
V isualization is a research tool that computational
scientists use for qualitative exploration, hypoth-

esis verification, and result presentation. Driven by
needs for large user groups to collaborate across geo-
graphical distances (see the “A Driving Application—
The Terascale Supernova Initiative” sidebar for detailed
user needs), visualization must now also serve as an
effective means to share concrete data as well as
abstract ideas over the Internet. Yet there is simply no
expeditious and practical way for users collaborating
in this wide area to share large visualizations in a
dynamic fashion.

In many cases, the only practical mechanism avail-
able for sharing visualization is to use a Web server to
exchange precomputed images or videos. Without hav-
ing a copy of the source data set on a locally accessible
computing system, a collaborating user cannot dynam-
ically interact with and tweak a visualization to answer
questions formed spontaneously in his or her mind. If
we could enable users to share and modify a visualiza-
tion across the Internet without requiring local data
replication, the visualization community would have an
even greater impact on the conduct of today’s research.

An adequate systematic study is obviously necessary
to develop an optimal solution to this problem. In fact,
several existing approaches—such as remote visualiza-
tion methods1,2—could potentially be used. However, in
this work we present a viewpoint tangential to those pre-
vious works. We believe that ordinary application scien-
tists can use free, unscheduled, and unreserved resources
on remote networked computers to visualize cutting-edge
caliber data sets. Computing components do not need to
be batch-scheduled. Those resources could sporadically
become unavailable or faulty, but fault tolerance as well
as scalability can be achieved. Scientists can use such
resources not only for their own work but also, as a novel
capability, to effectively share results among peers.

Using distributed heterogeneous resources as a basic
parallel infrastructure to compute visualization could
provide great potential usability, scalability, and cost
efficiency. To justify our viewpoint, we describe a sam-
ple system of this nature and demonstrate its efficacy
with a recently generated real-world large data set.

Using large-scale heterogeneous systems
Large-scale parallel systems are indispensable when

visualizing large data. Currently, systems used for this

purpose are usually locally accessible homogeneous clus-
ters. Researchers less often consider scenarios in which
processing nodes have different configurations or back-
ground workloads. Nor are many current packages
designed with redundancy so that they can properly han-
dle sporadic faulty nodes. While these issues might not
matter greatly for parallel visualization of locally stored
data, we argue that they do matter when using dynam-
ic distributed resources. Native support of heterogene-
ity and fault tolerance is crucial to wide-area systems.

For the purpose of discussion, we refer to a prototype
system used in our research. Our system’s underlying
infrastructure consists of a large number of shared het-
erogeneous processors connected by the wide-area
Internet (see Figure 1 on page 22). Every processor has
both a certain processing power and local storage space.
We call each processing/storage node a depot (see the
“Distributed System Infrastructures” sidebar near the
end of the article).

To use the system, a user first partitions and uploads
the data set onto a large number of depots, with k-way
replication. k determines the degree of redundancy,
which is usually as small as 3. We use a 30 time-step sub-
set of a simulation produced by the Terascale Supernova
Initiative (TSI)3 for experiments, totaling 75 Gbytes. The
data set has a spatial resolution of 864 � 864 � 864 vox-
els. We partition each time step into 64 blocks and
obtain 1,920 partitions. We upload the data set with
three-way replication onto a total of 100 depots. Figure
1 illustrates the three replicas, each with a different
color. The result is three complete copies of the TSI data
set in the system. On average, each depot holds a 2.25-
Gbyte subset of the data set.

The time to upload data is comparable to the time to
move data between two locations. After the first copy is
made, the remaining k � 1 copies are replicated in par-
allel using multisource multicasts. In our case, uploading
75 Gbytes with three-way replication almost always com-
pletes within 3 hours. This one-time cost of data move-
ment allows a dispersed group of users to efficiently
share their study and visualization of the same data for
a few weeks, without a need to move the data again.

The multiple replicas of each partition of data are
described by one common XML file called an exNode.
Like Unix inodes, exNodes describe the mapping from
logical files to stored blocks. Unlike inodes, exNodes are
external and describe segments of logical files striped
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across multiple networked depots. Besides showing how
the data is distributed, exNodes also implicitly describe
all processors available for use as well as the partitions
associated with each.

Once the user uploads a data set and its exNodes are
in hand, a user edits a template XML visSpec file (see
Figure 2) to set up a visualization run. A user can also use
a viewer program’s GUI to generate a visSpec file. This
way the user can avoid potential formatting mistakes or
typos by not directly editing the underlying ASCII file.
This visSpec file is similar to the lookmark in Paraview
(see http://www.paraview.org) and contains all needed
visualization parameters—for example, transfer func-
tions specified as interval ranges, camera paths and matri-
ces, and so on. However, unlike a lookmark, a visSpec file
is not data set specific, and only defines a visualization
when combined with exNodes describing an uploaded
data set. By separating data from operation, this is suit-
able for use on distributed processors.

The same lightweight viewer program, run from a
client machine, can open a visSpec file as well as data

exNodes. The program spawns off parallel rendering
operations by sending the visSpec file to all depots hold-
ing data partitions, as described by the exNodes. To
orchestrate the distributed depots for parallel efficiency
and fault tolerance, the viewer program schedules the
parallel visualization run using methods detailed in the
next section. The depots transmit the computed visual-
ization results back to the viewer for assembly and final
viewing. When an isosurface is requested in the visSpec
file, the surface portions can simply be concatenated; for
volume rendering, the viewer program composites
imagery from all partitions in depth order.

A visSpec file is no larger than 4 Kbytes, while the
compressed exNode files describing 75 Gbytes of TSI
data with three-way replication is less than 600 Kbytes.
A user can send them via email to collaborators, who
can open the visSpec and exNodes using the viewer pro-
gram on a laptop and spawn the visualization. The
results are delivered to the viewer program on the fly.
The use of XML as the uniform interface makes access to
the visualization platform-independent. A user can also
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A Driving Application—The Terascale
Supernova Initiative

In the past few years, computational science has been
incorporated into the scientific enterprise as a third basic
element, complementing theory and experimentation.1,2

This field employs computationally intensive methods to
simulate complex phenomena that are too expensive, too
dangerous, or physically impossible to study by more
traditional means. Near-term hopes of progress in
answering a number of basic scientific questions, such as the
production of heavy elements in supernovae, depend
fundamentally on this new approach.

Experience has shown that research programs that revolve
around big simulations, like those that revolve around big
instruments, usually involve large, multidisciplinary, highly
distributed teams of researchers. Such teams are necessary
to create, maintain, and run the simulations, and even more
so to digest and analyze their huge data outputs. For
instance, in astrophysics, the Terascale Supernova Initiative
(TSI) draws on special expertise from many physicists, as
well as from applied mathematicians and computer
scientists.3 The data that results from massive TSI runs on the
world’s fastest supercomputers must be analyzed by
scientists distributed across the US, including the Oak Ridge
National Laboratory (ORNL), North Carolina State
University, University of California at San Diego, Clemson
University, Florida Atlantic University, State University of
New York at Stony Brook, and University of Washington. 
The work presented in the main article used actual TSI
simulation data.

So the general application scenario is one in which a
group of users work jointly but often asynchronously across
the wide area network on large data. For instance, TSI
simulations run on supercomputers operated by ORNL and
generate terabyte or larger data sets. After a simulation is
finished, all TSI scientists would like to have access to this
data so that each can work on (for example, analyze and
visualize) the aspects of it in which he or she is interested.

Now it would often be productive if they could share the
visualizations they create with their colleagues, especially if
they could communicate them not just as movies, but
instead in a form that can be interactively modified.
However, there are two major obstacles to realizing this
advantageous possibility. First, the data is big, and therefore
moving or copying it in the wide area is an expensive
operation; after initial positioning (which might include
replication), further movement needs to be minimized or
performance will suffer. Second, interactive visualization
requires access to substantial computing resources with the
necessary software installed and access to the data with
reasonable performance. Simultaneously satisfying both of
these conditions for a community like TSI is a nontrivial
challenge.

To adequately support such demanding needs by highly
distributed research communities, not only do computer
scientists need to make substantial improvements in
hardware, software, networking, and data management
components, but we also need to find more innovative ways
to use those components. While we acknowledge that other
alternative approaches exist, the viewpoint that we
presented in the main article is one idea to support just this
kind of application community.
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make modifications to the visSpec using the viewer pro-
gram. The compact visSpec files that arise during
research can be saved and shared as well.

This prototype system makes several cumbersome
tasks convenient for our end users, the application sci-
entists. First, moving data is a long and error-prone
process. The sustained transfer rates across today’s
Internet are in general no higher than 10 Mbytes per sec-
ond. Moving just 75 Gbytes of data between two loca-
tions takes around two hours. In our system, once the

data has been uploaded, no more
data movement is necessary.
Second, application scientists are
not experts in programming par-
allel, distributed systems for fault
tolerance and scalability. Our
system makes all such important
but tricky technical details trans-
parent. Third, current large-scale
systems are often operated 
by reservation schemes like
batch queues. The undetermined
amount of wait time through 
a batch queue is not the ideal 
for investigating spontaneously
formed questions by visualiza-
tion. Our system exclusively uses
unreserved resources with no
batch scheduling.

Fault-tolerant and
scalable scheduler

The scheduler within the
viewer program must be fault
tolerant, since each depot in the
wide area is only as reliable as
the network to which it connects.
Like the Internet, our system of
hundreds of depots is best-effort
with few absolute guarantees. In
addition, geographically distrib-
uted users access the system with
competing goals. To get the best
performance out of heteroge-
neous, nondedicated depots,
dynamic scheduling of computa-
tion and replication need to be
tightly coupled. Scheduling of
computation involves the assign-
ment of parallel tasks, while
scheduling of replication deals
with runtime data movement
among depots. They both aim at
simultaneously balancing the
computation workload and
addressing fault tolerance. Our
scheduler implements such
coscheduling by adaptively mea-
suring depot performances to
dynamically assign visualization
tasks and direct runtime data
movements.

Adaptive computation scheduling 
Our scheduler aims to discover fast depots on the fly,

assign as many tasks to them as possible, and avoid
being stalled by slow or faulty depots. We devised three
generic mechanisms for this purpose: 

■ a dynamically ranked pool of depots, 
■ a two-level priority queue of tasks, and 
■ a competition avoidant task assignment scheme.

Visualization Viewpoints

22 January/February 2007

Copying partitions to depots
Making replicas between depots

Streaming visualization results from depots
Moving partitions between depots at runtime

1 Dynamic sharing of large-scale visualization using distributed, heterogeneous resources in
parallel. (a) Large data sets are uploaded and striped in k-way replication for redundancy on dis-
tributed computers. (b) Given the XML specification of a visualization job and the data involved,
any user can access and edit the specified visualization from a laptop using a lightweight viewer
program, without the need for a priori resource reservation or going through a batch queue.
Sharing an interactive visualization with a remote collaborator is as simple as emailing a generated
ASCII XML file. In a way, this illustrates an interactive and cyclic process of specifying/modifying
and inspecting visualization, by a distributed group of concurrent users.

(a)

(b)



The scheduler ranks each depot by its estimated time to
process a task of unit size. This measurement roughly
reflects performance of depots delivered to the experi-
ment. It is updated adaptively by computing a running
average of measured depot performance, with older
measurements given an exponentially decreasing
weight.

A two-level priority queue maintains unfinished tasks.
The higher priority queue (HPQ) contains tasks that are
ready to be assigned, and the lower priority queue (LPQ)
contains tasks that have been assigned to one or more
depots but not finished. Initially, only the first w tasks are
placed in HPQ, where w is the task window’s size. It con-
trols the degree of parallelism and number of tasks that
can be finished out of order. In most cases, w is greater
than the number of available depots so that every depot
can contribute. However, w is decreased in case of severe
resource contention as a processor back-off strategy.
Each task in HPQ is keyed by the minimum unit task pro-
cessing time of all depots holding the required data par-
tition. This priority ranks new tasks by their likelihood
of being finished by a fast depot. Each task in LPQ is
keyed by its estimated waiting time. Tasks in both HPQ
and LPQ are sorted by their keys in decreasing order.

When a parallel visualization starts, tasks in HPQ are
sequentially assigned to available depots and demoted
to LPQ. In case of failure, the task in LPQ is promoted
back to HPQ so that other depots can take it over. When
tasks are completed, every available depot will be direct-
ly assigned the first task in HPQ that it can handle. In
this way, slow depots do not compete for tasks with fast
depots to ensure fast depots be assigned as many tasks
as possible. If a depot is not assigned a task in HPQ, the
first task in LPQ that it can handle is considered. This is
the slowest task among all unfinished tasks that the
depot can help. Thus, multiple depots can work in par-
allel on the same unfinished task. If any instance of the
duplicated tasks is done, other instances are aborted.

Dynamic replication scheduling 
At any particular time, some data partitions might

only reside on a set of slow or heavily loaded depots. In
that case, fast depots cannot help because they do not
have a local copy of the required data partition. A nat-
ural thought is to move data partitions to fast depots at
runtime. To make sure that time spent on data move-
ment does not exceed the benefit that we gain from
migrating the task, bandwidth information between
depots needs to be acquired. Instead of injecting extra
testing traffic into the network, we devised a novel 
multisource partial download scheme with deadline for
data movement between depots.

Ideally, an experiment’s shortest execution time
occurs when all depots finish roughly at the same time.
Once the total of work each depot can do in HPQ is less
than its proportion of all unassigned work according to
its performance, the scheduler tries to transfer a task to
it. The scheduler starts from the first task in HPQ, which
has the least likelihood to be finished by a fast depot. To
avoid always moving tasks out of the same set of slow
depots, the task is moved only when all depots that can
perform this task have sufficient work to remain busy.

When a target depot and a slow task are picked, the
maximum data transfer time allowed for the data move-
ment is calculated as the deadline. We begin with a small
fraction p of the partition. If the partial transfer com-
pletes in p of the deadline, we proceed to move the rest
of the partition, otherwise, the data transfer is aborted.
Since each partition is replicated on k depots, the desti-
nation depot receives data from multiple sources by
using the progressive driven redundancy algorithm.

Results and discussion
We have only implemented volume visualization—in

particular, software ray-casting and isosurface extrac-
tion—in our distributed system. To practically deploy
our system to hundreds of depots—including Unix,
Linux, and Mac servers—all source codes were written
entirely in ANSI C. The resulting library is called the
Visualization Cookbook Library (vcblib) with a compact
binary size of 200 Kbytes. Although vcblib does native-
ly handle differences in endian orders among proces-
sors, unlike other visualization packages, vcblib does
not include function-rich but system-dependent mod-
ules, such as handling multiple data formats and user
interfaces. We only support embarrassingly parallel
visualization jobs.

For this article, we have successfully run experiments
on 30 time steps of the TSI data set using 100 depots dis-
tributed across the US, Canada, and Europe—made avail-
able by the National Logistical Networking Testbed and
the PlanetLab project (see http://www.planet-lab.org).
In all experiments, we deployed vcblib as a dynamic
library on every participating depot. Visualization oper-
ations in vcblib are loaded and executed in a sandbox to
ensure the depot’s security and stability, with each visu-
alization job in a separately forked process. Multiple con-
current visualization jobs can simultaneously run on the
same depot. No depots were reserved or running with a
controlled workload.

The choice of which depots to use affects the overall
performance. Unfortunately, there might not be a robust
way to always make the best choice. Hence we designed
the following experiment to measure performance (see
Figure 3 on the next page). We randomly select a subset
from the 100 nodes we use. Since the more we select,
the more overlap there is among the selections, we ran-
domly select 50, 60, 70, 80, and 90 nodes 10, 8, 6, 4, and
2 times, respectively. With each selection, we record the
wall clock time in three back-to-back tests. We also run
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2 A partial illustration of the XML visSpec file.



tests using all of the 100 nodes for 3 times. All tests ren-
der a same 30 time-step animation.

On 100 depots, it takes on average about 237 seconds
to complete software ray casting of 75 Gbytes of TSI
data (with 800 � 800-pixel image resolution and a 0.5
step size). To provide a context, the same ray casting
takes 219 minutes on a dedicated 2.2-GHz P4 CPU

(with a 512-Kbyte cache). In other words, the perfor-
mance achieved by 100 nondedicated, distributed com-
puters of dispersed types (including Linux, Unix, and
Mac) roughly equals that of a dedicated 64-node, 2.2-
GHz cluster, assuming a 90-percent parallel utilization
on the cluster. In the case of isosurface extraction, the
comparison of performance remains similar. We have
not incurred network bottlenecks in our tests. The high-
est rate of runtime network transfer was just a little over
1 megabit per second.

Conclusion
We still need to fully study the limits of this approach,

particularly scalability versus data sizes, number of con-
current jobs, and number of users. Nevertheless, we
hope to have demonstrated the feasibility and potential
to use distributed computing and storage resources for
serious visualization tasks. As Figure 4 illustrates, even
without specially provisioned resources, a group of users
can already share ideas by asynchronously viewing and
dynamically modifying visualizations, using shared
depots in a wide area in parallel. It seems a ripe time for
the community to consider distributed and shared com-
puting resources as a viable parallel infrastructure to
support data-intensive remote collaborations. ■
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Streaming visualization 
results from depots
Streaming
results from

4 An illustrated snapshot of our system in operation. The red arrows represent visualization results delivered by
depots. The image is a frame from a volume-rendered animation of the TSI data set.
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3 Average wall clock time shown with standard deviation. There are 30,
24, 18, 12, 6, and 3 separate measurements when using 50, 60, 70, 80, 90,
and 100 depots, respectively.
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Distributed System Infrastructures
To implement a distributed visualization system like ours,

we need as much support from distributed system
infrastructures as available. Otherwise, the complexity
necessary to achieve functionality, scalability, robustness,
and performance will quickly overwhelm visualization
researchers.

We could leverage several distributed infrastructures, but
choosing among them is not simple. When making our
choice, we had three primary concerns. First, the
infrastructure should offer both storage and computing
resources without the requirement of stringent
authentication. Without this characteristic, it’s extremely
difficult for any individual visualization team to come up
with a testbed of any practical significance. For instance, the
100 nodes we used are distributed across the continent of
North America and Europe over 30 sites. Second, the
infrastructure must be sufficiently robust, and hence
redundancy for fault tolerance is required as a native
ingredient of the infrastructure. It’s rather unrealistic for
software engineers to focus on the visualization and fault-
tolerant distributed computing at the same time. Third, the
infrastructure must have some basic constructs that can
compose slices of storage and computing resources and
form a higher-level abstraction. For instance, one such

abstraction is the Unix inode, which hides the details of how
bytes are organized on disk to form a file. The visualization
community needs similar constructs in the distributed
domain so that data partitions can be transparently striped
across distributed computers.

We have chosen the Logistical Networking infrastructure,
which meets all the noted requirements. Please refer to
other works1-2 for details of the Logistical Networking
infrastructure and for its previous use in visualization.3,4
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