spectrum coding lends
itself well to frequency modulation with the image, i.e.,
embedding within the Fourier domain. However, spread
spectrum methods often rely on knowing the original image

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on July 11,2021 at 18:31:07 UTC from IEEE Xplore. Restrictions apply.

3194

and/or watermark so that the noise can be removed
through correlation [54].

Another simple method of transforming the watermark
data is using error-correction codes. These are useful in cor-
recting bitwise errors in the extracted watermark data. A
common method is Reed-Solomon (RS) coding [56]. In
short, RS coding in the embedder takes three parameters: s,
the symbol length in bits; k, the message length in number
of symbols; and n, the length of coded message in symbols.
This would support correcting up to 25 errors. The extrac-
tor needs s, k, and n to maintain synchronization.

Error coding may be useful for transformation-space
methods to acquire extra resiliency. However, if the extractor
is expecting an n-bit encoded message, a number of insertions
and deletions can destroy the error correcting capabilities as
the full message may not be read. Theoretic frameworks exist
for correcting multiple variable-length insertions and dele-
tions [57], [58], [59]. In this work, we directly embed unaltered
binary information into visualizations to test the applicability
and feasibility of watermarking visualizations.

3.6 Variety of Extractor Needs

Three classes of watermarking methods exist: non-blind,
semi-blind, and blind [27], [60]. These refer to how much
information is required by the extractor. Pieces of informa-
tion include I, the original cover image; W, the original
watermark data; I’, the stego-image, the image with an emb-
edded watermark; and W, the extracted watermark data.

3.6.1 Non-Blind and Semi-Blind Watermarking

Non-blind methods expect the most amount of information
during extraction. Primarily, they require /, from which the
extractor can subtract the cover image from the stego-image,
revealing 1W’[54]. Semi-blind methods require W during
extraction, but do not need I [29]. This is generally the case
where the watermark is the same, regardless of the image.
Non-blind and semi-blind methods are not viable for self-
describing visualizations, because visualizations could be
from any source, author, or publication. The data embedded
within each visualization is specific to that visualization.

3.6.2 Blind Watermarking

Fully blind methods do not have access to either I or W dur-
ing extraction [25]. Thus the extractor has no notion of what
the original image was or what the watermark could be.
Some known scheme must be used in the embedder to
choose locations, whether by random number generator or
by image masking. This scheme is key between embedder
and extractor synchronization.

Blind methods are prone to desynchronization as the
extractor can rely only on searching in the correct locations
to find embedded data. Error correction codes may be used
to mitigate errors in the bit stream, but can still be thwarted
by insertions and deletions. Thus, blind watermarking can
be lower resiliency than non-blind methods.

An interesting side effect of blind extraction is that some
data will always be returned, because there is no longer any
notion of validity of the data being extracted. Without error
coding, fingerprinting, or some other validation, the extrac-
tor must assume anything it processes is watermarked.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 26, NO. 11, NOVEMBER 2020

Blind methods are the most appropriate for visualization
use, since they allow for the original source and author to
be decoupled from the visualization end product. That is,
there is no need to maintain a database of every original
image and/or every known script, executable, etc.

4 SELF-DESCRIBING VISUALIZATION
REQUIREMENTS

In this section we describe the requirements for watermark-
ing visualizations based upon the literature survey in
Section 3. We discuss the considerations for three important
facets of creating self-describing visualizations. These are
heavily dictated by the use case the visualization expert or
scientist is targeting.

4.1 Requirements for Watermarking Visualizations

With the wealth of research in DIW from the image process-
ing community, there is a large number of hyperparameters
to tune. Visualizations are very different from the typical pho-
tographs in watermarking literature. Here, we list require-
ments and assumptions for using watermarking algorithms
with visualizations, and choose four methods that fit these
requirements to demonstrate self-describing visualizations.

The first requirement is a fully blind watermarking algo-
rithm. This is because access to neither I nor W can be guaran-
teed. Suppose a figure in a journal publication is watermarked.
From the reader’s perspective, the original image may exist
elsewhere, but the paper only contains the altered image.

Second, we consider that for visualization, the most
important resilience is to compression. Cropping attacks are
less important because in many cases the full image is avail-
able. For example, in a publication prepared with LATEX,
the full image is stored in binary form within the PDF. We
consider geometric attacks less relevant, since visualizations
are created and stay within the digital domain.

Third, we require a method that can embed and extract
numerous bytes with bit-for-bit accuracy. This requires that
the embedder can successfully find multiple locations for
data hiding within the cover image and that the extractor
can correctly extract from these same locations. Insertions
and deletions due to desynchronization will cause cata-
strophic errors. We leave the option open for having flexible
payload size, which can range from authentication tokens
to full scripts. This requires the image to contain enough
viable locations for data. This is not a concern for image-
space methods, but certain transformation spaces make this
difficult depending on the visualization.

Finally, we require a method that can be applied to color
images. Many works in the literature demonstrate and eval-
uate a method using only grayscale images. Multiple chan-
nels do not present much issue with image-space methods
as there is a relaxed selection process. However methods
that use a transform space are already performing a floating
point operation with bit manipulation on selected pixels.
Using a colorspace conversion is a viable option, but the
watermark should survive this extra conversion process.

4.2 Datafor Embedding

The data to embed should contain information needed by
an external user to recreate the visualization. There is no

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on July 11,2021 at 18:31:07 UTC from IEEE Xplore. Restrictions apply.

HOTA AND HUANG: EMBEDDING META INFORMATION INTO VISUALIZATIONS

inherent restriction on what type or format of data is used
for embedding. This notion is abstracted away by the fact
that the embedder is ultimately taking a bit stream 1/ and
modifying pixels or regions of the image with these bits.

We can directly embed a script used to generate a visuali-
zation into the visualization itself. This could be a Python
script used for Vislt or ParaView, an executable VTK C++
program, a Tapestry [61] configuration file, etc. To accom-
modate a script, a watermarking method that can embed
>4 KB is preferred. If a level of secrecy or authentication is
desired, the watermark data can be an auth token, an
access-controlled database key, or similar. In this case, the
chosen method need only embed 16 bytes, for example.

The amount of authorship or documentation information
portrayed can be configured as well. An included script
may contain the author’s name, a link to where the data can
be accessed, and possibly any publications for citations.
This is ideal to match the reproducibility golden standard.

4.3 Types of Visualizations

Watermarking algorithms that use a transformation space
often have a method for selecting “good” regions in an
image for embedding data. The type of visualization has a
significant impact on this selection process.

For example, the Entropy Threshold method calculates
the entropy, or amount of information, within blocks in the
cosine transform space [38]. After dividing I into 8 x 8
blocks, each block B has 2D DCT applied to it. The entropy
E for a block B is

Ep=> Bj Vijel2,...,T. 1)
By is not considered in this calculation as it is the DC coeffi-
cient. Given a chosen threshold T, if Eg > T before and after
embedding data, B is considered a good block. This trans-
lates to each block in the image requiring enough high fre-
quency luminance information to surpass 7.

Entropy is quite different between natural photographs,
volume rendered data, and surface rendered data. For
example, Fig. 4a shows the “Mandrill” image, a standard
test image in the image processing community. It is very
common to see this image used as a benchmark for a water-
marking algorithm. It contains high frequency luminance
information spread spatially throughout the image, which
makes it a good candidate for transform-space methods.

In contrast, a volume rendered visualization of a CSAFE
heptane gas simulation is shown in Fig. 4b. There are very
few regions containing high frequency information. The color
map used for a visualization plays a significant role here.
Research shows that perceptually linear luminance in a color
map is preferable to avoid any nonexistent features from
being created by the color map itself [62], [63]. This means
that apart from edges where a volume render is composited
with background color, there is likely no region with high
luminance contrast.

Using the formula in Equation (1), the Mandrill has an
average entropy across all 8 x8 blocks of F)y; = 44223.18, with
a minimum of 390.94 and maximum of 243657.36 In compari-
son, the heptane volume render has an average entropy of
just Egy = 3480.09, with a minimum of 0 and maximum of
272796.23.

3195

Fig. 4. (a) the “Mandrill” image, a common test image for watermarking
methods. There is high frequency information throughout, making it ideal
for methods like ET to hide data. (b) is a volume rendered visualization of
the CSAFE heptane gas simulation. There are very few regions of high
luminance frequency. Blocks containing a higher entropy than the ave-
rage Mandrill entropy are highlighted in blue. (c) and (d) are the same hep-
tane data rendered as an isosurface. Note that the surface has many
more high frequency luminance blocks, allowing more data to be hidden.

Although the heptane’s maximum is higher than the
Mandrill, overall entropy is skewed towards the minimum.
This is caused by the background, which as a flat color con-
tains only a DC frequency component, or 0 entropy. To
show the skew, Fig. 4b shows the heptane visualization
with block entropies > E); highlighted in blue. Note that
there are only a few blocks, all located around the edge.

Fig. 4c shows a surface render of the heptane data with
an isovalue of 64, with blocks that have entropies > F),
highlighted. The average entropy of this image is Eng =
9415.08, a minimum of 0 again, but a much higher maximum
of 378161.44. With specular lighting to boost high frequency
regions, there are more blocks that stand on par with the Man-
drill, but still not many blocks for embedding large amounts
of data. This makes pixel selection in transform space meth-
ods much more difficult, leading to hyperparameter tuning.

4.4 Available Choices for Watermarking Algorithm
When choosing a watermarking algorithm, the primary
trade-off is between payload size and the level of resilience.
Therefore, if a 64 KB script is to be embedded, resiliency
will be likely diminished. Similarly, strong resiliency will
mean that only a few bytes can be embedded.

For visualizations, the most important resiliency profile is
resistance to compression. On one hand, if it is known that a
visualization will or could be compressed, it is more feasible
to be embed a token with a transform-space method. On the
other hand, if it is known that a visualization will not be com-
pressed and would remain as a bitmap, then image space
algorithms with larger payload size could be used to store
full scripts or configurations.

5 VISUALIZATION WATERMARKING GUIDELINES

We started with an initial pool of 34 methods [18], [20], [24],
[28], [29], [30], [31], [32], [33], [34], [35], [36], [37], [39], [40],

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on July 11,2021 at 18:31:07 UTC from IEEE Xplore. Restrictions apply.

3196

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 26, NO. 11, NOVEMBER 2020

TABLE 1
Sample Visualizations Selected from Our 86-Image Suite Used to Test the Chosen Algorithms

CSAFE heptane gas
combustion

magnetic
reconnection

SciDAC supernova CroV giant virus CM1 tornado sim

volumetric features
low opacity

surface features
ks =0

surface features
ks =04

These images represent various types of visualizations with different features. The ET method is successful primarily with surfaces with k, = 0.4, which provides
a good range of frequencies for information hiding. The LSB and HS methods worked on all visualizations, as they have non-image-adaptive pixel selection pro-
cesses in image space. The PIC method was unsuccessful in extracting from any of the visualizations, as it suffered from insertions and deletions at the encoder.

[41], [42], [45], [46], [47], [48], [50], [51], [52], [53], [54], [64],
[65], [66], [67], [68], [69], [70], [71] from our survey of the liter-
ature. We narrowed the pool down based on criteria from
Section 4, eliminating non- and semi-blind methods, methods
not resilient to compression, methods without bit-for-bit
accuracy at the extractor, methods not extensible to color
images, methods which we were not able to reproduce based
on the description, and methods which either left noticeable
artifacts or had low payload size.

We were left with four methods useful for testing self-
describing visualizations: two image-space methods (LSB
and HS) and two transform-space methods (ET and PIC). We
have two main use cases: larger payload size for scripts and
smaller payload size for tokens. We tested with a number of
visualizations using different datasets, rendering styles, and
rendering parameters.

The two image-space methods are Chan and Cheng's
Least Significant Bit Substitution with Optimal Pixel Adjust-
ment Process [70] (LSB) and Ni et al. Histogram Shifting [67]
(HS). These were chosen for their ability to imperceptibly
embed a large payload size in a visualization.

They both use a single color channel for embedding with
a minimal pixel selection process. For LSB, pixels are
selected from a given channel by a pseudorandom number
generator whose seed is a key for embedder-extractor syn-
chronization. For each pixel, the lowest k bits are replaced
with the next & bits of the message. We found 4 bits per pixel
to be a good trade-off between capacity and perceptibility.
For HS, pixels are selected from a given channel based on
histogram peaks and troughs. In this work we use the single
peak-trough pair implementation.

The transform-space methods are Solanki’s Entropy
Thresholding [46] (ET) and Li and Lee’s Pre-insertion Code
[28] (PIC). Both methods use DCT and were chosen to show-
case their potential resilience to JPEG compression. The ET
method was designed for grayscale images. We opted to use
the luminance (Y) channel for ET after converting to YCbCr

color space. An RGB color channel may not have enough
high frequency regions needed for data hiding. Using the
luminance channel gives access to the overall highlight and
shadow in the visualization, regardless of color.

PIC is an image-in-image watermarking technique, also
designed for grayscale images. We chose this method to test
whether an image watermark data can be generally replaced
with an arbitrary bit sequence. We attempted using the lumi-
nance channel for embedding, but found that the color space
conversion from YCbCr back to RGB would alter the payload,
so we used a color channel instead for embedding.

Table 1 shows a sample of the set of images used for test-
ing, showcasing the difference in datasets, visualization
type, and rendering parameters that were modulated. We
tested volume, isosurface, molecular dynamics, and stream-
line visualizations. All surface-based renders were per-
formed 10 times, using a different specular component
ks €10,1) in steps of 0.1. Specular components k; € [0.1,
0.3] U [0.5,0.9] were omitted from Table 1 for space.

The datasets used in the image suite in Table 1 were cho-
sen to be representative of common scientific visualization
use cases. In these varying cases, it is important for scientists
to retain accurate information and documentation about the
visualizations. Examples of such crucial information include
the specific transfer function used to highlight features in vol-
ume rendering a simulation time step (heptane, magnetic,
and supernova); simulation state information, which may be
stochastic in nature in e.g., a molecular dynamics simulation
(CroV virus); and seeding information for streamlines and
pathlines in turbulent flow simulations (tornado). These data
are important not just for reproducibility of the visualization
itself, but also for the entire scientific workflow in its related
domain. These data may range from a few bytes, e.g., for stor-
ing isovalues, to kilobytes, e.g., for storing a script that gener-
ates streamlines from turbulent flow data.

Based on our evaluation, visualizations are a difficult tar-
get for information embedding. A single method is unable to

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on July 11,2021 at 18:31:07 UTC from IEEE Xplore. Restrictions apply.

HOTA AND HUANG: EMBEDDING META INFORMATION INTO VISUALIZATIONS

LSB

PIC |

HS

ET

Payload size

Degree of compression —————————— >

Fig. 5. The 2-dimensional payload size versus resilience space, illustrated
with resilience to degree of compression. Payload size ranges from
tokens and keys to full scripts. Degree of compression ranges from bitmap
to JPEG quality 95. The theoretic zones for the chosen algorithms are
shown here, drawn based on our testing and the original description of the
algorithm. The “best of both worlds” area in the top right is difficult to
obtain due to the trade-off in resiliency and payload size.

cover all use cases, but with informed choices, information
can be reliably embedded. Some visualizations have a much
higher capacity than others. Simple and practical design
changes can be used to increase a visualization’s capacity for
payload. We have created a set of guidelines for background
color and reduction of high-transparency features.

5.1 Classification by Payload Size versus
Resilience

Maximizing payload size and maximizing resilience are our
primary performance metrics. The four algorithms reside in
different regions of the 2D payload-resilience space, as
shown in Fig. 5.

Test Framework. To analyze the algorithms in the 2D
space, we devised a testing framework to measure algo-
rithm success rates, i.e., whether an algorithm can repeat-
ably embed and extract payload data of a given size with a
given compression level. Given an image from the test pool,
we embedded and extracted 10 times with randomized pay-
load data. If the extracted payload was identical to the data
originally embedded, the attempt was successful.

Since the image-space methods have a relaxed pixel selec-
tion process, we could test with any image from our test pool.
These methods tended to succeed at all 10 attempts, or fail at
all 10. The PIC method also has a relaxed selection process.
Every block in the image is used. The specific coefficients
used per block could be customized. However, this method
suffered from insertions and deletions at the encoder, and
was unable to extract the payload correctly from any image.
Although the ET method had a more stringent entropy-based
selection process, the algorithm has a stochastic nature
explained below. To accommodate this characteristic, an
algorithm was considered successful if it correctly extracted
the payload at least 8 out of 10 attempts.

Robust Embedding with ET Method. Embedding with the
ET method has a stochastic nature due to the algorithm’s
query for blocks that remain above the chosen entropy
threshold 7T'. Suppose a binary subsequence b of the payload
is taken. A DCT block from the image may have entropy
E>T. Once b is embedded, the block’s entropy is

3197

recalculated as Ej. E, may or may not remain > 7 if it is,
the extractor should read it, otherwise the extractor will
ignore it. However if E}, > T' after embedding but is altered
during compression and drops below T, it may still be
ignored by the extractor. This effect is entirely dependent
on b, whose elements are hard to predict.

Hyperparameter Tuning with ET Method. An additional
consideration for the ET method was the hyperparameters
used when embedding and extracting: the quality level Q
for compression resilience, the entropy threshold 7" for can-
didate blocks, and the number of bits B to embed per block.
The exact value to use for a (@), 7, B) tuple depends on the
image contents. If there is too little high frequency informa-
tion, no value for (Q, T, B) can be successful.

We tested quality level Q = 95, in particular because most
JPEG encoder implementations expose only the quality fac-
tor knob to the user, and most default the quality to 95. We
also do not expect visualizations to be compressed beyond
quality 90, as this would cause compression artifacts in the
visualization. We tested with 7" = [10000, 250000] in incre-
ments of 10000, B = [1,63], and payload sizes: 16, 32, 128,
and 1024 bytes.

We used the heptane isosurface, CroV giant virus pseudo-
atomic model, and CM1 tornado streamlines visualizations
shown in Table 1. We ran preliminary tests to find optimal
specular lighting conditions for the ET method. We found
that a specular component k; = 0.4 had the most success. This
amount of specular lighting provided enough contrast in
highlights and shadows across the surface for information
hiding. The heptane surface with 40 percent specular lighting
is shown in Fig. 4d. We also found that embedding with the
JPEG 75 quantize matrix [22] improves reliability to counter-
act blocks that are less reliable for data embedding. For each
test, the image was saved as JPEG quality 95 before extraction.

Fig. 6 shows success rates for extracting from the three
visualizations with a payload size of 16 bytes. 32 byte pay-
loads were less successful, and 128 and 1024 byte payloads
failed nearly every time, due to insufficient eligible blocks
for embedding. We note 16 bytes should be enough for the
target use case of embedding authentication tokens or data-
base keys.

Each visualization type has different success rates under
different parameters. These success patterns heavily depend
on the contents of the image, and would change if viewpoint
and lighting conditions change. The giant virus visualization
tended to work for higher bits per block values. This means
that only the first blocks with entropy >1" were reliable for
data embedding. Another possibility is that blocks containing
a black carbon atom suffered from integer underflow during
embedding, leading to white pixels. We discuss this phenom-
enon in more detail in Section 5.3.1.

Despite varying success patterns, there is a small com-
mon ground in mid-range values for 7" and B in our test
images. We chose T' = 140000 and B = 40 as the heuristic
for all subsequent uses of the ET method.

Payload-Resilience Space Classification. Table 2 shows the
success rate of the four algorithms together. For the ET
method, we used the parameters discussed above. These
algorithms were able to repeatably extract bit-for-bit the pay-
load that was embedded within them at their respective posi-
tions in the payload-resiliency space. Note that PIC was

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on July 11,2021 at 18:31:07 UTC from IEEE Xplore. Restrictions apply.

3198

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 26, NO. 11, NOVEMBER 2020

Success rate embedding 16 bytes at Q =95

Giant virus

10000
50000

100000
150000
200000

Entropy threshold T

250000

1 10 20

Heptane

30

Tornado

successful extractions

40 50 63 1 10 20 30 40 50 63

Bits embedded per block B

Fig. 6. Entropy Threshold method parameter search, showing successful embedding and extracting on the CroV giant virus pseudo-atomic model,
heptane gas simulation surface, and CM1 tornado streamlines visualizations embedded with = 75 and saved with Q = 95. Each row in the tables
represents an entropy threshold and each column represents a number of bits per block for embedding. Elements are colored by the number of suc-
cessful extractions out of 10 iterations. Each visualization type exhibits quite different behavior in terms of successful parameters. From these results,
we chose to use T' = 140000 and B = 40 for embedding data with this method.

unable to successfully extract data as it suffered from inser-
tions and deletions at the encoder.

The trade-off between payload size and resiliency can be
clearly seen in Table 2. We recommend LSB if a full script is
to be embedded, at the cost of resiliency. Any self-describing
visualization using LSB must remain either a bitmap or PNG
for the payload to survive. When using LSB, we recommend
using k = 4 bits per pixel for payload density. This allows a
maximum of 128 KB of embedded information in a 512 x 512
image, while introducing a maximum per-pixel brightness
increase of 2¥ = 16 in the chosen color channel. This presents
a good trade-off between data capacity and perceptibility. In
our testing, higher values for & began to visibly show color
noise (e.g., Fig. 2a uses k = 6). Embedding within the blue
color channel is preferable due to the human visual system’s
weakness in detecting brightness changes in blue [72]. When
embedding auth tokens or keys, we recommend the ET
method, with the benefit of resilience to JPEG compression.
We recommend using the 7" = 140000 and B = 40 values
found above in our parameter search.

Narrowing Down Methods. PIC was unable to successfully
extract data from images as it suffered from insertions and
deletions at the encoder. We additionally tested with RS-
coding to combat this, but the number of bits added to the
extracted message or deleted from the embedded message
defeated the encoding scheme. We did not test further with
PIC. HS did successfully embed and extract information
from various visualizations. However, HS has limited

TABLE 2
Suggested Algorithms for a Desired Payload Size and Degree of
Compression, Based on Our Testing Framework

Compression
BMP PNG JPEG
Q=95
64K LSB LSB -
. 8K LSB LSB -
Payload size 1K LSB LSB _
(bytes) 128 LSB, HS LSB, HS -

32 LSB, HS, ET
16 LSB, HS, ET

LSB, HS, ET ET
LSB, HS, ET ET

These algorithms can extract payload from watermarked visualizations with
bit-for-bit accuracy. There is a clear trade-off between payload size and resil-
iency. ET should be used for resiliency to JPEG, at the cost of payload size. On
the other hand, LSB should be used when embedding full scripts or documenta-
tion, but requires the image stay in BMP or PNG format only.

usefulness as it is surpassed by both LSB and ET in both
axes of the two-dimensional space, as shown in Table 2.

5.2 Algorithmic Performance Benchmarks

We tested the ET and LSB methods for computing effi-
ciency. We measured the average time to embed and extract
over 10 iterations with varying payload sizes and image res-
olutions. The payload sizes tested were 16, 32, 64, and 128
bytes. LSB was also tested with 256, 512, and 1024 bytes.
Test image resolutions were 5122, 10242, and 20482

We tested ET with JPEG @ =95, entropy threshold
T = 140000, and B = 40 bits per block. These values were
determined based on the parameter space search performed
above to perform well on multiple images. The LSB method
was tested using the red color channel and k = 4 bits per
pixel. The exact choice of color channel has no performance
impact; in this case we choose red for visibility during test-
ing. Using k =4 bits per pixel provides a good trade-off
between capacity and perceptibility, but does not affect per-
formance as we are embedding the same number of bits
regardless of k. All tests were performed on a single
threaded process on a machine with 2x Intel Xeon E5-2650
v4 CPU and 128 GB of memory.

Fig. 7 shows the averaged embedding times for each
method, payload size, and image resolution on the top, and
corresponding extraction times on the bottom. The average
time to embed and extract is negligibly affected by the pay-
load size for both methods. This means that the underlying
data hiding mechanism is not a computing bottleneck for
self-describing visualizations.

Instead, image resolution plays a much larger role in per-
formance. Both methods performed 3-4x slower when reso-
lution was doubled. For the LSB method this is due to
larger matrices to isolate and merge after embedding. For
the ET method, there are many more 8 x 8 blocks to trans-
form and compare. Blocks with entropy >7 may be fewer
in number and/or scattered throughout the image. This
leads to longer linear scans through the image. Hence, the
main consideration for self-describing visualizations is the
resolution, as it increases time to find data hiding regions.

5.3 Visualization Design Guidelines

We propose some guidelines for visualizations to be water-
marked. These guidelines apply mainly for the ET method,
as it performs a more complex pixel selection process. In

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on July 11,2021 at 18:31:07 UTC from IEEE Xplore. Restrictions apply.

HOTA AND HUANG: EMBEDDING META INFORMATION INTO VISUALIZATIONS

Embedding
1366 - - ad

LSB 5122
LSB 10242
LSB 20482
ET 5122
ET 10242
ET 20482

1200 | | H B

1000 H] H B

’7
T
¥
i
B

i

soo 8 & F H H

di 1

Extracting

1119 -

Time to embed/extract (ms)

1000 | H r |

60 & 8B F H H | | il

"l

64 128 2!
Payload size (bytes)

Fig. 7. Time to embed (top) and extract (bottom) with LSB and ET meth-

ods for varying payload sizes and image resolutions. Payload size has a

negligible effect on performance. Instead, resolution plays a much larger

role. Both methods perform 4x slower as image size doubles.

.

1024

contrast, the LSB method is not image adaptive and thus is
subject to fewer restrictions.

5.3.1 Minimizing Background and Black Pixels

Background-only regions of a visualization should be mini-
mized. Visualizations should use dark gray colors (e.g.,
#080808) over pure black (#000000) whenever possible.

Coefficients in DCT space describe frequency informa-
tion. Regions filled with a flat color contain only a DC coeffi-
cient. These regions have 0 entropy due to zero-value AC
coefficients and are unsuitable for embedding.

Regions around the outer edge of a feature may have
blocks containing feature and background. Luminance dif-
ferences are often large enough at these edges that these
regions are chosen for embedding. Embedded data may
then cause visible artifacts in the flat background region, as
shown in Fig. 8. Minimizing background-only regions
increases the available textured regions for embedding data.

Fig. 8. A surface render of the heptane gas dataset watermarked with
the ET method. Highlighted regions contain flat background which dis-
plays compression-like artifacts from the embedding process.

3199

Fig. 9. A visualization with a black background watermarked by the ET
method. Black regions may have underflow problems when the image is
brought back to RGB space after data embedding, leading to noise.

In the special case of pure black, all frequency components
are 0, including the DC component. In our extensive testing,
we found this can lead to unsigned integer underflow noise
when inverse transforming. The effect of this is that some pix-
els turn from black to white, as shown in the boundary regions
of Fig. 9. Automatic color space compression may help with
this. That is, compressing the full color range into a slightly
smaller range, starting above black to remove all black pixels.
However shadows on a surface may not be fully black and
would not benefit from color space compression. The color-
map used for surfaces and volumes may be misrepreseted
after color space compression. In general, only the background
should be regarded for fully black pixels to avoid altering the
visualization. These stipulations do not apply to LSB, however,
as it does not perform any image adaptive checks on the image.

5.3.2 Rendering Style

To increase entropy, volume rendered visualizations should
have as high opacity for a feature as possible, or use surface
rendering.

Volume renders with high transparency regions contain
large expanses of low frequency luminance information.
This is not suitable for watermarking with the ET method.
Highly opaque volume features with lighting and shadow
will contain higher luminance frequency. Surfaces with
specular shading and ambient occlusion contain a better
distribution of higher frequencies for hiding data.

For example, Fig. 10 shows the magnetic dataset ren-
dered as a volume and surface with specular component
ks = 0.5. Using Equation (1) to calculate entropy on blocks
of the images, the average non-zero entropy for the volume
render is 5127.71, while it is 45913.47 for the surface render.
This means there are many more candidate regions in the
surface visualization.

Almost no highly transparent volume visualizations we
tested worked well with the ET method. Often, only a single
edge along a feature would have adequate frequency infor-
mation for embedding. The LSB method had no issues with
volume visualizations with its non-image-adaptive pixel
selection process.

6 SAMPLE IMPLEMENTATIONS

Embedding information in visualizations works directly
on framebuffer content from the renderer. This makes

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on July 11,2021 at 18:31:07 UTC from IEEE Xplore. Restrictions apply.

3200

Fig. 10. A surface and volume render of the magnetic reconnection data.
The surface contains much more high frequency luminance information
due to specular lighting and ambient occlusion. This allows transform-
space methods to work more effectively.

integration of embedding very straightforward regardless of
the method used for embedder and extractor. As shown in
Section 5.2, embedding and extraction times are 100-200 ms
for the LSB and ET methods at 512” resolution. This makes
visualization embedding appropriate for low to medium
interactivity applications, but not ones requiring real-time
performance.

In this section we discuss two sample implementations of
self-describing visualizations. The first shows that embed-
ding may be done as part of the render process. Watermark-
ing at creation time provides a larger context for the
visualization when viewed. The second shows how self-
describing visualizations can be used to enhance documents.
In both cases, the specific watermarking method used is flexi-
ble as it is a choice made at the application level.

6.1 Embedding in Rendering Pipeline

In this sample implementation, we show how a watermark
can be embedded as a post-processing step in the rendering
process. We used the OSPRay rendering engine [73] to gener-
ate images on the fly. We used LSB to embed 1,024 bytes
of data in images. The LSB method can embed 1,024 bytes in
140 ms based on our testing. We found that OSPRay could

(a) (b)

Fig. 11. Watermarking can be performed at render time as a post-
process filter. (a) screenshot shows a demo page with an OSPRay-
rendered visualization of a tornado dataset using a web-based rendering
service. Embedded data can be extracted as the image updates, as
shown in (b).

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 26, NO. 11, NOVEMBER 2020

(@) (b)

Fig. 12. This document as viewed in a sample web-based PDF reader. In
(a), the yellow border indicates an image containing a valid watermark
registered with the database. Clicking on any of the highlighted images
in the paper shows an overlay containing the information from the data-

base, (b). This enables immediate dissemination of visualizations in sci-
entific papers.

render the tornado dataset at 512* resolution in 5-15 ms
depending on viewpoint. This results in self-describing visu-
alizations returning in under 150 ms.

OSPRay renders can also be made available via web serv-
ices, such as Tapestry [61]. Thus self-describing visualizations
are easily made available to the public for dissemination.
Fig. 11 shows our sample implementation of post-process
embedding. The embedded data contains author, contact,
and dataset information along with rendering parameters,
formatted as key-value pairs, shown in Fig. 11b. These key-
value pairs form a JSON configuration format that can be
used to regenerate a visualization in Tapestry.

6.2 Auto-Extractor in PDFs for Self-Describing
Visualizations
In this sample we show how extracting the watermark data
can be used to enhance the visualization within the context of
a publication. There are a wealth of tools supporting the anal-
ysis of PDF files, such as PDF.js [74] for web-based viewing,
and PDFMiner [75] for scripted analysis. Using these two
libraries, we created a simple PDF web viewer. Users can
upload a PDF to the web viewer. The PDF file is sent to a
server which parses images from the document and attempts
to extract watermarks.

To verify that the blind extractor retrieved valid data, the
server performs a Redis [76] database query with the data
as a key. If the key is valid, the data is returned. The PDF is
rendered in the web browser with watermarked images
given a yellow border. These images can be clicked on to
show the associated data.

Fig. 12 shows two screenshots of the application in use on
this document, which contains some watermarked images.
We used 16-byte identifiers as keys to the database, embed-
ded using the ET method with the hyperparameters found
in our parameter search.

This application showcases how on-the-fly watermark
extraction can add contextual information to visualizations
in scientific publications. While reading, the audience can
immediately verify the authenticity of a visualization based
on the data returned, as well as understand how the visuali-
zation was created.

7 DISCUSSION

Parameter Tuning. We present the above as generalized
guidelines and sample implementations of self-describing
visualizations. There are many parameters to tune as
part of the optimization process. While a full, exhaustive

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on July 11,2021 at 18:31:07 UTC from IEEE Xplore. Restrictions apply.

HOTA AND HUANG: EMBEDDING META INFORMATION INTO VISUALIZATIONS

delineation of optimal configuration is out of the scope of
this paper, herein we note that parameter choices in this
work are empirical based on experiments and evaluation, as
opposed to being driven by heuristics.

Error-Correcting Codes (ECC). It’s likely to consider ECC
as a topic related to watermarking. We note, however, that
the overlap between these two areas is insignificant. Using
the well-known ECC algorithm Reed-Solomon ECC as a ref-
erence, the primary use case is to defend against erasures,
when there is a guaranteed length of data bits (i.e., data stor-
age) [56]. In contrast, the main attacks we face in this work,
because of our need for blind embedders and extractors to
make visualizations self-describing, are instead insertions
and deletions. These motivating needs and design con-
straints have little overlap.

In addition, we conducted a preliminary experiment
using the RS(255, 223) coding scheme from [56]. Specifically,
we RS-encoded provenance information before embedding
it via watermarking. The results were worse than without
using RS encoding. We do not know of the reasons conclu-
sively. We suspect it has to do with insertions and deletions
introduced in the extracted data caused by compression.
We also note that RS(255,223) encoding introduces a reduc-
tion in effective payload size, as 32 of every 255 bits of avail-
able capacity is used for parity bits. We would like to
investigate further in future work.

Data Documentation. Identifying datasets is a crucial ele-
ment of self-describing visualization. While we used data
path as identifier in this work, we believe the best solution
to allow widespread adoption of self-describing datasets is
usage of the existing Digital Object Identifier (DOI) system
for tracking datasets. This would allow a scientist to simply
embed an ID as the dataset identifier, which can then be ref-
erenced publicly by any audience member. This would
facilitate publicly available datasets and provide a method
for tracking visualizations in various scientific domains.

8 CONCLUSION

In this work, we showed that digital image watermarking
techniques can be used to embed provenance information
into scientific visualizations. We classified 34 watermarking
algorithms from the literature based on requirements in visu-
alization and recommend two useful techniques for creating
self-describing visualizations—ET and LSB with Optimal Pixel
Adjustment Process. These methods target use cases in visu-
alizations ranging from embedding tokens to full scripts and
configurations. We also developed a set of guidelines for opti-
mizing payload capacity of visualizations based on our analy-
sis of each embedding method’s performance.

We demonstrated how self-describing visualizations can
be used with two sample application implementations. Water-
mark embedding can be used as a post-process filter in the
rendering pipelines, and can be extracted on the fly from
PDFs containing self-describing visualizations. We believe
self-describing visualizations can be easily integrated and
used in conjunction with existing provenance systems, such
as ParaView’s lookmarks or Vislt’s session files, and VisTrails.

For future work, we are also interested in extending our
classifications and recommendations beyond images to vid-
eos. Provenance information could be embedded on a per-

3201

frame basis, or as part of the keyframe in video encoding
schemes like MP4. We would also like to extend our work
to information visualization, which exhibits vastly different
characteristics to scientific visualizations.

ACKNOWLEDGMENTS

The authors are supported in part by NSF Award CNS-
1629890, Intel Parallel Computing Center (IPCC) at the Joint
Institute of Computational Science of University of Tennes-
see, and the Engineering Research Center Program of the
National Science Foundation and the Department of Energy
under NSF Award Number EEC-1041877.

REFERENCES

[1] E. T. Stanton and W. P. Kegelmeyer, “Creating and managing
lookmarks in ParaView,” in Proc. IEEE Symp. Inf. Vis., 2004,
pp- p19-p19.

[2] C.T.Silva,]. Freire, and S. P. Callahan, “Provenance for visualiza-
tions: Reproducibility and beyond,” Comput. Sci. Eng., vol. 9,
no. 5, pp. 82-89, Sep. 2007.

[3] M. Raji, A. Hota, R. Sisneros, P. Messmer, and J. Huang, “Photo-
guided exploration of volume data features,” in Proc. Eurographics
Symp. Parallel Graph. Vis., 2017, pp. 31-39.

[4] “Further confirmation needed,” Nature Biotechnology, editorial,
vol. 30, no. 9, p. 806, Sep. 2012.

[5] “Reality check on reproducibility,” Nature, vol. 533, no. 7604,
pp. 437-437, May 2016.

[6] R. D. Peng, “Reproducible research in computational science,”
Sci., vol. 334, no. 6060, pp. 12261227, Dec. 2011.

[7] J. Crocker and M. L. Cooper, “Addressing scientific fraud,” Sci.,
vol. 334, no. 6060, pp. 1182-1182, Dec. 2011.

[8] J. Kurose, “NSF 17-022: Dear colleague letter: Encouraging repro-
ducibility in computing and communications research,” Nat. Sci.
Found., 21 Oct. 2016. [Online]. Available: https:/ /www.nsf.gov/
pubs/2017/nsf17022 /nsf17022.jsp

[9] D. Shands, “Big data regional innovation hubs: Establishing

spokes to advance big data applications,” Nat. Sci. Found., 16 Mar.

2017. [Online]. Available: https://www.nsf.gov/pubs/2017/

nsf17546/nsf17546.htm

J. M. Perkel, “Data visualization tools drive interactivity and

reproducibility in online publishing,” Nature, vol. 554, no. 7690,

pp- 133134, Jan. 2018.

[11] E. Ragan, et al., “Characterizing provenance in visualization and

data analysis: An organizational framework of provenance types

and purposes,” IEEE Trans. Vis. Comput. Graph., vol. 22, no. 1,

pp- 3140, Jan. 2016.

L. Bavoil, et al., “VisTrails: Enabling interactive multiple-view

visualizations,” in Proc. IEEE Vis., 2005, pp. 18-18.

D. Koop, et al., “A provenance-based infrastructure to support

the life cycle of executable papers,” Procedia Comput. Sci., vol. 4,

pp. 648-657, 2011.

B. Bauer, et al., “The ALPS project release 2.0: Open source soft-

ware for strongly correlated systems,” |. Statistical Mech.: Theory

Experiment, vol. 2011, no. 05, May 2011, Art. no. P05001.

Exchangeable image file format for digital still cameras: Exif Version 2.31,

CIPA DC-008-2016, Camera & Imaging Products Association,

Jul. 2016.

Graphic technology — Extensible metadata platform (XMP) — Part 1: Data

model, serialization and core properties, ISO 16684-1:2019, Adobe Sys-

tems, Apr. 2019.

Graphic technology — Extensible metadata platform (XMP) — Part 2:

Description of XMP schemas using RELAX NG,” 1SO 16684-2:2014,

Adobe Systems, Dec. 2014.

Y.-C. Hou and P.-M Chen, “An asymmetric watermarking scheme

based on visual cryptography,” in Proc. 5th Int. Conf. Signal Pro-

cess., 2000, pp. 2-5.

N. Bartlow, et al.,, “Protecting iris images through asymmetric

digital watermarking,” in Proc. IEEE Workshop Autom. Identification

Adv. Technol., 2007, pp. 192-197.

H. Qi, “Human visual system based adaptive digital image water-

marking,” Master’s thesis, School of Information Technology and

Engineering, University of Ottawa, 2006.

[10]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on July 11,2021 at 18:31:07 UTC from IEEE Xplore. Restrictions apply.

https://www.nsf.gov/pubs/2017/nsf17022/nsf17022.jsp
https://www.nsf.gov/pubs/2017/nsf17022/nsf17022.jsp
https://www.nsf.gov/pubs/2017/nsf17546/nsf17546.htm
https://www.nsf.gov/pubs/2017/nsf17546/nsf17546.htm

3202

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[371]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 26, NO. 11, NOVEMBER 2020

M. Barni and F. Bartolini, Watermarking Systems Engineering:
Enabling Digital Assets Security and Other Applications. Boca Raton,
FL, USA: CRC Press, 2004.

G. K. Wallace, “The JPEG still picture compression standard,”
IEEE Trans. Consumer Electron., vol. 38, no. 1, pp. xviii-xxxiv,
Feb. 1992.

W. Bender, etal., “Techniques for data hiding,” IBM Syst. |., vol. 35,
no. 3.4, pp. 313-336, 1996.

C.-Y. Lin, et al., “Rotation, scale, and translation resilient water-
marking for images,” IEEE Trans. Image Process., vol. 10, no. 5,
pp- 767-782, May 2001.

I J. Cox, et al,, Digital Watermarking and Steganography, 2nd ed.
Burlington, MA, USA: Morgan Kaufman Publishers Inc., 2008.

V. M. Potdar, S. Han, and E. Chang, “A survey of digital image
watermarking techniques,” in Proc. 3rd IEEE Int. Conf. Ind. Infor-
mat., 2005, vol. 7, pp. 709-716.

M. Kutter and F. A. P. Petitcolas, “Fair benchmark for image
watermarking systems,” P. W. Wong and E.]J. Delp III, Eds.,
Apr. 1999, pp. 226-239. [Online]. Available: http:/ /proceedings.
spiedigitallibrary.org/proceeding.aspx?articleid=979988

J.-S. Lee and B. Li, “Self-recognized image protection technique
that resists large-scale cropping,” IEEE MultiMedia, vol. 21, no. 1,
pp- 60-73, Jan.—Mar. 2014.

J. M. Shieh, D. C. Lou, and M. C. Chang, “A semi-blind digital
watermarking scheme based on singular value decomposition,”
Comput. Standards Interfaces, vol. 28, no. 4, pp. 428-440, 2006.

X. Kang, et al.,, “A DWT-DFT composite watermarking scheme
robust to both affine transform and JPEG compression,” IEEE
Trans. Circuits Syst. Video Technol., vol. 13, no. 8, pp. 776-786,
Aug. 2003.

N. M. Makbol and B. E. Khoo, “Robust blind image watermarking
scheme based on redundant discrete wavelet transform and
singular value decomposition,” AEU-Int. |. Electron. Commun.,
vol. 67, no. 2, pp. 102-112, 2013.

P. Bao, and M. Xiaohu, “Image adaptive watermarking using
wavelet domain singular value decomposition,” IEEE Trans.
Circuits Syst. Video Technol., vol. 15, no. 1, pp. 96-102, Jan. 2005.

J. J. K. O. Ruanaidh and T. Pun, “Rotation, scale and translation
invariant spread spectrum digital image watermarking,” Signal
Process., vol. 66, no. 3, pp. 303-317, 1998.

V. Solachidis and I. Pitas, “Circularly symmetric watermark
embedding in 2-D DFT domain,” IEEE Trans. Image Process.,
vol. 10, no. 11, pp. 1741-1753, Nov. 2001.

X. Y. Wang, et al, “A robust blind color image watermarking
in quaternion fourier transform domain,” J. Syst. Softw., vol. 86,
no. 2, pp. 255-277, 2013.

F.-M. Tsai and W.-L. Hsue, “Image watermarking based on
various discrete fractional fourier transforms,” in Proc. 13th
Int. Workshop Digital-Forensics Watermarking, 2015, vol. 9023,
pp- 135-144.

M. Urvoy, D. Goudia, and F. Autrusseau, “Perceptual DFT water-
marking with improved detection and robustness to geometrical
distortions,” IEEE Trans. Inf. Forensics Secur., vol. 9, no. 7,
pp. 1108-1119, Jul. 2014.

K. Solanki, et al., “’Print and Scan’ resilient data hiding in
images,” IEEE Trans. Inf. Forensics Secur., vol. 1, no. 4, pp. 464478,
Dec. 2006.

M.-S. Hsieh, D.-C. Tseng, and Y.-H. Huang, “Hiding digital water-
marks using multiresolution wavelet transform,” IEEE Trans. Ind.
Electron., vol. 48, no. 5, pp. 875-882, Oct. 2001.

H. M. Al-Otum and N. A. Samara, “A robust blind color image
watermarking based on wavelet-tree bit host difference selection,”
Signal Process., vol. 90, no. 8, pp. 2498-2512, 2010.

D. Kundur and D. Hatzinakos, “Digital watermarking using mul-
tiresolution wavelet decomposition,” in Proc. IEEE Int. Conf.
Acoust. Speech Signal Process., 1998, vol. 5, pp. 2969-2972.

S. Xiang and Y. Wang, “Distortion-free robust reversible water-
marking by modifying and recording IWT means of image
blocks,” in Proc. 14th Int. Workshop Digital-Forensics Watermarking,
2016, vol. 9023, pp. 337-349.

M. Rabbani and R. Joshi, “An overview of the JPEG 2000 still
image compression standard, Signal Process. Image Commun.,
vol. 17, no. 1, pp. 348, 2002.

D. Le Gall, “MPEG: A video compression standard for multi-
media applications,” Commun. ACM, vol. 34, no. 4, pp. 46-58,
1991.

[45]

[46]

[471

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]
[67]
[68]

[69]

[70]

[71]

Y. Zhou and J. Liu, “Blind watermarking algorithm based on DCT
for color images,” in Proc. 2nd Int. Congress Image Signal Process.,
2009, pp. 2-4.

K. M. Solanki, “Multimedia data hiding: From fundamental issues
to practical techniques,” PhD dissertation, Dept. of Electrical and
Computer Eng., Univ. of California Santa Barbara, 2005.

H. Zhang and X.-Q. Li, “Geometrically invariant image blind
watermarking based on speeded-up robust features and DCT
transform,” in Proc. Int. Workshop Digital Forensics Watermarking,
2013, pp. 111-119.

Z. Haitao, Q. Chun, and G. Xiaochuan, “Low luminance smooth
blocks based watermarking scheme in DCT domain,” in Proc. Int.
Conf. Commun. Circuits Syst., Jun. 2006, pp. 19-23.

K. Solanki, et al., “Robust image-adaptive data hiding using era-
sure and error correction,” IEEE Trans. Image Process., vol. 13,
no. 12, pp. 1627-1639, Dec. 2004.

P.H. W. Wong, O. C. Au, and Y. M. Yeung, “A novel blind multi-
ple watermarking technique for images,” IEEE Trans. Circuits
Syst. Video Technol., vol. 13, no. 8, pp. 813-830, Aug. 2003.

R. G.van Schyndel, A. Z. Tirkel, and C. F. Osborne, “A digital water-
mark,” in Proc. 1st Int. Conf. Image Process., 1994, vol. 2, pp. 86-90.

N. Dey, A. B. Roy, and S. Dey, “A novel approach of color image
hiding using RGB color planes and DWT,” Int.]. Comput. Appl.,
vol. 36, no. 5, pp. 975-8887, 2011.

D. Rawat and V. Bhandari, “A steganography technique for hid-
ing image in an image using LSB method for 24 bit color image,”
Int. J. Comput. Appl., vol. 64, no. 20, pp. 975-8887, 2013.

I.J. Cox, etal., “Secure spread spectrum watermarking for multi-
media,” IEEE Trans. Image Process., vol. 6, no. 12, pp. 1673-1687,
Dec. 1997.

J. R. Smith and B. O. Comiskey, “Modulation and information hid-
ing in images,” in Proc. 1st Int. Workshop Inf. Hiding, 1996, vol. 1174,
pp- 207-226.

I. S. Reed and G. Solomon, “Polynomial codes over certain finite
fields,” J. Soc. Ind. Appl. Math., vol. 8, no. 2, pp. 300-304, Jun. 1960.
A. S.]. Helberg and H. C. Ferreira, “On multiple insertion/dele-
tion correcting codes,” IEEE Trans. Inf. Theory, vol. 48, no. 1,
pp- 305-308, Jan. 2002.

L. Schulman and D. Zuckerman, “Asymptotically good codes cor-
recting insertions, deletions, and transpositions,” IEEE Trans. Inf.
Theory, vol. 45, no. 7, pp. 2552-2557, Nov. 1999.

T. Le and H. Nguyen, “New multiple insertion-deletion correcting
codes for non-binary alphabets,” CoRR, 2015. [Online]. Available:
http:/ /arxiv.org/abs/1502.02727

F. A.P. Petitcolas, R.]. Anderson, and M. G. Kuhn, “Information hid-
ing-A survey,” Proc. IEEE, vol. 87, no. 7, pp. 1062-1078, Jul. 1999.
[Online]. Available: http:/ /ieeexplore.ieee.org/document/771065/
M. Raji, A. Hota, and J. Huang, “Scalable web-embedded volume
rendering,” in Proc. IEEE 7th Symp. Large Data Anal. Vis., Oct. 2017,
pp. 45-54.

K. Moreland, “Why we use bad color maps and what you can do
about it,” in Proc. Human Vis. Electron. Imag. (HVEI), doi: 10.2352/
ISSN.2470-1173.2016.16. HVEI-133.

K. Moreland, “Diverging color maps for scientific visualization,”
Lecture Notes Comput. Sci., vol. 5876, no. PART 2, pp. 92-103, 2009.
P. Tsai, Y. C. Hu, and H. L. Yeh, “Reversible image hiding scheme
using predictive coding and histogram shifting,” Signal Process.,
vol. 89, no. 6, pp. 1129-1143, 2009.

M. D. Swanson, Z. Bin, and A. H. Tewfik, “Transparent robust
image watermarking,” in Proc. 3rd IEEE Int. Conf. Image Process.,
1996, vol. 3, pp. 211-214.

J. Mielikainen, “LSB matching revisited,” IEEE Signal Process. Lett.,
vol. 13, no. 5, pp. 285-287, May 2006.

Z. Ni, et al.,, “Reversible data hiding,” IEEE Trans. Circuits Syst.
Video Technol., vol. 16, no. 3, pp. 354-362, Mar. 2006.

D. He and Q. Sun, “A practical print-scan resilient watermarking
scheme,” in Proc. IEEE Int. Conf. Image Process., 2005, pp. I-257.

C. Podilchuk and W. Zeng, “Perceptual watermarking of still
images,” in Proc. IEEE 1st Workshop Multimedia Signal Process.,
1997, pp. 363-368.

C. K. Chan and L. M. Cheng, “Hiding data in images by simple
LSB substitution,” Pattern Recognit., vol. 37, no. 3, pp. 469474,
2004.

K. Muhammad, et al., “A novel magic LSB substitution method
(M-LSB-SM) using multi-level encryption and achromatic com-
ponent of an image,” Multimedia Tools Appl., vol. 75, no. 22,
pp- 14 867-14 893, 2016.

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on July 11,2021 at 18:31:07 UTC from IEEE Xplore. Restrictions apply.

http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=979988
http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=979988
http://arxiv.org/abs/1502.02727
http://ieeexplore.ieee.org/document/771065/
http://dx.doi.org/10.2352/ISSN.2470-1173.2016.16.HVEI-133
http://dx.doi.org/10.2352/ISSN.2470-1173.2016.16.HVEI-133

HOTA AND HUANG: EMBEDDING META INFORMATION INTO VISUALIZATIONS

[72] G. Wagner and R. M. Boynton, “Comparison of four methods of
heterochromatic photometry,” J. Optical Soc. Amer., vol. 62, no. 12,
pp- 1508-1515, 1972.

[73] 1. Wald, etal., “OSPRay - A CPU ray tracing framework for scien-
tific visualization,” IEEE Trans. Vis. Comput. Graph., vol. 23, no. 1,
pp- 931-940, Jan. 2017.

[74] Mozilla Foundation, “PDF.js - A general-purpose, web standards-
based platform for parsing and rendering PDFs,” 2018. [Online].
Available: https://mozilla.github.io/pdf.js/.

[75] Y. Shinyama, “PDFMiner - Python PDF parser and analyzer,”
2018. [Online]. Available: https://euske.github.io/pdfminer/.

[76] Salvatore Sanfilippo, “Redis,” 2018. [Online]. Available: https://
github.com/antirez/redis.

Alok Hota received the bachelor of science
degree in computer science from Fisk University,
the bachelor of engineering degree in computer
engineering from Vanderbilt University, and the
master of science degree in computer science
from the University of Tennessee, Knoxville. This
work was completed as part of his PhD disserta-
tion with the University of Tennessee, Knoxville.
He is presently technical staff at Intel. He is a stu-
dent member of the IEEE.

3203

Jian Huang received the BEng degree in electri-
cal engineering from the Nanjing University of
Posts and Telecom, China, in 1996, the dual MS
degrees in computer science and in biomedical
engineering, both from Ohio State University, in
1998, and the PhD degree in computer science
from Ohio State University, in 2001. He is a pro-
fessor with the Department of Electrical Engi-
neering and Computer Science, University of
Tennessee, Knoxville. His research focuses on
data analytics, data visualization, and parallel,
distributed and remote visualization systems. His research has been
funded by National Science Foundation, Department of Energy, Depart-
ment of Interior, NASA, UT-Battelle and Intel. He was a recipient of DOE
Early Career Principal Investigator Award, in 2004. He is a senior mem-
ber of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on July 11,2021 at 18:31:07 UTC from IEEE Xplore. Restrictions apply.

https://mozilla.github.io/pdf.js/
https://euske.github.io/pdfminer/
https://github.com/antirez/redis.
https://github.com/antirez/redis.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

