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Abstract — Ideas of scientific research occur spontaneously. To 

enable a group of collaborating but geographically separated 

researchers to effectively investigate and share their spontaneous 

hypotheses as well as research findings on the fly, we are 

interested in developing the infrastructural tools that allow a 

distributed data intensive computing environment to be shared in 

an interactive manner, as opposed to a batch mode of operation. 

However, without advanced reservation, it is difficult to assure a 

a certain level of performance on a large number of shared and 

heterogeneous servers. To achieve scalable parallel speedups in 

this scenario, especially with large distributed datasets, we must 

closely integrate the management of computation and runtime 

data movement. Unfortunately, such co-scheduling of 

computation and replication in the wide area is still not well 

understood in practice. In this paper, we first define the 

canonical scheduling problem for datasets distributed with k-way 

replication in the wide area. We then develop a dynamic 

co-scheduling algorithm that integrates the scheduling of 

computation and data movement. Using time-varying 

visualization as the driving application, we demonstrate, on 80 

non-dedicated and heterogeneous nodes, that our co-scheduling 

approach improves not only application performance but also 

server utilization at a very reasonable cost. 

 
Index Terms — Data replication, distributed computing, load 

balancing, scheduling, task farming, wide area storage  

I. INTRODUCTION 

o facilitate today’s collaborative scientific research, large 

datasets must frequently be shared among and analyzed 

by a team of geographically separated scientists, spread across 

the wide area network. Assuming similar performance, 

scientists would very likely prefer to use a system operated in 

an interactive manner, as opposed to a batch system. Scientists 

would then be able to efficiently explore and share 

spontaneous hypotheses or research ideas. 

When designing infrastructural tools for widespread use by 

collaborating computational scientists, there are several 

possible alternatives. Among those, we would like to focus on 

an un-orchestrated distributed environment where computation 

and storage resources are not reserved beforehand, but, rather, 

co-scheduled at runtime. Using time-varying visualization of 
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large datasets as a driving application, we hope to show that 

this approach provides a convenient utility to the user 

community. 

There are several technical hurdles to achieving the above 

goal. For instance, in a distributed system composed of 

heterogeneous servers shared by a community without explicit 

orchestration, it would be hard to have all the involved servers 

produce a guaranteed level of performance. On such a shared 

distributed infrastructure, traditional parallel algorithms would 

need to be adapted with some special methods of scheduling. 

In this paper, we describe a systematic study of the 

co-scheduling algorithm that considers both computation and 

storage aspects simultaneously in a distributed system. We 

demonstrate, using our co-scheduling algorithm, that it is 

already feasible to visualize time-varying simulation datasets 

using a large number of un-reserved servers to achieve 

scalable performance as well as fault-tolerance. Most of these 

servers have heavy but dynamically varying workloads. 

It is natural for parallel implementations to partition a 

dataset and the overall computing job accordingly. To improve 

throughput and reliability in case of individual failure in the 

wide area, the partitions are often replicated among k different 

servers, i.e. k-way replication [23]. Due to limited storage 

capacity, transport latency and maintenance overhead, the 

value of k is typically small. The programming paradigm of 

these parallel implementations is usually master-slave, also 

known as task-farming [26]. In the master-slave paradigm, the 

master is responsible for distributing tasks among a farm of 

slaves and collecting partial results. Each slave simply waits 

for a task from the master, computes the partial result and 

sends it back. Considering that most computations work on 

local data, tasks are only assigned to slaves that have the 

corresponding partitions. The master has to explicitly initiate 

any data movement between slaves before task assignment. 

To get the best performance out of non-dedicated servers, 

dynamic management for computation and data replication has 

to be tightly coupled. Computation management involves the 

assignment of parallel tasks, while data replication 

management deals with data movement between selected 

servers. Both scheduling of computation and scheduling of 

replication aim at maximizing server utilization and 

minimizing application execution time. While scheduling of 

computation improves server utilization by distributing tasks 

intelligently to optimize load balancing among servers, 

scheduling of replication moves partitions around so that work 

assigned to each server is proportional to its performance as 

observed by the application. 
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Many well-known middleware systems have been 

developed over the past few years to implement task-farming 

applications but scheduling strategies are still open research 

issues [12]. Many job scheduling and data management 

techniques have been proposed in the literature. However, few 

previous works have examined co-scheduling of computation 

and replication for operating on k-way replicated data in the 

wide area.  

In this paper, we propose an integrated scheduling 

algorithm for both computation and replication. It adaptively 

measures server performance in terms of computation power 

and data transfer rate. This information is used to dynamically 

assign tasks to servers and direct data movements among them 

to achieve the best server utilization, minimizing application 

execution time.  In addition, our co-scheduling algorithm is 

novel in runtime data movement schemes that use the deadline 

based partial download from multiple sources. User provided 

knowledge of the application such as computation complexity 

also contributes to an effective scheduling.  

We have successfully run a large-scale volume visualization 

application on 80 distributed heterogeneous servers. 

Compared with the conventional work-queue scheduling 

algorithm, our co-scheduling algorithm improves both 

application execution time and server utilization by more than 

30%. We note that none of the servers were reserved or under 

a controlled workload. 

The remainder of the paper is organized as follows. Section 

II reviews related work in job scheduling and data replication. 

In Section III, we define the scheduling problem for wide area 

replicated datasets. In Section IV, we provide the details of 

our dynamic co-scheduling algorithm to solve the problem. 

Section V presents the experimental results. We conclude our 

work and point to future research directions in Section VI. 

II. RELATED WORK 

Job scheduling in a dynamic, heterogeneous, distributed 
computing environment has been extensively studied [8, 12, 13, 
15, 18, 20]. Casanova et al. [12] propose an adaptive 
scheduling algorithm for task farming applications. The 
algorithm adapts the length of the job queue to the underlying 
computing fabric according to constant computation throughput 
measurement. Desprez et al. [15] describes algorithms that 
compute an optimal placement of replicas prior to job execution. 
What distinguishes our work is that we consider dynamic data 
replication an important part of the scheduling problem. 

Work on downloading wide area replicated data includes [4, 
21]. Plank et al. [21] describe the progress-driven redundancy 
algorithm that uses the work-queue model to monitor the 
progress of each download and retry a download if it progresses 
too slowly. Allen et al. [4] proposes an alternative by using 
NWS [27] predictions to select the best server to download. 
We extend the scheduling of download to arbitrary computation 
and actively make fresh replicas at runtime. 

The research most relevant to the algorithm presented in this 
paper is [14, 22]. Ranganathan et al. [22] evaluate several 
scheduling and replication strategies in a two-level scheduling 
framework. Chakrabarti et al. [14] propose the Integrated 
Replication and Scheduling Strategy to iteratively improve 
application performance. In stead of using simulations, we 

evaluate our algorithm in a real computing environment and 
prove that our result is close to the optimal.     

III. SCHEDULING PROBLEM FOR REPLICATED DATASETS 

In a distributed environment where shared resources cannot 

be brought under the control of a single global scheduler, the 

application must be scheduled by the user or by some 

middleware agent [9, 11]. For the latter case, the middleware 

agent itself can be viewed as a client. Figure 1 shows a typical 

structure of task parallel applications on shared datasets that 

are partitioned and replicated at distributed servers. We 

assume that every server is capable of handling both 

computation and data movement requests. Each user accesses 

and analyzes datasets independently without knowing 

activities of other users.  
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Figure 1. A typical structure of task parallel applications on 

replicated datasets 

Before the discussion of various job scheduling algorithms, 

we define the scheduling problem for wide area replicated 

datasets. Suppose we have: 

1. A collection of computational servers {P1,P2,…,Pm} 

where m is the number of servers. Pi is described by bi 

and ci. Bandwidth bi represents the bandwidth between Pi 

and the client. Computational power ci defines how fast a 

partition can be processed for an application. For 

convenience, both bi and ci are measured in megabytes 

per second. If a server has multiple processors (e.g. an 

SMP machine), ci is the aggregation of all processors that 

can contribute to the computation. When several users 

contend for resources, bi and ci are a fraction of physical 

resources that are delivered to the user. 

2. A large dataset that is partitioned into {d1,d2,…, dn}. n is 

the number of partitions and sj is the size of dj. We define 

1=
j

i
 if dj is on Pi, 0=

j

i
 otherwise. Partitions are 

distributed with k-way replication (k  1), i.e. each 

partition is replicated on k out of m randomly selected 

servers. Formally, km

i

j

i
==1  for each partition dj. As a 

result, each server has n k/m partitions. 

3. An application (e.g. parallel rendering) that is able to 

make use of the entire collection of partitions in parallel. 

Thus, we have a set of independent computational tasks 

{T1,T2,…,Tn}. We assume that dj is the only partition 

required by task Tj. We further assume that execution time 



 3

of Tj is proportional to f(sj) and the output size of Tj is 

g(sj). f(x) is known as the complexity function and g(x) is 

often constant or linear. They are application specific and 

usually required for an effective application level 

scheduling [9]. If 1=
j

i
 and Tj is assigned to Pi, the time 

required to complete Tj can be formulated as f(sj)/ci + 

g(sj)/bi. f(sj)/ci is the time required for computation and 

g(sj)/bi is the time spent on communication. Since the 

required partition already resides on the target server 

when a task is assigned, we assume that communication 

time is solely the time to receive the output. Although 

many effective techniques such as pipelining can be 

employed to overlap computation and communication 

between successive tasks, we assume that they are not 

overlapped in our model. 

4. (Optional) A set of data movement tasks Mij that makes a 

fresh copy of dj on Pi. To exploit the fact that there are 

multiple replicas of dj, data is downloaded from multiple 

sources. Thus, the time required to perform Mij is 

)/( 1

j

r

m

r irj
bs = , where bir represents the bandwidth 

between Pi and Pr. 
j

r

m

r ir
b=1  is the aggregate bandwidth 

to Pi from all sources that have dj. 

To mitigate resource contention on shared servers with 

heavy load, we assign at most one computational task to a 

server for each application at a time. Data movement tasks can 

co-exist with a computational task because a good mix of 

CPU-bound and I/O-bound processes can actually improve 

system throughput. However, due to process scheduling, too 

many concurrent data movement tasks can slow down 

computational tasks, especially in a non-dedicated system. 

Thus, the number of active data movement tasks per 

application at each server is also set to be one. The number of 

simultaneous downloads could be k because we have k 

replicas. 

Suppose each server Pi runs for time ti and all servers start 

at the same time, then the execution time of an application 

would be 
i

m

i
t

1
max

=
, which is the time required for the last 

server to finish its assigned tasks. For a given application, the 

shortest execution time occurs when all servers can be kept 

doing useful work and they all finish roughly at the same time. 

Given that the dataset is replicated throughout a wide area 

network, does there exist a scheduling of computation and data 

movement tasks such that the execution time of an application 

over the entire partitions is minimal? This is the scheduling 

problem of replicated datasets we will explore in this paper. 

Formally, let 1=
j

i
 denote that task Tj is assigned to server 

Pi. A schedule is a set of }1,0{j

i
, ]...1[ mi  and 

]...1[ nj , such that =

m

i

j

i
j

1
1 . =

m

i

j

i
j

1
1  mandates 

that each task Tj must be assigned to at least one server. If 

1=
j

i
 and 1=

j

i
, Tj can be immediately assigned to Pi as 

long as there is no other active task on Pi. However, if 

0=
j

i
and 1=

j

i
, a copy of dj must be moved to Pi before Tj 

can be assigned to Pi. Note that, 1=
j

i
does not necessarily 

imply 1=
j

i
because we have r replicas to choose from and a 

fresh replica can be made at runtime when necessary. The best 

schedule should satisfy that 

)/)(/)((max 11 ijij

n

j

j

i

m

i
bsgcsf +==

is minimal assuming 

that no fault happens after the schedule is made. For the last 

server, time spent on explicit data movement completely 

overlaps with computation, thus it is not included in the 

formula. 

IV. CO-SCHEDULING OF COMPUTATION AND REPLICATION 

Shared datasets are typically replicated in a heterogeneous 

environment and accessed by geographically distributed users 

with competing goals. As a result, resource performance 

varies over time and is hard to predict. Experience with 

distributed applications indicates that adaptability is 

fundamental to achieving application performance in dynamic 

environments [8]. It is imperative for us to employ heuristics 

and dynamic load balancing to obtain a good approximation of 

the scheduling problem, while addressing fault-tolerance at the 

same time. We will first discuss the conventional work-queue 

scheduling of parallel tasks. Based on that, we present the 

co-scheduling algorithm in two steps: adaptive scheduling of 

computation and dynamic scheduling of replication. 

A. Work-queue Scheduling 

Work-queue scheduling [17] is a variation of the master- 

slave model. The master maintains a work queue and assigns 

tasks to available slaves. Each slave works on a task 

independently. On completion, it notifies the master that it is 

ready to receive the next task. As an alternative, the master 

can poll each slave periodically to see whether it can dispatch 

another unfinished task. In contrast to static scheduling [13] in 

which tasks are allocated to slaves before the application is 

started, work-queue scheduling attempts to deal with 

variability in resource performance and individual task 

workload by deferring task assignment decisions for as long as 

possible [24]. In work-queue scheduling, tasks are not 

distributed to slaves until they have finished a previously 

assigned task. In this way, fast slaves tend to deliver more 

tasks than slow slaves over time. 

Algorithm 1 illustrates a scheduling of parallel tasks over 

replicated datasets by applying the work-queue scheduling. To 

avoid data movement, tasks are only assigned to servers that 

have the required partitions, i.e. task Tj is assigned to Pi only 

if 1=
j

i
. 

Algorithm 1: Work-queue scheduling over replicated datasets 

1  while not IsEmpty(Q) 

2   foreach available server Pi do 

3    DeQueue(Tf, Q),  Tf has been finished by Pi 

4    Tj =GrabTask(Pi, Q), dj is on Pi  

5    AssignTask(Tj, Pi) 
 

In GrabTask, unassigned tasks have higher priority than 

assigned tasks. When there is no unassigned task that a fast 

server can do, it will try to help slow servers on assigned tasks 

whose partitions it holds. The algorithm is straightforward and 
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theoretical work has proved that work-queue scheduling yields 

a good approximate solution to scheduling problems [19]. 

Even though it is very adaptive, the above algorithm ignores 

the fact that distributed servers have very diverse performance, 

which has two potential consequences. First, each task is 

performed by one server unless the server fails, the client 

scheduler times out or other servers that have the 

corresponding partition have no more tasks to do. If one server 

lags, the overall application cannot progress if the application 

(e.g. streaming, interactive visualization, etc.) needs ordered 

partial results. Second, each available server always picks the 

first unfinished task that it can do, which in some cases might 

be performed by a faster server. In this case, slow servers 

“steal” work from fast servers. When all candidate tasks on 

fast servers get depleted, they have to stop while slow servers 

still need to finish the tasks for which they hold the 

corresponding partitions. 

Thus, there is a need for more sophisticated scheduling 

techniques that can perform adaptive resource selection and 

on-demand data movement. The following subsections 

describe our approach for designing and implementing such 

techniques. 

B. Adaptive Scheduling of Computation 

Our approach depends on discovering fast servers on the 

fly, assigning as many tasks to them as possible, and avoiding 

being stalled by slow or faulty servers. We devised three 

generic mechanisms for this purpose: (i) a dynamically ranked 

pool of servers, (ii) a two level priority queue of tasks and (iii) 

a competition avoidant task assignment scheme. This 

framework is very generic and can be applied to other 

distributed computing applications in general. 

Each server Pi is ranked by its estimated time
i

u
t to process a 

task of unit size u (e.g. 10MBytes). This measurement roughly 

reflects performance of the server delivered to an application. 

The less time a server needs to process the unit task, the higher 

rank this server has. Recall that
ii

i

u
bugcuft /)(/)( += . Rather 

than a simple average, ci is calculated from ci'+ ( -ci'), 

where ci' is the previous value of ci and  is the most recent 

value. Similarly, bi=bi'+ ( -bi'), where bi' is the previous 

value of bi and  is the most recent value of bi. The parameter 

 is borrowed from machine learning [5]. It determines the 

influence of previous values, with the influence of outdated 

values tending towards zero over time. This technique causes 

the client to continuously adapt to the constantly changing 

resource performance [20]. 

When a server finishes a task, it returns the computation 

time tc and the output.  The client records the time ts when it 

starts to receive the output and the time tr when it finishes. 

With tc, ts and tr,  and  are formulated as f(sj)/tc and 

g(sj)/(tr-ts) respectively. Note that both tr and ts are obtained 

from the local time service at the client. Although we can get a 

more accurate  by using the time that the server starts to send 

back the output, it requires time on both the client and servers 

to be closely synchronized, which is not very practical in a 

large distributed system. 

A two-level priority queue maintains unfinished tasks. The 

higher priority queue (HPQ) contains tasks that are ready to be 

assigned and the lower priority queue (LPQ) contains tasks 

that have been assigned to one or more servers but not 

finished. If a task is assigned to an idle server, it is moved 

from HPQ to LPQ. Initially, only the first w tasks 

{T1,T2,…,Tw}are placed in HPQ and task Tx(x>w) can not be 

added until task Tx-w has been finished, where w is the size of 

the task window (TW). w controls how far out of order tasks 

can be finished. For example, if w=1, all tasks will be 

completed in order. In contrast, if w=n, every task is allowed 

to be finished out of order. In most cases, w is greater than m 

so that every server can contribute to the application. Figure 2 

shows a snapshot of tasks in the two-level priority queue on 

the dataset as illustrated in Figure 1. The task window cannot 

move forward at this moment because server P1 is still 

working on task T3, which is the head of TW.  
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Figure 2: A snapshot of the two-level priority queue 

Each task Tj in HPQ is keyed by
j

i

i

u

m

i
t

=1
min , which is the 

minimum unit task process time
i

u
t of all servers currently 

having partition dj. This priority ranks new tasks by their 

likelihood to be finished by a fast server in terms of 

computational power and available bandwidth. Assume a task 

Tj in LPQ has been assigned to Pi. Tj is keyed by its estimated 

waiting time, which is the estimated execution time 

Ej=f(sj)/ci+g(sj)/bi minus the time elapsed since start. Ej is 

static during task execution because bi and ci will not be 

updated until the task is completed. This priority ranks 

assigned tasks by its likelihood to finish soon. The client can 

dynamically sleep the minimum estimated waiting time to 

avoid busy wait. Tasks in both HPQ and LPQ are sorted by 

their keys in non-increasing order. 

When the parallel computation starts, the client sequentially 

assigns each available server the first task in HPQ that it is 

able to perform, moving the task to LPQ. When Pi completes 

task Tj, bi and ci are updated. Tj is removed from LPQ also. If 

Tj is the first task in the task window, TW is moved forward 

by one, adding one more task to HPQ. Since bi and ci are 

adjusted, HPQ is resorted by the latest 
i

u
t  as well. Then, there 

are three possible scenarios: (1) both HPQ and LPQ are 

empty, (2) there are unassigned tasks in HPQ, (3) there are 

unfinished tasks in LPQ. Case 1 signifies the completion of 

scheduling. In Case 2, every available server will be directly 

assigned the first task in HPQ that it can handle. In this way, 

slow servers do not compete for tasks with fast servers so that 

fast servers can be assigned as many tasks as possible. In Case 

3, we would like unfinished tasks to be computed by 

additional servers (up to k-1, k is the number of replicas for 

each partition), which work in parallel with the server 

originally assigned for an unfinished task. These servers 
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compete to finish the same task. Again, we assign the first task 

in LPQ to an available server that holds the required partition. 

This is the slowest task among all unfinished tasks that the 

server can help. If any of the duplicated tasks is done, others 

are aborted immediately. 

C. Dynamic Scheduling of Replication 

So far, our scheduling algorithm makes use of execution 

history to allocate tasks so that slow severs do not compete 

with fast servers for tasks. Fast servers can further help slow 

servers by repeating tasks on replicas. However, data 

placement is still static, i.e. there is no active data movement 

in the process of computing. There is the possibility that some 

partitions only reside on a set of slow servers. In that case, fast 

servers cannot help slow servers because they do not have the 

required partitions to work on. 

One natural thought is to move partitions to fast servers 

before they become idle. In order to make sure that time spent 

on data movement does not exceed the profit that we gain 

from migrating the task, bandwidth information between 

servers needs to be acquired. However, this needs non-trivial 

setup and management of bandwidth estimation or prediction 

tools [16, 27]. Also, the information obtained is not always up 

to date. Instead of using existing tools to insert extra test 

traffic into the network and query for available bandwidth, we 

devised a partial download scheme with deadline for data 

movement between computational servers. 

As parallel computation proceeds, the scheduler actively 

monitors tasks in HPQ that each server can perform. The 

maximum amount of work in HPQ a server Pi can contribute 

is ))()((1 += =

n

j jji
sgsfW , Tj HPQ and 1=

j

i
. Recall that 

the shortest execution time occurs when all servers finish 

roughly at the same time. We calculate Pi’s share of the 

unassigned tasks in HPQ, = =

m

j

j

u

i

ui
ttSS
1

/ . 

))()((1 += =

n

j jj
sgsfS , Tj HPQ, is the total amount of work 

left in HPQ. =

n

j

j

u

i

u
tt
1

/ is Pi’s proportion of the unassigned 

work, according to its observed performance. Since the speeds 

of data processing and data transmission for each server are 

different, both Wi and Si are rough estimations. 

Once Wi<Si, the scheduler tries to initiate a data movement 

task Mij, moving data blocks from servers that have dj to Pi. 

Since partitions are replicated and Wi increases with k, there is 

the possibility that no data movement is necessary at all 

(Wi Si). The scheduler starts from the first task in HPQ, which 

has the least likelihood to be finished by a fast server. To 

avoid always moving partitions out of the same set of slow 

servers, the task Tj should satisfy that sum of Wi of all servers 

that have dj is above their aggregate share (the sum of all 

corresponding Si). If this condition cannot be satisfied, the 

scheduler will try the next task in HPQ. Once a task is marked 

for data migration, the scheduler will skip it and assign the 

next task to an available server.  

Before sending and receiving bits over the network, the 

profitability analysis is invoked to estimate the maximum data 

transfer time allowed, the deadline. For example, suppose T8 

has been picked to be migrated to P1. Also assume that T8 can 

also be performed by P2 and P3. We move d8 only if min(F2 

,F3)>(Tm+Tc), where Tm is the time for data movement, Tc is 

the time to compute T8 on P1, F2 and F3 are the time required 

to complete all remaining tasks (including T8) on P2 and P3 

respectively. The deadline of M18 is set to be min(F2 ,F3)-Tc. 

After the deadline is calculated, the data movement task Mij 

starts. We do not try to transfer the complete partition from the 

beginning. Instead, we try a small fraction p of the partition 

and see if it can be finished in p of the deadline. p is 

configured at runtime so that dynamics such as TCP slow start 

can be avoided. If the fractional transfer completes in p of the 

deadline, we proceed to move the rest of the data, otherwise, 

Mij is aborted. Since the partition is replicated on k servers, the 

destination server takes advantage of downloading data from 

multiple sources by using the progressive driven redundancy 

algorithm [21]. When Mij is done, key of Tj in HPQ is updated 

because a fast server can now work on it. Figure 3 illustrates 

the process of replication scheduling. 
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Figure 3: The process of dynamic scheduling of replication 

V. EXPERIMENTS 

To investigate performance of our co-scheduling algorithm, 

we compare the wall clock execution time and server 

utilization with those of the basic work-queue scheduling and 

the adaptive scheduling of computation but without 

replication. Server utilization measures the efficiency of n 

servers allocated for an application. It is defined as the ratio of 

the time that n servers spent on doing useful work to the time 

those servers would be able to do useful work [18].  We run a 

massively parallel visualization application on 80 

non-dedicated servers over the National Logistical 

Networking Testbed (NLNT) and PlanetLab [2]. Although 

these nodes are server-class machines, they are shared among 

a large user community. PlanetLab nodes are even virtualized 

as “slices” to enable large scale sharing. Loads on these nodes 

differ dramatically and vary over time. Figure 4 shows a 

snapshot of the one-minute load of 415 PlanetLab nodes 

starting from 15:50pm on Nov.16, 2005 on the left and the 

one-minute load of pl1.cs.duke.edu in 24 hours on the 

same day on the right. Load of the duke node is sampled 

every five minutes. The server was unavailable during 18:10 

to 19:55, which happens frequently in a large distributed 

system. The raw data is gathered by the PlanetLab CoMon 

service [1]. 
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Figure 4: One-minute load of PlanetLab nodes 

The visualization application does isosurface extraction and 

volume rendering on a time-varying dataset simulating a Jet 

shockwave with 100 time steps. The spatial resolution of each 

time step in the Jet dataset is 256 256 256. As a common 

practice in visualization, we compute the first derivative of the 

volume and store it with the scalar volume to accelerate the 

visualization process. This is necessary whether to compute 

per vertex normal on an extracted isosurface or volume render 

with shading effects. Every time step is partitioned into 8 

partitions with spatial resolution 128 128 128 of 8.4MB in 

storage. There are in total 800 partitions, covering 100 time 

steps. Total size of the entire dataset is 6.7GB. These 

partitions are uploaded and augmented with k copies evenly on 

all participating servers. For example, using k=2, per-server 

storage is roughly 800 2 8.4/80=168MB. After all partitions 

are staged into the network, isosurface extraction or volumes 

rendering computations are spawned in parallel on distributed 

servers. We provide two sample images from the test runs in 

Figure 5. Note that volume rendering does a high quality 

image reconstruction, which consumes more CPU cycles than 

isosurface extraction for the Jet dataset. 
 

  
(a) Isosurface extraction (b) Volume rendering 

Figure 5: Two sample images of the Jet dataset 

We setup NFU-enabled IBP depots on 80 randomly selected 

servers across North America from NLNT and PlanetLab. 

Most of them are PlanetLab nodes. The choice of IBP 

(Internet Backplane Protocol) is motivated by the integrated 

storage and computation service it provides and the authors’ 

experience with that system. IBP implements a generic, best 

effort network storage service that can scale globally [6]. IBP 

storage is managed by servers called “depots”, on which 

clients perform remote storage operations. IBP clients view a 

depot’s storage resources as a collection of byte arrays. Clients 

initially obtain the use of a byte array by making a storage 

allocation on a depot. 

The NFU (Network Functional Unit) is an extension to IBP, 

providing data transformation services for bytes stored in IBP 

allocations [7]. NFU operations are either static or dynamic. 

Static NFU operations are compiled and linked as part of an 

IBP depot. In contrast, dynamic NFU operations are mobile 

code that is executed or interpreted in a sandbox by a 

particular static NFU operation. The code that defines a 

dynamic NFU operation is stored in an IBP allocation and 

passed to the appropriate static operation as an argument. In 

our tests, both the isosurface extraction and volume rendering 

operations are deployed as dynamic operations. 

In Figure 6 and Figure 7, we compare execution time and 

server utilization for volume rendering and isosurface 

extraction with k=2 and k=3 respectively. In both figures, i is 

the basic work-queue scheduling, ii is the adaptive scheduling 

of computation and iii is the co-scheduling of computation and 

replication. To maximize the differences, we use the 

maximum window size w=800. With each particular 

combination, 8 tests were run and only the average is reported. 

We note here that none of the servers were reserved or running 

with a controlled workload using the PlanetLab Sirius service 

[3]. Since conditions might change between one execution and 

the next due to resource contention, we ran one instance of 

each of the three scheduling algorithms back-to-back hoping 

that all three executions would enjoy similar conditions on 

average. 
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Figure 6: Performance of volume rendering with w=800 
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Figure 7: Performance of Isosurface extraction with w=800 

In general, increasing the number of replicas, k, increases 

storage overhead on each server and consumes more network 

bandwidth when copying partitions between IBP depots 

during the data staging phase. Both isosurface extraction and 

volume rendering have shorter execution time and higher 

server utilization with 3-replication than with 2-replication for 

all the three scheduling algorithms. With a larger k, both fast 

and slow servers have more candidate partitions to work on, 

thus fast servers have more chances to help slow servers. 

For the heavyweight volume rendering with k=2 and 

w=800, on average, the co-scheduling algorithm reduces 

execution time by 31% and increases server utilization by 32% 

at the cost of moving 56 partitions from the slow servers to 

fast servers, compared with the basic work-queue scheduling. 

For the lightweight isosurface extraction, in most cases, the 

cost of moving a partition out of k slow servers exceeds the 

profit gained from transferring the task to a fast server. We 
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Basic Work-queue Scheduling 

Adaptive Scheduling of Computation 

Co-scheduling of Computation and Replication 

only see a slight improvement of execution time and server 

utilization for the co-scheduling algorithm over the adaptive 

scheduling of computation with k=2 and w=800 because of the 

overhead of vainly trying the deadline based data movement. 
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Figure 8: Execution time of volume rendering with different w  

Size of the task window w also has a similar effect to 

execution time as k does. We plot execution time of volume 

rendering with different w for k=2 in Figure 8. By increasing 

w, the amount of duplicated tasks is reduced and the work 

completed by each server gets more proportional to its 

performance. For instance, suppose we have 4 tasks of unit 

size. They are replicated with k=2 on server P1 and P2. P1 can 

finish a task in 30 seconds and P2 can finish a task in 10 

seconds. Initially, task T1 was assigned to P1 and task T2 was 

assigned to P2. If w is set to 2, then P2 has to help P1 after it 

finishes T2. Thus, the number of duplicated tasks is 2 and total 

execution time is 40 seconds. In contrast, with w=4, P2 can 

proceed to work on T3 and T4 without helping P1. The number 

of duplicated tasks would be 0 and total execution time is 30 

seconds. 
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Figure 9: The variation of number of active servers over the 

time span of a typical run with k=2 and w=800 

To better illustrate the dynamics of load balancing between 

the three scheduling algorithms, we plot the number of active 

servers during a typical execution using k=2 and w=800 in 

Figure 9. Server utilization is calculated as the area covered by 

the curve divided by the area of the bounding rectangle. 

Initially, all servers work on one of its 800 2/80=20 

partitions. As tasks on a particular server are completed, the 

choice of the next task for this server becomes constrained. 

For volume rendering, in the basic work-queue scheduling, 

when tasks on the faster servers are eventually depleted, the 

slower servers still need to finish the tasks for which they hold 

the corresponding partitions. This explains why the basic 

work-queue scheduling has the least server utilization. 

Adaptive scheduling of computations improves server 

utilization by optimizing the task assignment process so that 

the fast servers can be assigned as many tasks as possible. 

With co-scheduling of computation and replication, fast 

servers are kept busy by moving extra tasks to them from slow 

servers. 

For isosurface extraction, server utilizations with the three 

scheduling algorithms are better than their counterparts in 

volume rendering and they do not have too much difference. 

This has to do with process scheduling on servers that have a 

high average load, i.e. a large number of active processes are 

waiting in the ready queue for execution. Most operating 

systems schedule process execution by priority [25]. Linux 

(installed on all PlanetLab servers and more than 50% of 

NLNT servers) process scheduler keeps track of process 

execution and adjusts their priorities dynamically. Processes 

are assigned the highest priority initially. They are penalized 

by decreasing their priority for running a long time. 

Correspondingly, they are boosted by increasing their priority 

if they have been denied the use of the CPU for a long time 

[10]. Remember that the process doing isosurface extraction 

needs less CPU cycles. Thus, it is more likely to have a higher 

average priority than process doing volume rendering. As a 

result, servers that have high load tend to look faster when 

running lightweight computations than when running 

heavyweight computations. When all servers perform 

similarly fast, the system tends to have higher server 

utilization. 

Understanding the relative performance between the three 

scheduling algorithms, we are further interested in knowing 

how close is the execution time obtained from the 

co-scheduling algorithm to the real optimal execution time. In 

order to calculate the optimal execution time, we need to find 

out the optimal schedule first. However, it is extremely 

difficult to figure out the optimal assignment of tasks, even if 

we know the performance of servers. Since each task must be 

assigned to one of the k servers that have the corresponding 

partition, there are k
800 

possible schedules in total. When data 

movement is considered, the scheduling problem is more 

complex.  

Fortunately, tasks in our tests roughly have the same size. 

To obtain an estimation of the optimal execution time, we log 

the time taken for each server to complete a task and compute 

the average (
i
t ) when all tasks are finished. Ideally, the 

optimal execution time occurs when all servers stop at the 

same time. We calculate the “super optimal” execution time as 

xi ix
ttt = )/1/()/1(800 80

1 where )/1/()/1(800 80

1=i ix
tt  is the 

number of tasks assigned to server Px according to its 

performance. It does not matter which server’s average task 

completion time is chosen for the calculation because all 

servers finish at the same time. We call it “super optimal” 

because )/1/()/1(800 80

1=i ix
tt is usually a fractional number, 
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which is not true in real task assignment. Thus, we also 

calculate the “close optimal” execution time by rounding the 

number of tasks that each server is assigned. The execution 

time is formulated as 

xi ixx
tttround ==

))/1/()/1(800(max 80

1

80

1
. Execution time of 

the optimal scheduling should be somewhere between the 

“super optimal” and “close optimal”. Using the co-scheduling 

algorithm, the average execution time of volume rendering 

with k=2 and w=800 is 1.07 times of the “close optimal” value 

and 1.16 times of the “super optimal” value, which we 

consider very close to the optimal execution time. 

Knowing that it is not a rigorous comparison, but only to 

provide context, we note that the same isosurface extraction 

takes 22 minutes on one dedicated 2.8GHz P4 processor, 

whereas the volume rendering takes 1 hour and 19 minutes on 

the same processor.  

VI. CONCLUSIONS AND FUTURE WORK 

In this paper, we have investigated the problem of 

scheduling jobs and data movement in a distributed 

environment with the goal of maximizing server utilization 

and minimizing application execution time. Toward this goal, 

we developed a dynamic co-scheduling algorithm that 

integrates the placement of jobs and data replication for wide 

area shared datasets.  

We ran a large-scale volume visualization application on 80 

distributed and heterogeneous servers to evaluate the 

co-scheduling algorithm. We came to the conclusion that even 

with a small number of replicas, the co-scheduling algorithm 

greatly improves both server utilization and application 

performance for computation intensive applications.  We also 

demonstrated that the degree of data replication and size of the 

task window can affect performance of the algorithm.  

In the future work, we plan to further experiment with a 

cutting edge 3TB supernova simulation dataset under multiple 

user access patterns to study how to optimize the original data 

distribution by utilizing new replicas made during previous 

executions. We also want to address whether the strict limit of 

one computational task per server can be loosened without 

causing conflicts between competing schedulers.   
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