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Abstract—Many scientific communities today have community datasets that are continuously created, curated, and maintained for
community use. Such datasets are often hosted and shared through cloud-based data repositories. In this work, we propose a lightweight
and affordable visualization cloud service that can be deployed as a companion service of a community dataset. Our target visualization
use case is parallel flow visualization, which is crucial for understanding planet-scale phenomena such as the Earth’s atmosphere and
ocean. As a core research topic of scientific visualization, parallel flow visualization typically uses HPC computing platforms. It is complex
to implement with scalability, deploy with efficiency, and is often considered an advanced form of scientific visualization. Because of the
heterogeneous nature of cloud platforms, in this work, we use a swarm-based parallel design to replace traditional HPC designs that
assume homogeneity and rely upon conventional methods such as Message Passing Interface (MPI). This design enables interactive
visualization of large flow fields in a way that is lightweight, efficient and easily deployable as a cloud service. We demonstrate our
proposed system using NOAA’s NCEP ensemble data, which captures turbulent planet-scale atmospheric flows in observed forms, as
well as in forecast forms for varying time scales. We evaluate the performance and efficacies of our system on Amazon Web Services
(AWS) for three use cases, where remote users can use their laptops to (i) interactively explore global atmospheric flow patterns in
general, (ii) to specifically compare how a forecast is different from the observation, and (iii) to explore flow patterns in a typical
information visualization dashboard.

Index Terms—Cloud, cloud computing, Amazon AWS, parallel flow visualization, scalability, interactivity
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1 INTRODUCTION

S CIENTISTS organize their research around data. When a
research community starts to continuously accumulate, curate

and share community datasets, community data repositories become
a catalyst of future research. They are also a powerful source to
engage the public, make science relevant, and deepen societal
impact of science. Such continuously growing and open datasets
are precious assets of the whole world. As an example, the
data used in this work is the Climate Forecast System (CFS)
ensemble data repository [52] from NOAA National Centers for
Environmental Prediction (NOAA NCEP) that captures annual
global atmospheric patterns at spatial 0.5× 0.5 degree precision
and a temporal resolution of 6 hours.

While cloud has already become the leading solution for
creating distributed systems to support large data repositories,
in this work, we propose to extend cloud-based functionalities
of a data repository beyond data services. Our primary proposal
suggests interactive visualization services can become a component
of cloud-based data repositories too.

Such a broadened scope of data repositories can help lower
many barriers of adoption by diverse user communities. For
example, researchers can accelerate their work by being able to
always see the latest data to test and refine their hypotheses without
needing to maintain an up-to-date local replica of the entire dataset.
They can also collaborate with more people, by being able to share
their findings with others who do not have, or cannot afford to
have, an entire local copy of the data.

Recently, interactive volume visualization as a service has
been shown to be feasible [49], [50]. In this work, we focus
on creating interactive parallel flow visualization as a service,
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because flow visualization is important to many disciplines,
including atmosphere, ocean, fusion, petroleum, aerodynamics,
and cardiovascular biophysics, where “seeing” the flow is often the
first step of scientific research.

In addition, interactive parallel flow visualization offers a
unique opportunity to study how to use heterogeneous cloud
resources to achieve consistent parallel accelerations in support
of synchronous user interactions. Cloud resources are a promis-
ing alternative to traditional HPC computing and visualization
resources that require scientists to have a working relationship with
supercomputing centers. Due to this reason, our work focuses
on using cloud platforms to make leading-edge scientific datasets
interactively usable at an incremental cost.

Our prototype system is called Visualization Cloud Instances
(VCIs). VCIs work collaboratively as a self-organizing swarm for
parallel computing. Each swarm appears as a single cloud service,
i.e. a VCI Service, which can be used locally on an institutional
cluster, or remotely on a public cloud such as Amazon AWS. Our
results show that the VCI approach is able to support large flow
data and ensembles of data and still maintain crucial cloud-based
characteristics: (i) built for large flow data and ensembles of flow
data; (ii) achieves fast interactivity; (iii) instantaneously available;
(iv) serves multiple users concurrently; (v) serves users locally
and remotely; (vi) supports a variety of user devices, and (vii)
lightweight to integrate into applications.

Desktop applications can use VCI Service through a JavaScript
library, vci.js, which transparently manages parallelism, perfor-
mance, and fault-tolerance. By hosting NOAA NCEP CFS data in
the cloud, we show (1) an application that can provide interactive
visualization of 3D global atmospheric flow field to students
(Figure 1); (2) a comparative visualization for scientists to analyze
deviations between forecast vs. observed ground truth (Figure 8);
and (3) a public-awareness application that integrates a VCI Service
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Fig. 1: Example results using a web browser to interact with parallel flow visualization service supported by a self-organizing swarm of
cloud instances. The system can support multiple concurrent users. Each subfigure shows 1,000 particle traces of 200 time-steps each.
They are extracted interactively from an observational dataset of global 3D atmospheric flow for the year of 2012; a total of 150 GB with
1463 time-steps at 0.5 degree geo-precision and 6-hour time-precision. The data is from the NOAA NCEP CFS repository. Exploration is
instantaneously available in an on-demand manner. The service can use dedicated machines as well as public cloud platforms. When
hosted on-demand on Amazon Web Services (AWS), for example, the total cost is personally affordable at less than $1/hour.

into the popular D3 [1] library. This last example enables any
citizen to investigate how pollution from nuclear power plants in
the United States, on any particular day in the year, can impact the
entire globe (Figure 9).

All applications use a year-long observation dataset of the
Earth’s 3D atmospheric flow (1,463 timesteps, 720× 361× 36
spatial resolution, 150 GB) from the NCEP CFS repository [52].
The second application adds a corresponding forecast dataset of the
same dimensionality from the same CFS repository. In all cases,
the AWS setup required is less than $0.70/hour.

Our results suggest cloud services, like the VCI Service, can
conduct parallel computing using heterogeneous resources and
support flexible, interactive, general use of large datasets on a
desktop. These interactive use cases, coupled with efforts to
quantify the exact cost-performance benefits of the cloud [22],
expand the application potential of cloud hosted data resources.

All software of VCI will be open-sourced upon publication of
the paper. The remainder of this paper is organized as background
in Section 2, system architecture in Section 3, and application
development in Section 4. We show results in Section 5 and discuss
conclusion, and future works in Section 6.

2 RELATED WORK

2.1 Web- vs. Cloud-Based Scientific Visualization
In order to handle large datasets, visualization applications com-
monly use the client-server architecture; well-known examples
include Paraview [6], VisIt [18], and ViSUS [44]. As the web
browser has become universal and has displaced native applications,
many systems (e.g. ParaView Web [31], the GeoVizCloud [66],
and the Arctic Viewer [2]) now support web browsers clients
and can handle large datasets. Similar efforts are increasing in

domain science communities too [14], [36]. Meanwhile, there
are also significant successes in transitioning the server-side of
workflow systems to web services, examples include Giovanni [9],
Pathomx [24], Pegasus [19], and others [62].

While scientific visualization in a web-based form is more
commonly available now, cloud-based scientific visualization is
still less common and there are some key distinctions to notice.

First, server-side heterogeneity. To date, parallel visualization
methods tend to have roots in HPC and often use Message Passing
Interface (MPI), where it’s assumed that the computing resources
in use are homogeneous. On a symmetrically configured platform,
this assumption is valid as long as the machine in use is not shared.
When there is heterogeneity, either because the platform consists
of different kinds of resources or because the platform is in shared
use, performance of traditional parallel visualization packages can
suffer. In addition, tightly coupled HPC applications that require
significant global communication have been shown to perform
relatively poorly on Amazon EC2, and variability introduced due
to how virtualized environments are shared is also a challenge
to traditional load-balancing methods in HPC [28]. In sum, even
though HPC-based methods can be hosted using the cloud, systems
based on HPC-based methods are not sharable and fault-tolerant as
typically expected in cloud services.

Second, stateless server-side. Cloud-based designs can improve
scalability by decoupling server-side components from client-side
user logic, and make the server-side stateless. In this manner, cloud-
based designs are inherently for “multi-user” scenarios, even for
situations where there is a single human user. By breaking apart
the traditional monolithic designs, synchronous communication
can be replaced by asynchronous communication. As a result,
cloud-based designs can process many concurrent user-requests
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in parallel. These concurrent user-requests can be from the same
user or many simultaneous users. The client-side application needs
to partition a large user-request into smaller simultaneous user-
requests. The partition can be done transparently by a client-side
API or an application library, however. By leveraging browser
automatic request-resend such cloud-based designs can achieve
fault-tolerance, acceleration, and scalability at a lower cost.

In sum, even through web-based scientific visualization appli-
cations that are monolithic can work remotely for selected users,
those applications cannot achieve the level of cost scalability and
instant availability for large-scale user bases as expected in Cloud
Computing. To this end, whether the server-side uses virtualized
containers (e.g. Docker [3] and Singularity [34]) is not a deciding
factor of whether a visualization application is cloud-based, it is
instead whether the design assumptions go beyond homogeneity
and monolithic application architectures.

Tapestry supports interactive volume visualization as a cloud-
based microservice [49], [50]. The design assumed heterogeneity
and decoupled application architectures. Of course, parallel flow
visualization is much harder than volume visualization because
of the nondeterministic runtime workloads. To the best of our
knowledge, no previous works have attempted using independent
cloud instances to provide interactive parallel flow visualization.

2.2 Parallel Flow Visualization

Flow visualization starts by placing seeds in the flow and extracts
flow lines by tracing the advection of the seeds through the flow
field over time. Seeding is important because of the need to reduce
visual clutter and to reduce the computation load.

Batch-Mode Flow Advection. Due to the difficulty to achieve
interactivity, many previous researchers have studied seeding
strategies in a batch-processing context. For instance, for static
flow fields, researchers have developed methods based on critical
points [56], information theory [60], topology and distancing
information [37], [48], [59], [67], geometry clustering [55], or
specific domain-science hypotheses, such as flux [12], [58]. For
turbulent flow fields, which play a much bigger role in leading-edge
science, there are few proven seeding strategies so far. In a batch-
processing mode, it’s not uncommon to pre-compute a dense set
of flow lines and then down-select a set of flow lines, for example,
according to geometric similarity measures [38].

Parallel Processing. Parallel flow tracing in large flow fields
requires both data-parallel and task-parallel. Coupled with evolving
hardware architectures and application software architectures, many
creative and successful solutions have been proposed to scale
batch-mode parallel particle tracing to 16K or 32K processors
and beyond [33], [45]. The field has also explored new processor
architectures [16] as well as new memory architectures [15].

From an algorithmic perspective, mapping computing tasks
onto a parallel architecture is a core problem of parallel process-
ing [8]. By nature, flow line advection has an unpredictable data
access pattern, which the makes parallel particle tracing hard and
attracted a plethora of past research. The following are just a
subset of the most notable recent works on this topic: data- and
task-partitioning strategies [10], [45], [47], [61], [65], dynamic
load balancing [42], [64], runtime job management [17], [40],
runtime data management [30], and coupling advection together
with analysis [26], [33],

Parallel speedup is the result of algorithmic improvements
where the typical optimization criteria is parallel speedup. However,

the necessary tuning process can be system dependent, application
dependent, and workload dependent. The corresponding process
for each application can be lengthy.

Instead of focusing solely on parallel speedup, we use a
different set of optimization criteria in this work. First, to ensure
that the parallel computing and communication time for extracting
flow lines from turbulent flows are below 100 milliseconds so that
users can sustain front-end interactivity. This metric is consistent
with that of existing remote visualization systems [32]. Front-end
rendering rates need to be above 30 frames per second. Second,
to ensure that many concurrent user-requests can self-balance
through Docker’s load balancer and within our VCI swarm. Third,
to minimize the runtime footprint so that the server-side parallel
computing incurs low costs (e.g. $1/hr), even though the entire
turbulent flow field data are 100s of GBs in size. These are evaluated
in detail in Section 5 (Results).

2.3 Aspects of Interactivity

Interactive flow visualization is particularly valuable for scientific
exploration. Regardless of how large their data is, scientists wish
to place seeds interactively, see the flow geometry immediately,
control the visualization intuitively, and navigate flexibly. They
also wish to share what they see with their cross-disciplinary teams
so that their teams can explore interactively too.

Interactivity. According to the interactive analytics framework
from [23], the “interactivity” of interactive particle tracing would
be incomplete until users have an on-the-fly ability to modify
data transformation (i.e. seeding flow geometry extraction), visual
mappings (i.e. rendering methods and parameters), and view
transformations (i.e. spatiotemporal navigation) at the same time.

Accessibility. Particle tracing in large datasets often depends
on HPC systems that require reservation. Unfortunately, such use
is only available to selected scientists working on pre-approved
projects by the administrators of those systems. In contrast,
immediate on-demand accessibility of cloud systems provides
a new avenue for boosting productivity and flexibility.

Portable Interactivity. Parallel flow visualization is one of the
most difficult to make interactive, due to complexities in data, I/O,
flow line advection, parallelism, load balancing, data management,
and rendering. The performance optimizations are not easy to
generalize across platforms. When data is large, ensuring a high
level of performance that is portable across platforms is hard.

Cost Effective Reproducibility. Reproducibility of scientific
results is now a priority. In the reproducibility spectrum introduced
for computational sciences, it suggests that publications should
come with executable code and data to meet the “gold standard” [5],
[7]. However, due to how interactivity is important for parallel
visualization of turbulent flows, reproducing the same computing
environment may need to be required because of performance
requirements. But that option is unaffordable to most. In this
regard, interactive visualization services as a part of community
data repositories can provide a better and more sustainable solution.

3 SYSTEM ARCHITECTURE

3.1 Design Overview

When designing VCI, we separated the complexities into three
categories: (i) those due to front-end interaction needs by domain
scientists, (ii) those due to back-end parallel computing, and
(iii) those required to bridge the front-end and the back-end.
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Accordingly, we consider three separated spaces: the application
space, the system library space, and the swarm space. The three
spaces are illustrated in Figure 2.

In this section, we discuss front-end and back-end separation,
communication mechanisms, and related design decisions to make
VCI efficient. At the core of VCI’s design is its use of Docker
Swarm. Accordingly, all references to “swarm” in this section
refer to Docker Swarm which is characterized by its ability to
dynamically increase or decrease the number of running services
and transparently load balance between them. We discuss these
more in Section 3.2.

Fig. 2: System Diagram

Front-End. Application logic is in the application space, where
the focus is user interaction and rendering. The system library space
is concerned with accessing and managing interactions between
the application space and larger-scale computing resources in the
swarm space. Even though we use JavaScript herein as the target
language of the front-end, the separation of these spaces can be
equally applicable to C/C++ or Python front-ends.

Back-End. The computing sources in VCI is a self-organizing
swarm. Each instance inside the swarm is a Docker [3] instance.
The notion of swarm is to highlight that there is minimum “cluster-
level” orchestration, which makes the swarm model a more natural
fit with cloud platforms like AWS. To this end, we should also note
a swarm can just as easily run on a user’s many-core workstations
or small-scale clusters. We show results for both situations.

Communication. VCI has two distinct modes of commu-
nication. The first is for transient connections that need to be
opened and closed on demand, which is primarily used within the
swarm. These transient connections are implemented through HTTP.
The second mode of communication is for persistent connections
primarily between front-end and back-end, so that many requests
can be made simultaneously. These persistent connections are
through WebSocket. After a VCI Service receives requests through
WebSocket, they are transparently transformed into HTTP requests
that the swarm uses internally.

Lightweight System Design. Both client- and server-side
designs are kept minimal to operate alongside other compute
resources. In Chrome, the entire memory footprint, combining the
application and library spaces, of an on-demand flow visualization
application with functionality as in Figure 1 is less than 10 MB.
The server-side swarm’s data management uses a thrifty out-of-
core scheme to lower memory footprint, typically using only 50
to 100MBs of memory in total. This greatly increases the overall
system’s portability.

Always Parallel Design. Even when there is a single front-
end using a back-end swarm, the operation of the front-end and
the back-end are both parallel. To this end, instead of treating
each user interaction as a request to be answered in a step-locked
synchronous cycle, VCI treats user interactions as a continuous
stream of asynchronous requests.

When a user moves the mouse on the globe (Figure 1), particle
tracing requests are sent by Chrome to the back-end swarm
as HTTP requests immediately and continuously. As Chrome

continues to manage all outstanding requests transparently, the
requests received by the swarm are distributed to VCI instances,
which work together in parallel. During the process of extracting
traces, incremental results are sent back to users. In wide area tests,
the time to start receiving traces is under 0.1 seconds. vci.js running
inside Chrome transparently manages the receiving of the parallel
and continuous streams of extracted traces. Hence, although the
application space makes a single-user assumption, the user always
benefits from the multi-user assumption in the swarm.

Development Challenges. The parallelism inside of VCI offers
benefits while it also presents several challenges. First, it is non-
trivial to capture the global state of the swarm. For this reason,
VCI uses distributed event logging in order to precisely record
the state of individual instances as requests go through the system.
Second, the dynamic nature of requests going through the system,
and the related stochastic characteristics, makes it hard to exactly
reproduce an exact flow of requests and events at runtime. Third,
the same randomness in the system can introduce significant noise
when benchmarking system performance.

3.2 Swarms of VCI Instances

Figure 3 shows an overview of the swarm architecture. The number
of nodes and containers can vary as needed, even at runtime. Docker
Swarm’s manager receives and distributes incoming requests and
is required on conventional computing clusters, but not required on
public clouds like Amazon AWS, where the AWS load balancers
serve the same purpose.

Fig. 3: Overview of an VCI Swarm.

Each computing node runs a Docker daemon process, which
interfaces with the Docker Swarm manager. There can be a variable
and configurable number of Docker containers on each node.
Each Docker container is a light-weight, fast to spin up, and
self-sufficient virtual machine. Since the concept of “node” is
virtualized on public clouds, the common hierarchy of Swarm-
Node-Instance can be compressed to simply Swarm-Instance,
although this difference is negligible for software development.

We refer to each instance as a Visualization Cloud Instance
(VCI) and the entire Docker Swarm as a VCI Swarm. All VCI
instances are identical. Each instance is a fully independent entity.
HTTP is the only communication protocol used by VCI instances,
regardless of communicating within or outside the swarm.
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Fig. 4: The main components of a VCI instance.

Every VCI instance runs its own HTTP server, responsible for
receiving and queuing incoming requests. The swarm manager
manages an overlay network between nodes. VCI instances on this
network are able to freely communicate with one another. The
swarm manager handles all DNS and routing within this network,
which is not exposed externally.

The choice of HTTP as the sole communication protocol is
to leverage the proven multi-threaded solution within modern
web servers that can reliably receive, queue, and managed large
amounts of concurrent requests. To our knowledge, few parallel
visualization systems have similarly efficient, robust, and high
throughput asynchronous communication capabilities.

The swarm manager receives and distributes incoming requests,
but in no other way orchestrates parallel computation. The VCI
instances self-organize to work in parallel. The only global synchro-
nization is snapshotting swarm-wide workloads, so that instances
can each adjust their own self-balancing scheme accordingly. The
snapshotting operation takes place every 5 seconds.

The VCI Swarm has some resemblance to stream processing
in how collaborating processing threads are used, because the VCI
Swarm also routes requests through a network of operators to
construct results. The main difference is that VCI swarm works on
stored data, as opposed to streaming data; hence, key requirements
for stream processing do not apply to VCI, i.e. query mechanisms
and the need to keep data moving [54]. In addition, VCI Swarm
is lightweight with a much smaller functional scope, assumes
only standard Linux process management, without dependence on
additional scheduling frameworks or resource managers. Lastly,
in comparison to well-known stream processing systems [4], [25],
[41], [63], VCI swarms run on resources that are minuscule.

3.3 VCI Instance

3.3.1 Inherently Threaded Design
The HTTP web server run by each VCI instance manages all
computation and communication tasks of the instance. In essence,
we chose to use a collection of web server processes for parallel
computing. This design decision has two architectural reasons.

First, when parallel particle tracing is both data- and task-
parallel, there are many disparate yet collaborative tasks to be
managed [17], [30], [33], [40], [45], [47]. Although it helps to
dedicate specialized threads for each specific function, managing a
large number of threads scalably is non-trivial. The high-throughput

thread management used in web servers can be reused as an efficient
and reliable solution to this need.

Second, when using containers, a universal interface of collab-
oration is HTTP. In this case, there is a performance advantage, as
well as a portability advantage, if parallel computing task can be
mapped onto HTTP web server model directly.

For VCI, we have developed an HTTP compliant web server in
Python using a high-performance kernel in C. This design is easily
adaptable for other HPC programming languages. We note two key
details regarding threading mechanism here.

Threading vs. Forking. We chose threading server over TCP
forking server for reasons of latency and shared memory address
space. In particular, I/O is a fundamental challenge of all large-data
visualization systems. In a data-parallel manner, each VCI instance
is responsible for its assigned data partitions. We desire that the
data loading as well as resident-memory management parts of the
instance can be shared by all threads. This way, a single out-of-core
visualization implementation can minimize I/O operations as well
as memory footprint for an entire instance.

Our VCI instance is a derived class from the Python
ThreadingHTTPServer, which spawns new threads for each
request using ThreadingMixIn internally. Through evaluation
many potential designs, this way of implementation offers the best
efficiency, both for thread spawning and thread joins.

3.3.2 Specialized Threads

Our design philosophy comes from the domain of Unix: That is,
to enforce rigorously that each thread is specialized in one type of
task, and to ensure that threads can easily collaborate.

Figure 4 shows the internal parts of a VCI instance, where every
box is a type of thread and arrows are HTTP requests being sent
or received. These threads are based on ThreadingMixIn derived
from Python’s core socketserver. As threads have different
functions, they have different lifespans too.

Listen(): this thread is up for the entire lifespan of the VCI
instance. It runs continuously at all time and listens for new requests
on the open socket. It does not perform any real task other than to
determine the type of request and spawn off appropriate specialized
threads to handle the requests. In particular, Listen() thread spawns
off Interfacer() threads and Worker() threads.

DNS Sync(): this thread is up for the entire lifespan of the VCI
instance. It runs periodically to query the Docker swarm manager
or the AWS load balancer to get an up-to-date list of instances
as well as their load information. DNS Sync() also provides the
swarm membership information to any threads upon request.

Interfacer(): An Interfacer() thread is created by the Listen()
thread when a client HTTP request is received. No Interfacer()
threads have overlaps because they each serve a different client
request. Requests from the same user are treated as independent
requests and are handled by separate Interfacer() threads.

Interfacer() threads have the lifespan of a client request. When
a user cancels a client request, for example, by closing their web
browser, the corresponding Interfacer() thread is terminated.

Worker(): Worker() threads are created by the Listen() thread
when an HTTP request is received from an Interfacer() thread. A
Worker() spawns off a ComputeTrace() thread to perform the
computation. As incremental computation results are ready, a
SendResults() thread is spawned to send them to the ResultCol-
lector(). Especially for flow line advection, the advection may not
have reached the targeted length requirement if the flow line exits
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Fig. 5: Workflow tree illustrating how a user request is handled.
The verticality of each box represents serial execution while boxes
horizontal of each other are executed in parallel.

the assigned partition. When this happens, a ForwardJob() thread
is created so computation can resume on the target instance.

3.3.3 Parallel Processing
As many-core processors become mainstream, processing power is
getting condensed into smaller and smaller physical footprints. Not
only are workstations with 48+ vCPUs very affordable, nowadays
a cloud service with even 100s of processors can be affordably
available on-demand at less than $10/hour.

Work Assignment and Data Partition. As with common
practice, we partition data along the 4 spatiotemporal dimensions
in a pre-processing step. We apply 5-way partitioning with 4 voxel
ghost regions resulting in 625 partitions. All partitions are on the
same network mounted storage and are loaded by VCI instances at
runtime as needed through memory mapping.

When a VCI instance is started, a set of partitions are assigned
to that instance. These are primary assignments. As typical in
fault-tolerant systems, we allow replication (i.e. k-replica), where k
can be 1, 2, or 4. When k is larger than 1, additional partitions are
assigned to each instance as secondary assignments.

Both primary and secondary assignments remain the same
throughout the lifespan of the whole swarm. The mapping between
partitions and instances uses a computable data assignment. This
hash is determined by two parameters (the number of VCI instances
and the number of partitions) and is based on a simple deterministic
round robin process yielding a mapping between instances and
partitions. Although there is not an explicit predetermined partition
assignment, each instance is able to compute the same list at
runtime without any extra communication.

As particle tracing is computed, some particles may exit the
assigned region for an instance. When this happens, that instance
uses the data assignment mapping to identify candidate instances
to continue the trace. These candidates are filtered based on load
estimates (Section 3.4.3) and the particle is forwarded.

Workflow Tree. Through system-level routing (Section 3.4),
a VCI instance is chosen at random as the main responder. The
Listener() on that instance spawns off a dedicated Interfacer()
thread for that request, which appears as the root of a workflow
tree, shown in Figure 5. These threads may spawn other threads
either within-instance (stacking) or cross-instance (arrows).

The Interfacer() thread will spawn off ForwardJob() threads,
one for each of the target VCI instances, because they are assigned
jobs according to swarm-level partitioning (Section 3.4). Each
target VCI’s Listener() receives the request and spawns off a
dedicated Worker() thread to handle the computation.

A Worker() thread spawns a ComputeTrace() thread to handle
the job. This thread always creates a SendResults() thread to send

1 from requests import post
2 from concurrent.futures import ThreadPoolExecutor , wait
3

4 hosts = [’http://1.2.3.4:8840’, ’http://1.2.3.5:8840’]
5 seeds = [(0.0, 0.0, 50.0, 0.0), (80.0, 40.0, 50.0, 0.0)]
6 executor = ThreadPoolExecutor(max_workers=len(hosts))
7 futures = []
8 for seed, host in zip(seeds, hosts):
9 kwargs = { ’url’: host + ’/trace/’,

10 ’json’: { ’seeds’: [seed] } }
11 future = executor.submit(post, kwargs=kwargs)
12 futures.append(future)
13

14 done, _ = wait(futures)
15 for future in done:
16 future.result()

Listing 1: VCI’s server code for creating and managing runtime
threads using Python’s ThreadPoolExecutor.

1 void rk4(float *seed, float *newseed) { /* omitted */ }
2

3 int trace(size_t nseeds, float *seeds,
4 size_t nsteps, float *trace) {
5 #pragma omp parallel for
6 for (size_t i=0; i<nseeds; ++i) {
7 memcpy(OUTPUT(trace, i, 0), SEED(seeds, i), 16);
8 for (size_t j=1; j<nsteps; ++j) {
9 rk4(OUTPUT(trace, i, j-1), OUTPUT(trace, i, j));

10 }
11 }
12 }

Listing 2: The particle tracing kernel with OpenMP parallelization.

the newly computed incremental results. A ForwardJob() thread
may also be created if the trace is not yet complete so the other
instance can compute the rest of the trace.

Threads Spawning. The workflow tree depth depends on the
expected length of flow lines, the number and distribution of the
seeds, and how data partitions are assigned. To spawn many threads
efficiently, we use Python’s ThreadPoolExecutor as shown in
Listing 1. The ForwardJob() thread uses a thread pool to distribute
forwared jobs to all of the VCI instances in parallel.

UUID. When Interfacer() threads generate jobs, we avoid
collision between job identifiers using universally unique identifier
(UUID), a proven concept in distributed systems and databases [35].
We use Python’s uuid.uuid4 function to generate UUIDs as
32 byte random strings, seeded with the process start time.

Working Set Minimization. Since cloud architectures incur
much lower costs when instance sizes are small, it is beneficial to
minimize the in-core memory overheads. Hence, during processing,
we design each instance to only load as small a spatial-temporal
partition in the dataset as possible. To this end, in order to
maintain generality, we decided to manage such data access
patterns on the granularity of memory pages. This is done through
memory mapping mechanisms provided by all modern Unix-
flavored operating systems. As a result, rarely used pages get
swapped back to disk while commonly accessed ones stay loaded.

We use runtime communication, i.e. request forwarding across
VCI instances, to ensure that each instance focuses on small
partitions; whereas collectively the instances have a full coverage
of the entire spatio-temporal domain with as small an overlap
as possible. This is managed by having primary and secondary
assignments for each partition, as shown in Figure 6. This reduces
total in-core memory needs to 10’s of GBs even when the full
turbulent flow dataset amounts to 100’s of GBs.

Scatter-Gather Design Pattern All communication in a VCI
swarm follows the scatter-gather pattern and happens point-to-
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point without using explicit collective communication primitives
like barriers. The request forwarding mechanisms scatter requests
through the system as necessary and then the responses are gathered.
Additionally, all instances poll their DNS Sync() thread period-
ically for updates in the swarm-wide membership information,
including whether there are newly added or removed instances.

3.3.4 Worker Thread Lifecycle and Results Streaming
Computational Kernel. The computation kernel of the Worker()
threads is implemented in C to be usable from Python. The main
computation task is flow line advection, using 4th-order adaptive
size Runge-Kutta, modified from Numerical Recipes [46] to be
thread-safe. We further accelerate the kernel using OpenMP as in
Listing 2 to process multiple traces at once.

Interfacer() Heartbeat. A unique design requirement for VCI
swarm is fault-tolerance in relation to the client’s status. A client
can cancel outstanding requests in several ways, such as through
new interactions or through closing the web page.

The Interfacer() thread is the root of the workflow tree
(Figure 5). Cancelled visualization requests trigger the Interfacer()
thread and all of its within-instance threads to be terminated.

Across other instances, the corresponding Worker() threads
need to be terminated too. This is done through the mechanism of
a heartbeat signal. Specifically, while a Worker() thread operates,
the Worker() thread checks the heartbeat of the Interfacer() thread.

The heartbeat information is collected by making an HTTP
request to the ResultCollector() thread before running the low-level
kernel. With this, the Worker() thread can detect that a user request
is no longer valid and prunes the workflow tree accordingly.

Results Streaming and Termination. Two threads are in-
volved in continuous results streaming: ResultCollector() collects
partial results and Interfacer() sends partial results back to the
requester. The former maintains a key-value store of all jobs created
by the Interfacer() and tracks each job’s status by their UUIDs. As
ResultCollector() receives computed results from various Worker()
threads, each job’s status is updated, either marked as complete due
to a termination condition being met, or marked as on-going. The
termination conditions can include reaching the targeted length of
flow line, or the flow line exiting the domain of the dataset.

The Interfacer() is the only thread that serves data back to the
requester, and does so as soon as partial results are available. The
application space, i.e. app.js, is the only place where the geometry
of flow lines are assembled based on the UUIDs.

The ResultCollector() tracks per job completion status until
computation for the whole request completes. The Interfacer()
manages the start of the workflow and sends results with the
UUIDs back to the requester. These two threads share a mechanism
of double-buffering: one buffer for ResultCollector() in write-only
mode, and the other for Interfacer() in read-only mode.

When request processing is completed, the ResultCollector()
thread initiates the termination of the entire Interfacer() thread. We
note that, in the normal scenario, no worker thread should be still
alive serving that request. In other words, the entire workflow tree
for that request should have only the Interfacer() thread, ie. the root
node of the tree, remaining alive.

3.4 Self-Organizing Swarm
3.4.1 Distributed Request Management
We distributed request management in three tiers. First, the Docker
Swarm manager, or the AWS load balancer, randomly assigns

Fig. 6: Round-robin partition assignment with k = 2 replication.
(Red P) are primary partitions; (Blue S) are secondary partitions.
Each VCI instance volunteers to cover its secondary partitions only
when the corresponding primary instances are under load.

incoming user HTTP requests to a different VCI instance. Second,
the Interfacer() thread created by the assigned VCI instance’s
Listen() thread polls the DNS Sync() thread on the same VCI
instance to get the most recent snapshot of system’s operating
status. The Interfacer() creates the jobs and decides how to optimize
the mapping between jobs and all VCI instances. Third, individual
instances make job distribution decisions in ForwardJob() threads.
Each of these decisions seek to distribute system load as evenly
as possible, as illustrated in Figure 6, each VCI instance can be
assigned primary and secondary partitions.

Primary Partition. Upon initialization, each VCI instance
is assigned a preprocessed partition as its primary partition.
Altogether, the primary partitions collectively form a complete
coverage of the entire spatial domain. There are no overlaps
between primary partitions. The problem domain is partitioned
by a grid pattern, each instance takes one cell from the grid.

Secondary Partition. In addition to the primary partition,
instances may also be assigned other partitions to be used when at
increased load. These partitions cover the same area as the primary
ones, essentially forming another complete covering of the problem
domain. When a job is forwarding to an instance based on its
secondary partition, it is handled the same as it would be for its
primary partitions. Secondary partitions are only used when the
k-replicas (Section 3.3.3) is larger than 1.

Flexible Assignment. Data partitions are not pre-distributed to
any VCI instance. Instead, the partitions are centrally stored and
only mounted into an instance when the instance is created. The
instances use OS-level memory mapping to access the data but
do not pre-load anything until data is accessed. In this way, all
VCI instances implement out-of-core visualization and use a very
limited memory footprint.

3.4.2 Runtime System Snapshot

Periodically, for example every minute, DNS Sync() queries the
Docker Swarm manager or the AWS load balancer to get the latest
information about swarm membership. After that, DNS Sync()
spawns off asynchronous threads to obtain and record the latest
load information on all VCI instances.

When answering a status query from DNS Sync(), each VCI
instance reports the “ps” system load parameters, of which the
CPU usage is the most important. This information is recorded in a
per-instance hash, easily accessible by any function in the instance.

Thereby the DNS Sync() is a specialized thread dedicated to
keep track of how computing load is distributed among the entire
swarm. Before any ForwardJob() threads make job distribution
decisions, they query the latest snapshot from the DNS Sync()
thread so that their decisions adapt with variations in system load.
Due to the polling rate of the DNS Sync() thread, varying system
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load within 5 seconds do not factor into forwarding decisions which
helps smooth momentary bursts of increased load.

3.4.3 Adaptive Load Balancing
For each job request, the ForwardJob() thread uses the same
procedure to decide which VCI instance should receive the job.
During the assignment phase, we get a round-robin mapping
between partitions and instances that are responsible for that region,
sorted so that the primary host is before the secondary hosts.

To decide the best host, the sorted list is traversed and the first
one matching all criteria is selected. For our load balancing, this
criteria is a simple comparison between the CPU percentage and a
pre-determined threshold. We use 70% so that a very overloaded
host does not get more load assigned to it.

We don’t have finite pre-defined workload, hence pre partition-
ing is hard. As a result, it is about work distribution rather than
work stealing, because the workload/request is unknown. Each unit
of work completes within milliseconds as shown in our results.

The random data access pattern of particle tracing causes
considerable performance challenges. The proven solution is to
trade communication complexities to ensure good locality of
computing tasks. Fortunately, we benefit from the freedom offered
by virtualized containers. That is, accessing data via memory-
mapping does not involve explicit traditional I/O operations, and
at the same time includes a reliable resident memory management
capability. In this way, minimizing memory footprint and providing
effective caching is one of the same, which achieves great results.

4 APPLICATION

As popularized by d3.js [13], Vega-Lite [53], and other toolkit
libraries, interactive information visualization inside web browsers
is now a commodity. These toolkits have transformed the standard
of portable interactivity for information visualization by managing
the non-trivial interaction paradigm transparently.

For scientific visualization, portable interactivity is meaningless
without data scalability. In this work, VCI’s swarm space addresses
data scalability, the library and application spaces address portable
interactivity. We have implemented vci.js for the library space, and
app.js as an example of application space, respectively. The design
intention is that vci.js is a general reusable library, and that app.js
will vary from one application to another. The separation between
back- and front-end spaces enables independence and autonomy
between them.

4.1 vci.js and app.js
vci.js is a compact front-end JavaScript library that helps developers
to easily interact with multiple VCI swarms. Let’s motivate the
need to consider multiple swarms through a few use scenarios.

First, even for a single user using a single dataset, the
incremental cost of $1/hr per VCI swarm makes it easy for a
user to afford multiple swarms, which has both fault-tolerance and
performance benefits. Such horizontal scaling is trivial in the cloud
setting but very hard in traditional settings.

Second, data-enabled science is gradually gaining momentum.
Maintainers and curators of a community-centric data repository
may wish to stand up a web service for their repository. For
example, the forecast component and observational components of
the CFS data are obtained through different means and are updated
at different intervals. If these are kept as separate VCI services,
scientists can choose which services to use flexibly.

Third, when it comes to reproducibility, it is common to expect
that a user may need to compare a new result with results from
previous works. Practically, it has been very hard to reproduce
another researcher’s computing environment. If published results
can all have separate web services, which may be spun up at
very low costs, such comparisons can be prompt, convenient,
reproducible and sharable.

For these reasons, vci.js always assumes there are multiple VCI
services being used at the same time and transparently manages
flow-control and fault-tolerance of each request in parallel. vci.js is
highly concurrent but presents itself as a single-function interface.
The basic settings include (i) the URL to each VCI swarm, and (ii)
a callback function to execute when a response is received from
each swarm.

Developers can customize their policy settings anytime. The
key parameters are: (i) how many services are used at the same
time; (ii) how long a single request can take before being counted as
a failure; (iii) how many retries a request can have before stopping
re-sends; and (iv) how long a single request with retries should
wait before giving up and not re-sending. The default policy setting
in vci.js is geared towards high interactivity (i.e. low timeout and
low maximum attempts)

All services registered with vci.js are tracked individually.
Specifically, vci.js tracks outgoing request traffic of each service,
and receive, along with each result, the overall load of each VCI
swarm. Depending on the policy choices set by the application
developers, vci.js may add or reduce loads on each VCI swarm
selectively. In each response, the CPU load of the service handling
the request is returned. vci.js selects the lowest loaded service to
dispatch the following requests to. This method guarantees natural
load balancing for any task type performed service-side.

Upon sending each request, a configurable timeout can abort
the request. If a request is aborted, vci.js tries re-sending the request
until the max timeout or max number of attempts has been reached,
according to the customized policy. When configured in multi-host
mode, once any response is received, all other identical requests to
other hosts are aborted. In addition, each service is monitored for
failed or aborted requests. Continually failing services are dropped
from the hosts list and no longer utilized.

When application developers make use of the VCI Service,
application logic needs to be separated into an app.js. In the
following sections, we show three examples, each targeting a
different kind of user and a different use case. Accordingly,
each application has its own app.js, which contains the front-end
application that performs rendering and UI functions. For example,
in a smooth tracking mode, app.js tracks mouse locations upon
every single move, automatically maps seeding points onto the
global map, and calls vci.js accordingly.

4.2 Application: 3D Flow Visualization
This application targets students who may be unfamiliar with flow
visualization. By offering an interactive way to seed the streamlines,
it enables students to experiment and learn.

This application uses the JavaScript library THREE.js for
creation, control, and rendering of a 3D scene graph using WebGL,
and primarily maps data between the vci.js API and THREE.js.

Figure 7 shows the control panel of the application shown in
Figure 1. The control panel includes temporal starting point of
traces (i.e. “Seed Time”), the maximum length of flow lines (i.e.
“nSteps/Trace”), the vertical height of seeding location (i.e. “Seed
Pressure,” measured in isolevels).
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We also assume bundles of flow lines are more useful in
turbulent flows. Hence, once a seed location is given, it is jittered
by small random amounts (controlled by “nSeeds/Req”) and sent
together in a single VCI request. Obviously, we can reduce a
bundle to a single flow line by setting “nSeeds/Req” to 1. In our
tests, we set “nSeeds/Req” to 5. If app.js is handling 1,000 user
requests/minute, 5,000 flow lines/minute are extracted.

Extracted flow line segments are received in the form of vertex
arrays, which we then converted into stream tubes by using Catmull-
Rom splines in order to allow for better illumination.

4.3 Application: Comparative Flow Visualization
Comparing models vs. observations, or models vs. models, is
crucial for answering fundamental scientific questions. In climate
research, such comparisons have led to a deeper understanding
of climate extremes [21] and general atmosphere circulation [27].
Such comparisons are also indispensible in model validation [29]
calibration [39], and scenario and sensitivity analyses [51].

As datasets become larger, such comparative studies are
increasingly challenged by the data deluge, however. Interactive
comparative visualization is becoming more difficult too.

Our design of the swarm-service model was in part motivated by
this need. VCI makes it easy to use specialized swarms to manage
each large dataset separately, while the swarms appear uniformly
as standard web services. An analysis application can then have the
feasibility and flexibility to adopt new datasets depending on needs,
instead of depending on what a user’s computer can manage.

To show this possibility, we compare how the NCEP forecast
differs from the actual observations. To do so, app.js registers a
second VCI web service with vci.js, and easily transitions to using
two datasets at the same time. Each is 150GB in raw storage.

Figure 8 shows how the forecast model differs from actually
observed wind velocity fields. The cool color shows forecast,
specifically the forecast3 data product of NCEP CFS. The warm
color shows the observed data. The visualization shows that the
model predictions have a more drastic shearing effect than the
observed. The particle traces are seeded from January 1, 2012.

VCI’s interactive visualizations in Figure 8 confirm global atmo-
spheric circulation patterns overall. However, both the observed and
the modeled patterns show unique variations on multiple levels. It is
worthwhile for any scientific user to have such an interactive ability
to investigate the scientific reasons behind model agreement as well
as model divergence, which are general needs in all disciplines of
computational science and engineering.

4.4 Application: D3 Flow Visualization
This application shows a possible integration with the popular
JavaScript library, D3.js [13]. Its intended use case is for citizens

Fig. 7: Left: UI controls of the tracing app (Section 4.2). Right:
Monkey testing request locations. Each test makes 3,481 requests
in 1 minute at roughly a rate of 60 requests/second. Each request
includes 5 seeds for particle tracing.

Fig. 8: Comparative visualization showing differences between
actual observation vs. forecast atmospheric wind velocity patterns.
Observation in cool color and forecast in warm color.

without any training in flow visualization to be able to pose
questions and answer them in an explorable way. We used D3 for
this application because it is the de-facto standard for information
visualization targeting general audiences.

This application prioritizes data analysis with multiple linked
views. The flow seeding locations reflect 60 nuclear power plants
in the US. The first view is a relational Sankey diagram, which
describes the relation between individual power plants and the
respective states the flow have travelled through. The second view
is a line chart showing the number of states affected by a single
power plant over time. The third view is a map that shows potential
flow emitted from the power plants. A calendar selector is included
with the third view so that users can flexibly experiment with daily
varying atmospheric flow patterns.

An example of the kind of insights enabled by this application
is to examine the effect of a power plant disaster if it occurred on
January 1st, 2012. In aggregate, we found that 60 power plants
have a combined coverage of effect on 37 different states. If we
instead focus on a single power plant in Michigan, then it alone
is capable of affecting 9 different states in as little as 67 minutes.
These analyses are very user directed and will depend on what
exactly the user is interested in.

5 RESULTS AND DISCUSSION

5.1 Overview

Test Dataset. We chose the NCEP CFS atmospheric community
dataset [52] because it represents the leading edge of assimilating
observational data together with model predictions. Our results are
collected using a subset of this dataset that spans the entire year of
2012 at a 6-hour time interval (i.e. 1,463 time measurements), a

Fig. 9: D3 application showing flow emitted from US nuclear
power plants on January 1st, 2012. Left: Power plant selection list.
Middle: Map view. Middle Bottom: Calendar date selection widget.
Top Right: Sankey relational view. Bottom Right: Line chart view.
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global spatial resolution of 720×361×36, along the dimensions
of longitude, latitude, and pressure isolevels, respectively. This
dataset has 3 attributes: latitudinal wind velocity, longitudinal wind
velocity, and vertical wind velocity.

For most results in this work, we use a 150 GB piece of the
CFS data which is based on the actually observed wind velocity.
Results in Section 4.3 show interactive a comparative visualization
between both the observed and the forecasted data. The additional
forecasted component amounts to 150 GB of raw storage as well
and has the same format as the observed data.

As a pre-computing step, data is partitioned, where each
partition is 144× 73× 8, for a total of 625 partitions. A ghost
zone of 4 voxels has been added along each dimension to each
partition because we use adaptive size 4th-order Runga Cutta to
compute the flow advection. Each partition amounts to 679 MBs,
whereas the partitioned CFS forecast dataset amounts to 417 GBs.
The same applies to the observed data as well.

Interactive Test. Since this paper is concerned with portability,
we test wide-area reliability via pre-recorded “monkey” tests, which
have been recorded to emulate typical user interactions. This style
of testing is effective at evaluating complex applications [57]. The
test generates 3,481 requests in a hand drawn path which traverses
the globe over a period of 60 seconds. This test is run once for each
configuration. Average request rate is about 60 requests/second.
Each request includes 5 seeds for particle tracing. Data is collected
on the back end utilizing the logs generated by VCI which catalog
request across the distributed system.

The test path is shown in Figure 7-Right. On average, each
flow line has a length of 1,548 miles and covers a timespan of 67
minutes. Each also uses data from several partitions of the dataset:
59.9% use only one partition, 45.5% use two partitions, and 1.6%
use between three and five partitions. This shows that our monkey
testing path exercises the system adequately as nearly half of all
requests need to be load-balanced within the VCI Swarm.

Stress Test. We also designed a stress test, where each
simulated user sends R requests at a time and maintains R active
requests at a time by sending a new request as soon as the previous
result has been received. The stress test scales up the number of
simulated users as well as the value of R in order to understand the
scalability of the VCI Service.

Test Logging. Our results are measured after the tests have run.
To do this, we collect detailed traces of the execution of the swarm
including specific messages, variables, and wall clock times. Each
trace is from the context of a single user request from the browser
and this context persists across forwarded jobs. By measuring the
time between particular messages, we can determine how much
time is spent in the tracing kernel or making cross-instance network
requests, all without having to rerun the test cases.

Metrics. We collect performance metrics from the perspective
of the client: latency until receiving the first byte of the result
(Time To First Byte TTFB) and the last byte (Time To Last Byte
TTLB). We also collect ping latency between client and server, as
well as the success or cancellation status for each request. Further
discussion is in section 5.5.

5.2 Interactive Test on Dedicated Server

We first evaluate how swarm configurations affect various tradeoffs
among factors that include latency, throughput, system footprint,
replication factors (i.e. k), I/O, and potential failures. All evaluation
tests are run with the client being connected to an adjacent server.

TABLE 1: Dedicated Single-Node Performance (WebSocket)

nnn-kkk Cores/I Memory/I MB/s Syscall/s TTFB TTLB

4-1 12 17.3 · 42.0 0.40 3.80k 0.180s 0.252s
4-2 12 17.3 · 39.5 0.40 4.50k 0.178s 0.246s
4-4 12 17.3 · 47.0 0.37 4.29k 0.174s 0.251s
8-1 6 17.3 · 25.5 0.53 4.43k 0.082s 0.138s
8-2 6 17.3 · 25.7 0.54 5.04k 0.082s 0.139s
8-4 6 17.3 · 32.7 0.51 4.97k 0.082s 0.138s
16-1 3 17.3 · 16.9 0.57 5.38k 0.064s 0.099s
16-2 3 17.3 · 19.6 0.61 5.80k 0.072s 0.121s
16-4 3 17.3 · 24.0 0.62 5.62k 0.070s 0.113s

nnn-kkk: n swarm instances with k-replication of data. Cores/I: CPU
Cores per instance of the swarm. Memory/I: Average memory
usage of an instance before and after testing. MB/s: Peak
incoming network request throughput. Syscalls/s: I/O operations
per second. TTFB (TTLB): Average Time To First (Last) Byte
for request response.

TABLE 2: Dedicated Single-Node Communication Comparison

nnn-kkk Method Cancel Success TTFB TTLB

4-2 HTTP 1288 1951 0.201s · 0.357s 0.232s · 0.384s
4-2 WS 340 2448 0.056s · 0.178s 0.092s · 0.246s
8-2 HTTP 1086 2152 0.262s · 0.394s 0.287s · 0.415s
8-2 WS 204 3139 0.048s · 0.082s 0.078s · 0.139s
16-2 HTTP 1155 2071 0.323s · 0.424s 0.350s · 0.445s
16-2 WS 237 3192 0.046s · 0.072s 0.074s · 0.121s

nnn-kkk: n swarm instances with k-replication of data.
Method: Method of communication. Cancel (Success): Number
of canceled (successful) requests. TTFB (TTLB): Median and
average Time To First (Last) Byte.

The testing client has an internet connection capable of sustainable
rates of 500-550 Mbps down and 425-475 Mbps up.

For this purpose, we chose to use a rack-mounted machine
to deploy a single swarm. The machine has dual Intel Xeon (E5-
2650 v4, 12-core, 2.2 GHz) processor with a total of 48 vCPU
and 128 GB memory. We test n = 4,8,16 instances in the swarm
and k = 1,2,4 replication in the swarm. These configurations are
denoted as n-k, specifically, 4-1, 4-2, 4-4, 8-1, 8-2, 8-4, 16-1, 16-2,
and 16-4. The per test case results are shown in Table 1.

We seek an optimal tradeoff between request latencies and
request throughput. Request latencies are measured by: time to first
byte vs. time to last byte, i.e. TTFB vs. TTLB in Table 1. The VCI
swarm’s total bandwidth to handle incoming requests throughput is
measured by peak megabytes-in, i.e. MB/s in Table 1. The data
shows a few patterns.

First, TTFB and TTLB are consistently correlated, with the
best case TTFB and TTLB being 0.064s and 0.099s. Between
the client (on residential Internet) and the centralized rack-mount
server, the roundtrip ping time stats are: min/avg/max/stddev =
0.0590s/0.0658s/0.0871s. Hence, if a user sets up a VCI swarm
for on-premise use, we estimate the TTFB and TTLB improve
by 0.059s or more, resulting in a TTFB around 0.005s which is
capable of sustaining 120 frames/second of interactivity.

Second, VCI instances require sufficient processing power
to function optimally, because each VCI instance is massively
threaded. The data shows that allocating 12 cores to each VCI
instance is unnecessary. VCI instances with 6 vCPU cores or even
3 vCPU cores can function very well and deliver low latencies.

Third, increasing replication factor k does not yield increasingly
higher performance, although it does show a minor improvement.
As is common in many fault tolerant applications in the wide area,
k = 2 replication is often used.

In Table 1, there are two memory use metrics. Base Mem/I is
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TABLE 3: AWS Variable-Node Performance (WebSocket)

Type Nodes vCPUs Instances Cost Failures TTFB TTLB

t3.xl 2 8 8 $0.33/hr 41.45% 0.252s 0.295s
t3.xl 2 8 16 $0.33/hr 32.55% 0.268s 0.343s
t3.2xl 2 16 8 $0.67/hr 29.53% 0.203s 0.249s
t3.2xl 2 16 16 $0.67/hr 2.27% 0.171s 0.275s
c5.4xl 1 16 8 $0.68/hr 0.09% 0.074s 0.096s
c5.4xl 1 16 16 $0.68/hr 0.09% 0.072s 0.095s
c5.12xl 1 48 8 $2.04/hr 0.09% 0.068s 0.085s
c5.12xl 1 48 16 $2.04/hr 0.09% 0.066s 0.083s
c5.24xl 1 96 8 $4.08/hr 0.09% 0.080s 0.104s
c5.24xl 1 96 16 $4.08/hr 0.09% 0.082s 0.107s

Type: Amazon Web Services (AWS) compute instance type.
Nodes: Number of AWS nodes. vCPUs: Total number of
vCPUs in use. Instances: Number of VCI instances in the
swarm. Cost: Cost of the provisioned compute instances.
Failures: Percentage of requests that fail to return data.
TTFB (TTLB): Average Time To First (Last) Byte.

the per-instance base memory, measured as total memory use after
the container is started but before performing any tasks. That value
is consistently around 17 MB. Net Mem/I is the average additional
memory used by VCI instances during the 3-minute long monkey
test at roughly 60 requests/second.

Across the board, we see that the memory-mapped lazy
management of data does offer an efficient implicit solution to out-
of-core visualization. Net Mem/I stays under 50 MB throughout
the tests. This is significant because such a footprint allows easy
portability on virtually any system, even when using a VCI swarm
as a background process on a user’s personal desktop.

Net Mem/I drops as n increases because each instance is
responsible for fewer partitions. When n = 16, Net Mem/I reduces
further to less than 20 MB. Increasing k does increase Net Mem/I
incrementally but nonlinearly.

At k = 4 in Table 1, we see the highest Net Mem/I and also
a corresponding increase in I/O overheads, Syscall/s. The latter
measures thousands of I/O operations per second which signifies
higher amounts of data loading. The relatively worse TTFB result
for higher k may be due to the increased I/O and worse caching
performance within each instance.

Table 2 compares VCI’s two modes of communication: HTTP
and WebSocket. We chose to test only k = 2 for these comparisons,
as it is a commonly used redundancy factor. It is immediately
apparent that WebSocket provides a higher success rate as well
as faster response times in all cases by a large factor. This speaks
volumes to the benefits of a persistent connection to the server
in continuous-demand applications. The n = 16 WebSocket test
case is of particular interest, as it manages not only the fewest
cancellations of all tests, but also the lowest TTFB/TTLB. This
suggests the WebSocket implementation scales very well with
increased instance count.

It’s worth noting that monkey test, as done in our testing, is a
typical stress testing technique in web-scale systems. Our use of a
total of 3,481 user requests, each with 5 seeds, is aimed to identify
worst case scenario of VCI swarm. A typical user exploration does
not come close to this level of system stress.

5.3 Interactive Test on AWS Server
As a significant test of deployability, we tested 5 different AWS
configurations across two hardware classes: general-purpose, “t3,”
and compute-optimized, “c5.” All instances are cloud-managed,
where the base hardware is probably shared by many users.

We repeat the same monkey testing as with our dedicated
server and based on Section 5.2, we test only n = 8,16 instances

Fig. 10: Evaluating how much time an average request spends
doing computation (blue) vs. communication (red) of each AWS
configuration. The per-request tracking is enabled by VCI’s
design and use of UUID. The data shown is averaged over all
requests in the monkey testing process. Reducing communication
cost for better job placement can be as important as reducing
computation cost for better efficiency. Experimenting with different
configurations can help discover such tradeoffs.

and k = 2 redundancy. The network between the client and the us-
east-2 AWS instances has a round trip ping timing of: min/avg/max
= 0.0495s/0.0518s/0.0600s. Table 3 shows our testing results.

Since we have much lower performance guarantees on AWS
than on a dedicated server, we define request failures as any re-
sends or request with TTFB over 1 second. We report failure rates
as Failure % in Table 3. The failure results clearly show that the
“t3” class is not usable for our purpose.

Using “c5” instances, some patterns from Section 5.2 are again
confirmed. Specifically, as long as a swarm has enough instances to
ensure incoming bandwidth, further increasing instance count does
not lead to lower request latency. Anticipating user’s workload is
key when configuring a VCI service.

Based on our testing use, an 8-instance swarm on c5.4xl
for $0.68/hr is the best choice. The more expensive instances
performing worse is a repeatable result. A potential reason is that
larger instances on AWS are shared by more users who have more
sustained heavy loads. Again, the purpose of testing on AWS in
this work is to show portability. The best performance for future
users will be to use VCI swarms using their own on-prem cloud.

Figure 10 breaks down average server-side latencies into: (i)
computation time, i.e. time spent inside computing kernels, imple-
mented in C with OpenMP acceleration; and (ii) communication,
i.e. the time spent doing network I/O for better job placement. The
t3 configurations perform worse due to its general-purpose CPUs
compared to the c5 configurations.

5.4 Stress Test on Dedicated Server
We ran stress tests that varied two parameters: (i) the number of
users U , and (ii) the number of concurrent requests R. Accordingly,
we design Test A, where U is varied while R = 6 (“many user”),
and Test B, where R is varied while U = 1 (“many request”). In
each of the stress tests, every request is for 1 flow line.

The results of Test A are in Figure 11. This result highlights
that VCI is scalable to many users all abiding by a request limit
like web browsers have. In this way, if every VCI user limits their
number of active requests, then all users can make interactive
requests at a rate of 80 requests per second.

The results of Test B are in Figure 12, showing that higher
degrees of performance are achievable by making more concurrent
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Fig. 11: Stress Test A that shows how the VCI Service handles
increasing number of users where each user only makes 6
concurrent requests at once, like in a web browser.

Fig. 12: Stress Test B that shows how the VCI Service handles
increasing number of concurrent requests from the same user.

requests than a web browser can make. This illustrates the utility
of WebSockets from a user perspective, as users are able to make
up to 125 requests per second.

5.5 Discussion
Evaluating VCI’s performance is tricky because VCI uses a custom-
made web server for parallel computing. While works in parallel
visualization evaluate efficiency and scaling from an algorithm
perspective, the most applicable performance metrics for VCI are
those from the literature of web systems, such as in [43] and [20].
Here, response time and incoming system bandwidth are the two
primary metrics. We’ve reported those as MB/s-In and TTFB
(Table 1 and Table 3).

Client-Side Interactivity. Using a Docker swarm on either
AWS or a dedicated server, we’ve recorded average TTFB time
below 0.070s. In addition, we have seen, in either server setup,
the server can sustain answering 60 requests/second. On the client
side, this translates to 60 frames/second interactive rates with 70ms
latency. With typical graphics applications considering interactive
use as in the range of 10 to 20 frames/second, we feel VCI is
sufficient for practical use in single-user cases.

Computational Efficiency. An important paper [11] in IEEE
Cluster’2020 benchmarked different parallel flow advection algo-
rithms on Cori, one of key new HPC systems at NERSC. Due to
how our user requests are generated, the only algorithm we can
choose, which is also benchmarked in [11], is Parallelize Over
Data (POD). The authors reported that seeding flow advection from

a small spatial box is the worst case scenario for parallel flow
visualization, due to great difficulties with runtime load balancing.
For that use case, the authors reported POD to achieve between
70k-700k Steps Per Rank Per Second (SPRPS), when tracing
streamlines that are 1000 steps each. The dataset used is NEK5000
flow of about 400GB. The computation is batch only, and far from
meeting the latency requirements of interactive use.

In our stress test, the VCI Service plateaus at around 125
interactive requests per second for one user, using a 24-core
dedicated server. Each request in the stress test is for a flow line
of 50 steps. This corresponds to 125× 50 steps per second, i.e.
roughly 0.26k steps per core per second. We also designed a test
with 10k requests, 5 flow lines per request, 100 steps per flow line.
Ran the test 3 times through the VCI Service on the same 24-core
dedicated sever. The average completion time was 23.01 seconds.
This amounts to 9.05k steps per core per second.

Since VCI swarm is Python based and uses HTTP communica-
tion in order to run on the cloud, we feel this level of performance is
acceptable, because VCI services can be deployed in an on demand
manner for interactive use of a 150GB data set at fractional costs.

6 CONCLUSION

In this work, we show that a traditionally HPC-only scientific
application can be ported to the cloud platform with several
key benefits: (1) immediate on-demand accessibility, (2) flexible
interactivity by virtually any user that has regular residential
Internet connections, (3) at negligible cost compared to any current
HPC based solutions. The demonstrated capability of the VCI
Service further enables big data cloud resources to be easily
integrated into flexible front-end applications that can operate
on very low cost user devices.

We’ve evaluated the efficiency and portability of VCI Service
using a dedicated server as well as cloud-shared instances of
Amazon AWS. To test, we use leading-edge global 3D atmospheric
data for the calendar year of 2012, which is made available through
NCEP CFS community repositories.

There are several directions for future work. First, to consider
using collaborating cloud services in scientific workflows that go
beyond just visualization. Second, to consider using transiently-free
resources as self-organizing swarms for parallel in-situ tasks. Third,
to consider using swarm-driven cloud architectures to revisit harder
scientific visualization problems such as ensemble visualization,
computational steering, and uncertainty quantification. Fourth, to
make use of more advanced and highly parallel flow tracing kernels
that offer better guarantees of error control.
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