
 1

Abstract — Ideas of scientific research occur spontaneously. To

enable a group of collaborating but geographically separated

researchers to effectively investigate and share their spontaneous

hypotheses as well as research findings on the fly, we are

interested in developing the infrastructural tools that allow a

distributed data intensive computing environment to be shared in

an interactive manner, as opposed to a batch mode of operation.

However, without advanced reservation, it is difficult to assure a

a certain level of performance on a large number of shared and

heterogeneous servers. To achieve scalable parallel speedups in

this scenario, especially with large distributed datasets, we must

closely integrate the management of computation and runtime

data movement. Unfortunately, such co-scheduling of

computation and replication in the wide area is still not well

understood in practice. In this paper, we first define the

canonical scheduling problem for datasets distributed with k-way

replication in the wide area. We then develop a dynamic

co-scheduling algorithm that integrates the scheduling of

computation and data movement. Using time-varying

visualization as the driving application, we demonstrate, on 80

non-dedicated and heterogeneous nodes, that our co-scheduling

approach improves not only application performance but also

server utilization at a very reasonable cost.

Index Terms — Data replication, distributed computing, load

balancing, scheduling, task farming, wide area storage

I. INTRODUCTION

o facilitate today’s collaborative scientific research, large

datasets must frequently be shared among and analyzed

by a team of geographically separated scientists, spread across

the wide area network. Assuming similar performance,

scientists would very likely prefer to use a system operated in

an interactive manner, as opposed to a batch system. Scientists

would then be able to efficiently explore and share

spontaneous hypotheses or research ideas.

When designing infrastructural tools for widespread use by

collaborating computational scientists, there are several

possible alternatives. Among those, we would like to focus on

an un-orchestrated distributed environment where computation

and storage resources are not reserved beforehand, but, rather,

co-scheduled at runtime. Using time-varying visualization of

Manuscript received November 30, 2005. This work was supported in part

by NSF under Grant CNS-0437508.

Huadong Liu and Micah Beck (corresponding author) are with the

Logistical Computing and Internetworking Laboratory, Department of

Computer Science, University of Tennessee, Knoxville, TN, USA.

Jian Huang is with the SeeLab, Department of Computer Science,

University of Tennessee, Knoxville, TN, USA.

Email: {hliu, mbeck, huangj}@cs.utk.edu

large datasets as a driving application, we hope to show that

this approach provides a convenient utility to the user

community.

There are several technical hurdles to achieving the above

goal. For instance, in a distributed system composed of

heterogeneous servers shared by a community without explicit

orchestration, it would be hard to have all the involved servers

produce a guaranteed level of performance. On such a shared

distributed infrastructure, traditional parallel algorithms would

need to be adapted with some special methods of scheduling.

In this paper, we describe a systematic study of the

co-scheduling algorithm that considers both computation and

storage aspects simultaneously in a distributed system. We

demonstrate, using our co-scheduling algorithm, that it is

already feasible to visualize time-varying simulation datasets

using a large number of un-reserved servers to achieve

scalable performance as well as fault-tolerance. Most of these

servers have heavy but dynamically varying workloads.

It is natural for parallel implementations to partition a

dataset and the overall computing job accordingly. To improve

throughput and reliability in case of individual failure in the

wide area, the partitions are often replicated among k different

servers, i.e. k-way replication [23]. Due to limited storage

capacity, transport latency and maintenance overhead, the

value of k is typically small. The programming paradigm of

these parallel implementations is usually master-slave, also

known as task-farming [26]. In the master-slave paradigm, the

master is responsible for distributing tasks among a farm of

slaves and collecting partial results. Each slave simply waits

for a task from the master, computes the partial result and

sends it back. Considering that most computations work on

local data, tasks are only assigned to slaves that have the

corresponding partitions. The master has to explicitly initiate

any data movement between slaves before task assignment.

To get the best performance out of non-dedicated servers,

dynamic management for computation and data replication has

to be tightly coupled. Computation management involves the

assignment of parallel tasks, while data replication

management deals with data movement between selected

servers. Both scheduling of computation and scheduling of

replication aim at maximizing server utilization and

minimizing application execution time. While scheduling of

computation improves server utilization by distributing tasks

intelligently to optimize load balancing among servers,

scheduling of replication moves partitions around so that work

assigned to each server is proportional to its performance as

observed by the application.

Dynamic Co-Scheduling of Distributed

Computation and Replication

Huadong Liu, Micah Beck, and Jian Huang

T

 2

Many well-known middleware systems have been

developed over the past few years to implement task-farming

applications but scheduling strategies are still open research

issues [12]. Many job scheduling and data management

techniques have been proposed in the literature. However, few

previous works have examined co-scheduling of computation

and replication for operating on k-way replicated data in the

wide area.

In this paper, we propose an integrated scheduling

algorithm for both computation and replication. It adaptively

measures server performance in terms of computation power

and data transfer rate. This information is used to dynamically

assign tasks to servers and direct data movements among them

to achieve the best server utilization, minimizing application

execution time. In addition, our co-scheduling algorithm is

novel in runtime data movement schemes that use the deadline

based partial download from multiple sources. User provided

knowledge of the application such as computation complexity

also contributes to an effective scheduling.

We have successfully run a large-scale volume visualization

application on 80 distributed heterogeneous servers.

Compared with the conventional work-queue scheduling

algorithm, our co-scheduling algorithm improves both

application execution time and server utilization by more than

30%. We note that none of the servers were reserved or under

a controlled workload.

The remainder of the paper is organized as follows. Section

II reviews related work in job scheduling and data replication.

In Section III, we define the scheduling problem for wide area

replicated datasets. In Section IV, we provide the details of

our dynamic co-scheduling algorithm to solve the problem.

Section V presents the experimental results. We conclude our

work and point to future research directions in Section VI.

II. RELATED WORK

Job scheduling in a dynamic, heterogeneous, distributed
computing environment has been extensively studied [8, 12, 13,
15, 18, 20]. Casanova et al. [12] propose an adaptive
scheduling algorithm for task farming applications. The
algorithm adapts the length of the job queue to the underlying
computing fabric according to constant computation throughput
measurement. Desprez et al. [15] describes algorithms that
compute an optimal placement of replicas prior to job execution.
What distinguishes our work is that we consider dynamic data
replication an important part of the scheduling problem.

Work on downloading wide area replicated data includes [4,
21]. Plank et al. [21] describe the progress-driven redundancy
algorithm that uses the work-queue model to monitor the
progress of each download and retry a download if it progresses
too slowly. Allen et al. [4] proposes an alternative by using
NWS [27] predictions to select the best server to download.
We extend the scheduling of download to arbitrary computation
and actively make fresh replicas at runtime.

The research most relevant to the algorithm presented in this
paper is [14, 22]. Ranganathan et al. [22] evaluate several
scheduling and replication strategies in a two-level scheduling
framework. Chakrabarti et al. [14] propose the Integrated
Replication and Scheduling Strategy to iteratively improve
application performance. In stead of using simulations, we

evaluate our algorithm in a real computing environment and
prove that our result is close to the optimal.

III. SCHEDULING PROBLEM FOR REPLICATED DATASETS

In a distributed environment where shared resources cannot

be brought under the control of a single global scheduler, the

application must be scheduled by the user or by some

middleware agent [9, 11]. For the latter case, the middleware

agent itself can be viewed as a client. Figure 1 shows a typical

structure of task parallel applications on shared datasets that

are partitioned and replicated at distributed servers. We

assume that every server is capable of handling both

computation and data movement requests. Each user accesses

and analyzes datasets independently without knowing

activities of other users.

WAN

 Server: P2

 Server: P3 Server: P4 Server: P5

 Server: P6

 Server: P1
 Workstation B

d9

d1

d3

d4

d11

d12

d6

d10

d7

d8

d2

d5

d4

d12

d1

d2

d8

d9

d5

d6

d10

d11

d3

d7

Servers

{P1, P2, P3, P4, P5, P6}

Workstation A: Parallel

task assign and partial

result collection

Workstation B: Parallel

task assign and partial

result collection

Task Queues

Task Queues

Workstation A

Data Partitions

{d1, d2, d3, d4, d5, d6,

 d7, d8, d9, d10, d11, d12}

m=6, n=12 and k=2,

each server has

4 replicas of different

partitions .
Figure 1. A typical structure of task parallel applications on

replicated datasets

Before the discussion of various job scheduling algorithms,

we define the scheduling problem for wide area replicated

datasets. Suppose we have:

1. A collection of computational servers {P1,P2,…,Pm}

where m is the number of servers. Pi is described by bi

and ci. Bandwidth bi represents the bandwidth between Pi

and the client. Computational power ci defines how fast a

partition can be processed for an application. For

convenience, both bi and ci are measured in megabytes

per second. If a server has multiple processors (e.g. an

SMP machine), ci is the aggregation of all processors that

can contribute to the computation. When several users

contend for resources, bi and ci are a fraction of physical

resources that are delivered to the user.

2. A large dataset that is partitioned into {d1,d2,…, dn}. n is

the number of partitions and sj is the size of dj. We define

1=
j

i
 if dj is on Pi, 0=

j

i
 otherwise. Partitions are

distributed with k-way replication (k 1), i.e. each

partition is replicated on k out of m randomly selected

servers. Formally, km

i

j

i
==1 for each partition dj. As a

result, each server has n k/m partitions.

3. An application (e.g. parallel rendering) that is able to

make use of the entire collection of partitions in parallel.

Thus, we have a set of independent computational tasks

{T1,T2,…,Tn}. We assume that dj is the only partition

required by task Tj. We further assume that execution time

 3

of Tj is proportional to f(sj) and the output size of Tj is

g(sj). f(x) is known as the complexity function and g(x) is

often constant or linear. They are application specific and

usually required for an effective application level

scheduling [9]. If 1=
j

i
 and Tj is assigned to Pi, the time

required to complete Tj can be formulated as f(sj)/ci +

g(sj)/bi. f(sj)/ci is the time required for computation and

g(sj)/bi is the time spent on communication. Since the

required partition already resides on the target server

when a task is assigned, we assume that communication

time is solely the time to receive the output. Although

many effective techniques such as pipelining can be

employed to overlap computation and communication

between successive tasks, we assume that they are not

overlapped in our model.

4. (Optional) A set of data movement tasks Mij that makes a

fresh copy of dj on Pi. To exploit the fact that there are

multiple replicas of dj, data is downloaded from multiple

sources. Thus, the time required to perform Mij is

)/(1

j

r

m

r irj
bs = , where bir represents the bandwidth

between Pi and Pr.
j

r

m

r ir
b=1 is the aggregate bandwidth

to Pi from all sources that have dj.

To mitigate resource contention on shared servers with

heavy load, we assign at most one computational task to a

server for each application at a time. Data movement tasks can

co-exist with a computational task because a good mix of

CPU-bound and I/O-bound processes can actually improve

system throughput. However, due to process scheduling, too

many concurrent data movement tasks can slow down

computational tasks, especially in a non-dedicated system.

Thus, the number of active data movement tasks per

application at each server is also set to be one. The number of

simultaneous downloads could be k because we have k

replicas.

Suppose each server Pi runs for time ti and all servers start

at the same time, then the execution time of an application

would be
i

m

i
t

1
max

=
, which is the time required for the last

server to finish its assigned tasks. For a given application, the

shortest execution time occurs when all servers can be kept

doing useful work and they all finish roughly at the same time.

Given that the dataset is replicated throughout a wide area

network, does there exist a scheduling of computation and data

movement tasks such that the execution time of an application

over the entire partitions is minimal? This is the scheduling

problem of replicated datasets we will explore in this paper.

Formally, let 1=
j

i
 denote that task Tj is assigned to server

Pi. A schedule is a set of }1,0{j

i
,]...1[mi and

]...1[nj , such that =

m

i

j

i
j

1
1 . =

m

i

j

i
j

1
1 mandates

that each task Tj must be assigned to at least one server. If

1=
j

i
 and 1=

j

i
, Tj can be immediately assigned to Pi as

long as there is no other active task on Pi. However, if

0=
j

i
and 1=

j

i
, a copy of dj must be moved to Pi before Tj

can be assigned to Pi. Note that, 1=
j

i
does not necessarily

imply 1=
j

i
because we have r replicas to choose from and a

fresh replica can be made at runtime when necessary. The best

schedule should satisfy that

)/)(/)((max 11 ijij

n

j

j

i

m

i
bsgcsf +==

is minimal assuming

that no fault happens after the schedule is made. For the last

server, time spent on explicit data movement completely

overlaps with computation, thus it is not included in the

formula.

IV. CO-SCHEDULING OF COMPUTATION AND REPLICATION

Shared datasets are typically replicated in a heterogeneous

environment and accessed by geographically distributed users

with competing goals. As a result, resource performance

varies over time and is hard to predict. Experience with

distributed applications indicates that adaptability is

fundamental to achieving application performance in dynamic

environments [8]. It is imperative for us to employ heuristics

and dynamic load balancing to obtain a good approximation of

the scheduling problem, while addressing fault-tolerance at the

same time. We will first discuss the conventional work-queue

scheduling of parallel tasks. Based on that, we present the

co-scheduling algorithm in two steps: adaptive scheduling of

computation and dynamic scheduling of replication.

A. Work-queue Scheduling

Work-queue scheduling [17] is a variation of the master-

slave model. The master maintains a work queue and assigns

tasks to available slaves. Each slave works on a task

independently. On completion, it notifies the master that it is

ready to receive the next task. As an alternative, the master

can poll each slave periodically to see whether it can dispatch

another unfinished task. In contrast to static scheduling [13] in

which tasks are allocated to slaves before the application is

started, work-queue scheduling attempts to deal with

variability in resource performance and individual task

workload by deferring task assignment decisions for as long as

possible [24]. In work-queue scheduling, tasks are not

distributed to slaves until they have finished a previously

assigned task. In this way, fast slaves tend to deliver more

tasks than slow slaves over time.

Algorithm 1 illustrates a scheduling of parallel tasks over

replicated datasets by applying the work-queue scheduling. To

avoid data movement, tasks are only assigned to servers that

have the required partitions, i.e. task Tj is assigned to Pi only

if 1=
j

i
.

Algorithm 1: Work-queue scheduling over replicated datasets

1 while not IsEmpty(Q)

2 foreach available server Pi do

3 DeQueue(Tf, Q), Tf has been finished by Pi

4 Tj =GrabTask(Pi, Q), dj is on Pi

5 AssignTask(Tj, Pi)

In GrabTask, unassigned tasks have higher priority than

assigned tasks. When there is no unassigned task that a fast

server can do, it will try to help slow servers on assigned tasks

whose partitions it holds. The algorithm is straightforward and

 4

theoretical work has proved that work-queue scheduling yields

a good approximate solution to scheduling problems [19].

Even though it is very adaptive, the above algorithm ignores

the fact that distributed servers have very diverse performance,

which has two potential consequences. First, each task is

performed by one server unless the server fails, the client

scheduler times out or other servers that have the

corresponding partition have no more tasks to do. If one server

lags, the overall application cannot progress if the application

(e.g. streaming, interactive visualization, etc.) needs ordered

partial results. Second, each available server always picks the

first unfinished task that it can do, which in some cases might

be performed by a faster server. In this case, slow servers

“steal” work from fast servers. When all candidate tasks on

fast servers get depleted, they have to stop while slow servers

still need to finish the tasks for which they hold the

corresponding partitions.

Thus, there is a need for more sophisticated scheduling

techniques that can perform adaptive resource selection and

on-demand data movement. The following subsections

describe our approach for designing and implementing such

techniques.

B. Adaptive Scheduling of Computation

Our approach depends on discovering fast servers on the

fly, assigning as many tasks to them as possible, and avoiding

being stalled by slow or faulty servers. We devised three

generic mechanisms for this purpose: (i) a dynamically ranked

pool of servers, (ii) a two level priority queue of tasks and (iii)

a competition avoidant task assignment scheme. This

framework is very generic and can be applied to other

distributed computing applications in general.

Each server Pi is ranked by its estimated time
i

u
t to process a

task of unit size u (e.g. 10MBytes). This measurement roughly

reflects performance of the server delivered to an application.

The less time a server needs to process the unit task, the higher

rank this server has. Recall that
ii

i

u
bugcuft /)(/)(+= . Rather

than a simple average, ci is calculated from ci'+ (-ci'),

where ci' is the previous value of ci and is the most recent

value. Similarly, bi=bi'+ (-bi'), where bi' is the previous

value of bi and is the most recent value of bi. The parameter

 is borrowed from machine learning [5]. It determines the

influence of previous values, with the influence of outdated

values tending towards zero over time. This technique causes

the client to continuously adapt to the constantly changing

resource performance [20].

When a server finishes a task, it returns the computation

time tc and the output. The client records the time ts when it

starts to receive the output and the time tr when it finishes.

With tc, ts and tr, and are formulated as f(sj)/tc and

g(sj)/(tr-ts) respectively. Note that both tr and ts are obtained

from the local time service at the client. Although we can get a

more accurate by using the time that the server starts to send

back the output, it requires time on both the client and servers

to be closely synchronized, which is not very practical in a

large distributed system.

A two-level priority queue maintains unfinished tasks. The

higher priority queue (HPQ) contains tasks that are ready to be

assigned and the lower priority queue (LPQ) contains tasks

that have been assigned to one or more servers but not

finished. If a task is assigned to an idle server, it is moved

from HPQ to LPQ. Initially, only the first w tasks

{T1,T2,…,Tw}are placed in HPQ and task Tx(x>w) can not be

added until task Tx-w has been finished, where w is the size of

the task window (TW). w controls how far out of order tasks

can be finished. For example, if w=1, all tasks will be

completed in order. In contrast, if w=n, every task is allowed

to be finished out of order. In most cases, w is greater than m

so that every server can contribute to the application. Figure 2

shows a snapshot of tasks in the two-level priority queue on

the dataset as illustrated in Figure 1. The task window cannot

move forward at this moment because server P1 is still

working on task T3, which is the head of TW.

Task Window

Finished Tasks

Tasks

HPQ

LPQ

T1 T7T6T5T4T3T2

T7:P6

T9T8

T10:P2

T9

T10 T11 T12

T6:P5T8:P3T4:P4T3:P1 T5:P5T2:P3T1:P1

Figure 2: A snapshot of the two-level priority queue

Each task Tj in HPQ is keyed by
j

i

i

u

m

i
t

=1
min , which is the

minimum unit task process time
i

u
t of all servers currently

having partition dj. This priority ranks new tasks by their

likelihood to be finished by a fast server in terms of

computational power and available bandwidth. Assume a task

Tj in LPQ has been assigned to Pi. Tj is keyed by its estimated

waiting time, which is the estimated execution time

Ej=f(sj)/ci+g(sj)/bi minus the time elapsed since start. Ej is

static during task execution because bi and ci will not be

updated until the task is completed. This priority ranks

assigned tasks by its likelihood to finish soon. The client can

dynamically sleep the minimum estimated waiting time to

avoid busy wait. Tasks in both HPQ and LPQ are sorted by

their keys in non-increasing order.

When the parallel computation starts, the client sequentially

assigns each available server the first task in HPQ that it is

able to perform, moving the task to LPQ. When Pi completes

task Tj, bi and ci are updated. Tj is removed from LPQ also. If

Tj is the first task in the task window, TW is moved forward

by one, adding one more task to HPQ. Since bi and ci are

adjusted, HPQ is resorted by the latest
i

u
t as well. Then, there

are three possible scenarios: (1) both HPQ and LPQ are

empty, (2) there are unassigned tasks in HPQ, (3) there are

unfinished tasks in LPQ. Case 1 signifies the completion of

scheduling. In Case 2, every available server will be directly

assigned the first task in HPQ that it can handle. In this way,

slow servers do not compete for tasks with fast servers so that

fast servers can be assigned as many tasks as possible. In Case

3, we would like unfinished tasks to be computed by

additional servers (up to k-1, k is the number of replicas for

each partition), which work in parallel with the server

originally assigned for an unfinished task. These servers

 5

compete to finish the same task. Again, we assign the first task

in LPQ to an available server that holds the required partition.

This is the slowest task among all unfinished tasks that the

server can help. If any of the duplicated tasks is done, others

are aborted immediately.

C. Dynamic Scheduling of Replication

So far, our scheduling algorithm makes use of execution

history to allocate tasks so that slow severs do not compete

with fast servers for tasks. Fast servers can further help slow

servers by repeating tasks on replicas. However, data

placement is still static, i.e. there is no active data movement

in the process of computing. There is the possibility that some

partitions only reside on a set of slow servers. In that case, fast

servers cannot help slow servers because they do not have the

required partitions to work on.

One natural thought is to move partitions to fast servers

before they become idle. In order to make sure that time spent

on data movement does not exceed the profit that we gain

from migrating the task, bandwidth information between

servers needs to be acquired. However, this needs non-trivial

setup and management of bandwidth estimation or prediction

tools [16, 27]. Also, the information obtained is not always up

to date. Instead of using existing tools to insert extra test

traffic into the network and query for available bandwidth, we

devised a partial download scheme with deadline for data

movement between computational servers.

As parallel computation proceeds, the scheduler actively

monitors tasks in HPQ that each server can perform. The

maximum amount of work in HPQ a server Pi can contribute

is))()((1 += =

n

j jji
sgsfW , Tj HPQ and 1=

j

i
. Recall that

the shortest execution time occurs when all servers finish

roughly at the same time. We calculate Pi’s share of the

unassigned tasks in HPQ, = =

m

j

j

u

i

ui
ttSS
1

/ .

))()((1 += =

n

j jj
sgsfS , Tj HPQ, is the total amount of work

left in HPQ. =

n

j

j

u

i

u
tt
1

/ is Pi’s proportion of the unassigned

work, according to its observed performance. Since the speeds

of data processing and data transmission for each server are

different, both Wi and Si are rough estimations.

Once Wi<Si, the scheduler tries to initiate a data movement

task Mij, moving data blocks from servers that have dj to Pi.

Since partitions are replicated and Wi increases with k, there is

the possibility that no data movement is necessary at all

(Wi Si). The scheduler starts from the first task in HPQ, which

has the least likelihood to be finished by a fast server. To

avoid always moving partitions out of the same set of slow

servers, the task Tj should satisfy that sum of Wi of all servers

that have dj is above their aggregate share (the sum of all

corresponding Si). If this condition cannot be satisfied, the

scheduler will try the next task in HPQ. Once a task is marked

for data migration, the scheduler will skip it and assign the

next task to an available server.

Before sending and receiving bits over the network, the

profitability analysis is invoked to estimate the maximum data

transfer time allowed, the deadline. For example, suppose T8

has been picked to be migrated to P1. Also assume that T8 can

also be performed by P2 and P3. We move d8 only if min(F2

,F3)>(Tm+Tc), where Tm is the time for data movement, Tc is

the time to compute T8 on P1, F2 and F3 are the time required

to complete all remaining tasks (including T8) on P2 and P3

respectively. The deadline of M18 is set to be min(F2 ,F3)-Tc.

After the deadline is calculated, the data movement task Mij

starts. We do not try to transfer the complete partition from the

beginning. Instead, we try a small fraction p of the partition

and see if it can be finished in p of the deadline. p is

configured at runtime so that dynamics such as TCP slow start

can be avoided. If the fractional transfer completes in p of the

deadline, we proceed to move the rest of the data, otherwise,

Mij is aborted. Since the partition is replicated on k servers, the

destination server takes advantage of downloading data from

multiple sources by using the progressive driven redundancy

algorithm [21]. When Mij is done, key of Tj in HPQ is updated

because a fast server can now work on it. Figure 3 illustrates

the process of replication scheduling.

 Partial multi-stream

download /w deadline

Succeed?

Termination

Main multi-stream

data transfer

Information

update

Termination

d
e
a
d

lin
e

<Tj, Pi >

yes

no

Fast server selection

Slow task selection

Deadline calculation

<Tj>

<Pi >

Figure 3: The process of dynamic scheduling of replication

V. EXPERIMENTS

To investigate performance of our co-scheduling algorithm,

we compare the wall clock execution time and server

utilization with those of the basic work-queue scheduling and

the adaptive scheduling of computation but without

replication. Server utilization measures the efficiency of n

servers allocated for an application. It is defined as the ratio of

the time that n servers spent on doing useful work to the time

those servers would be able to do useful work [18]. We run a

massively parallel visualization application on 80

non-dedicated servers over the National Logistical

Networking Testbed (NLNT) and PlanetLab [2]. Although

these nodes are server-class machines, they are shared among

a large user community. PlanetLab nodes are even virtualized

as “slices” to enable large scale sharing. Loads on these nodes

differ dramatically and vary over time. Figure 4 shows a

snapshot of the one-minute load of 415 PlanetLab nodes

starting from 15:50pm on Nov.16, 2005 on the left and the

one-minute load of pl1.cs.duke.edu in 24 hours on the

same day on the right. Load of the duke node is sampled

every five minutes. The server was unavailable during 18:10

to 19:55, which happens frequently in a large distributed

system. The raw data is gathered by the PlanetLab CoMon

service [1].

 6

0

20

40

60

80

100

0 50 100 150 200 250 300 350 400

Server ID

O
n
e
-m

in
u
te

 L
o
a
d

0

10

20

30

40

50

0 225 450 675 900 1125 1350

Time (minutes)

O
n
e
-m

in
u
te

 L
o
a
d

Figure 4: One-minute load of PlanetLab nodes

The visualization application does isosurface extraction and

volume rendering on a time-varying dataset simulating a Jet

shockwave with 100 time steps. The spatial resolution of each

time step in the Jet dataset is 256 256 256. As a common

practice in visualization, we compute the first derivative of the

volume and store it with the scalar volume to accelerate the

visualization process. This is necessary whether to compute

per vertex normal on an extracted isosurface or volume render

with shading effects. Every time step is partitioned into 8

partitions with spatial resolution 128 128 128 of 8.4MB in

storage. There are in total 800 partitions, covering 100 time

steps. Total size of the entire dataset is 6.7GB. These

partitions are uploaded and augmented with k copies evenly on

all participating servers. For example, using k=2, per-server

storage is roughly 800 2 8.4/80=168MB. After all partitions

are staged into the network, isosurface extraction or volumes

rendering computations are spawned in parallel on distributed

servers. We provide two sample images from the test runs in

Figure 5. Note that volume rendering does a high quality

image reconstruction, which consumes more CPU cycles than

isosurface extraction for the Jet dataset.

(a) Isosurface extraction (b) Volume rendering

Figure 5: Two sample images of the Jet dataset

We setup NFU-enabled IBP depots on 80 randomly selected

servers across North America from NLNT and PlanetLab.

Most of them are PlanetLab nodes. The choice of IBP

(Internet Backplane Protocol) is motivated by the integrated

storage and computation service it provides and the authors’

experience with that system. IBP implements a generic, best

effort network storage service that can scale globally [6]. IBP

storage is managed by servers called “depots”, on which

clients perform remote storage operations. IBP clients view a

depot’s storage resources as a collection of byte arrays. Clients

initially obtain the use of a byte array by making a storage

allocation on a depot.

The NFU (Network Functional Unit) is an extension to IBP,

providing data transformation services for bytes stored in IBP

allocations [7]. NFU operations are either static or dynamic.

Static NFU operations are compiled and linked as part of an

IBP depot. In contrast, dynamic NFU operations are mobile

code that is executed or interpreted in a sandbox by a

particular static NFU operation. The code that defines a

dynamic NFU operation is stored in an IBP allocation and

passed to the appropriate static operation as an argument. In

our tests, both the isosurface extraction and volume rendering

operations are deployed as dynamic operations.

In Figure 6 and Figure 7, we compare execution time and

server utilization for volume rendering and isosurface

extraction with k=2 and k=3 respectively. In both figures, i is

the basic work-queue scheduling, ii is the adaptive scheduling

of computation and iii is the co-scheduling of computation and

replication. To maximize the differences, we use the

maximum window size w=800. With each particular

combination, 8 tests were run and only the average is reported.

We note here that none of the servers were reserved or running

with a controlled workload using the PlanetLab Sirius service

[3]. Since conditions might change between one execution and

the next due to resource contention, we ran one instance of

each of the three scheduling algorithms back-to-back hoping

that all three executions would enjoy similar conditions on

average.

0

100

200

300

400

500

600

i ii iii

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
o

n
d

s
)

2-replication 3-replication

0

0.2

0.4

0.6

0.8

1

i ii iii

S
e
rv

e
r

U
ti
liz

a
ti
o
n

2-replication 3-replication

Figure 6: Performance of volume rendering with w=800

0
10

20
30
40

50
60

70
80

i ii iii

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
o

n
d

s
)

2-replication 3-replication

0

0.2

0.4

0.6

0.8

1

i ii iii

S
e
rv

e
r

U
ti
liz

a
ti
o
n

2-replication 3-replication

Figure 7: Performance of Isosurface extraction with w=800

In general, increasing the number of replicas, k, increases

storage overhead on each server and consumes more network

bandwidth when copying partitions between IBP depots

during the data staging phase. Both isosurface extraction and

volume rendering have shorter execution time and higher

server utilization with 3-replication than with 2-replication for

all the three scheduling algorithms. With a larger k, both fast

and slow servers have more candidate partitions to work on,

thus fast servers have more chances to help slow servers.

For the heavyweight volume rendering with k=2 and

w=800, on average, the co-scheduling algorithm reduces

execution time by 31% and increases server utilization by 32%

at the cost of moving 56 partitions from the slow servers to

fast servers, compared with the basic work-queue scheduling.

For the lightweight isosurface extraction, in most cases, the

cost of moving a partition out of k slow servers exceeds the

profit gained from transferring the task to a fast server. We

 7

Basic Work-queue Scheduling

Adaptive Scheduling of Computation

Co-scheduling of Computation and Replication

only see a slight improvement of execution time and server

utilization for the co-scheduling algorithm over the adaptive

scheduling of computation with k=2 and w=800 because of the

overhead of vainly trying the deadline based data movement.

0

150

300

450

600

750

200 400 600 800

Task Window Size

E
x
e
c
u
ti
o
n
 T

im
e
 (

S
e
c
o
n
d
s
)

Basic Work-queue Scheduling

Adaptive Scheduling of Computation

Co-scheduling of Computation and Replication

Figure 8: Execution time of volume rendering with different w

Size of the task window w also has a similar effect to

execution time as k does. We plot execution time of volume

rendering with different w for k=2 in Figure 8. By increasing

w, the amount of duplicated tasks is reduced and the work

completed by each server gets more proportional to its

performance. For instance, suppose we have 4 tasks of unit

size. They are replicated with k=2 on server P1 and P2. P1 can

finish a task in 30 seconds and P2 can finish a task in 10

seconds. Initially, task T1 was assigned to P1 and task T2 was

assigned to P2. If w is set to 2, then P2 has to help P1 after it

finishes T2. Thus, the number of duplicated tasks is 2 and total

execution time is 40 seconds. In contrast, with w=4, P2 can

proceed to work on T3 and T4 without helping P1. The number

of duplicated tasks would be 0 and total execution time is 30

seconds.

Volumn Rendering

0

10

20

30

40

50

60

70

80

90

0 100 200 300 400 500 600

Execution Time (Seconds)

N
u

m
b

e
r

o
f

A
c
ti
v
e

 S
e

rv
e

rs

Isosurface Extraction

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70

Execution Time (Seconds)

N
u

m
b

e
r

o
f

A
c
ti
v
e

 S
e

rv
e

rs

Figure 9: The variation of number of active servers over the

time span of a typical run with k=2 and w=800

To better illustrate the dynamics of load balancing between

the three scheduling algorithms, we plot the number of active

servers during a typical execution using k=2 and w=800 in

Figure 9. Server utilization is calculated as the area covered by

the curve divided by the area of the bounding rectangle.

Initially, all servers work on one of its 800 2/80=20

partitions. As tasks on a particular server are completed, the

choice of the next task for this server becomes constrained.

For volume rendering, in the basic work-queue scheduling,

when tasks on the faster servers are eventually depleted, the

slower servers still need to finish the tasks for which they hold

the corresponding partitions. This explains why the basic

work-queue scheduling has the least server utilization.

Adaptive scheduling of computations improves server

utilization by optimizing the task assignment process so that

the fast servers can be assigned as many tasks as possible.

With co-scheduling of computation and replication, fast

servers are kept busy by moving extra tasks to them from slow

servers.

For isosurface extraction, server utilizations with the three

scheduling algorithms are better than their counterparts in

volume rendering and they do not have too much difference.

This has to do with process scheduling on servers that have a

high average load, i.e. a large number of active processes are

waiting in the ready queue for execution. Most operating

systems schedule process execution by priority [25]. Linux

(installed on all PlanetLab servers and more than 50% of

NLNT servers) process scheduler keeps track of process

execution and adjusts their priorities dynamically. Processes

are assigned the highest priority initially. They are penalized

by decreasing their priority for running a long time.

Correspondingly, they are boosted by increasing their priority

if they have been denied the use of the CPU for a long time

[10]. Remember that the process doing isosurface extraction

needs less CPU cycles. Thus, it is more likely to have a higher

average priority than process doing volume rendering. As a

result, servers that have high load tend to look faster when

running lightweight computations than when running

heavyweight computations. When all servers perform

similarly fast, the system tends to have higher server

utilization.

Understanding the relative performance between the three

scheduling algorithms, we are further interested in knowing

how close is the execution time obtained from the

co-scheduling algorithm to the real optimal execution time. In

order to calculate the optimal execution time, we need to find

out the optimal schedule first. However, it is extremely

difficult to figure out the optimal assignment of tasks, even if

we know the performance of servers. Since each task must be

assigned to one of the k servers that have the corresponding

partition, there are k
800

possible schedules in total. When data

movement is considered, the scheduling problem is more

complex.

Fortunately, tasks in our tests roughly have the same size.

To obtain an estimation of the optimal execution time, we log

the time taken for each server to complete a task and compute

the average (
i
t) when all tasks are finished. Ideally, the

optimal execution time occurs when all servers stop at the

same time. We calculate the “super optimal” execution time as

xi ix
ttt =)/1/()/1(800 80

1 where)/1/()/1(800 80

1=i ix
tt is the

number of tasks assigned to server Px according to its

performance. It does not matter which server’s average task

completion time is chosen for the calculation because all

servers finish at the same time. We call it “super optimal”

because)/1/()/1(800 80

1=i ix
tt is usually a fractional number,

 8

which is not true in real task assignment. Thus, we also

calculate the “close optimal” execution time by rounding the

number of tasks that each server is assigned. The execution

time is formulated as

xi ixx
tttround ==

))/1/()/1(800(max 80

1

80

1
. Execution time of

the optimal scheduling should be somewhere between the

“super optimal” and “close optimal”. Using the co-scheduling

algorithm, the average execution time of volume rendering

with k=2 and w=800 is 1.07 times of the “close optimal” value

and 1.16 times of the “super optimal” value, which we

consider very close to the optimal execution time.

Knowing that it is not a rigorous comparison, but only to

provide context, we note that the same isosurface extraction

takes 22 minutes on one dedicated 2.8GHz P4 processor,

whereas the volume rendering takes 1 hour and 19 minutes on

the same processor.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have investigated the problem of

scheduling jobs and data movement in a distributed

environment with the goal of maximizing server utilization

and minimizing application execution time. Toward this goal,

we developed a dynamic co-scheduling algorithm that

integrates the placement of jobs and data replication for wide

area shared datasets.

We ran a large-scale volume visualization application on 80

distributed and heterogeneous servers to evaluate the

co-scheduling algorithm. We came to the conclusion that even

with a small number of replicas, the co-scheduling algorithm

greatly improves both server utilization and application

performance for computation intensive applications. We also

demonstrated that the degree of data replication and size of the

task window can affect performance of the algorithm.

In the future work, we plan to further experiment with a

cutting edge 3TB supernova simulation dataset under multiple

user access patterns to study how to optimize the original data

distribution by utilizing new replicas made during previous

executions. We also want to address whether the strict limit of

one computational task per server can be loosened without

causing conflicts between competing schedulers.

ACKNOWLEDGMENT

The authors would like to thank Yun Zhang for valuable

discussion and feedback. The authors also acknowledge the

PlanetLab project headed by Larry Peterson for depot access.

REFERENCES

[1] CoMon: A Monitoring Infrastructure for PlanetLab.

http://comon.cs.princeton.edu/.

[2] PlanetLab. http://www.planet-lab.org/.

[3] PlanetLab: Sirius Scheduler Service.

http://snowball.cs.uga.edu/~dkl/pslogin.php/.

[4] M. S. Allen and R. Wolski. The livny and plank-beck problems: Studies

in data movement on the computational grid. In SC'03: Proceedings of
the 2003 ACM/IEEE conference on Supercomputing, page 43,

Washington, DC, USA, 2003. IEEE Computer Society.
[5] C. G. Atkeson, A. W. Moore, and S. Schaal. Locally weighted learning.

Artificial Intelligence Review, 11(1-5):11-73, 1997

[6] M. Beck, T. Moore, and J. S. Plank. An end-to-end approach to
globally scalable network storage. In SIGCOMM '02, Pittsburgh,

August 2002.
[7] M. Beck, T. Moore, and J. S. Plank. An end-to-end approach to

globally scalable programmable networking. Computer Communication
Review, 33(4):328-339, 2003.

[8] F. D. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, M. Faerman,
S. Figueira, J. Hayes, G. Obertelli, J. Schopf, G. Shao, S. Smallen, N.

Spring, A. Su, and D. Zagorodnov. Adaptive computing on the grid
using apples. IEEE Trans. on Parallel and Distributed Systems,

14(4):369-382, 2003.
[9] F. D. Berman, R.Wolski, S. Figueira, J. Schopf, and G. Shao.

Application-level scheduling on distributed heterogeneous networks. In
Supercomputing '96: Proceedings of the 1996 ACM/IEEE conference

on Supercomputing (CDROM), page 39, 1996.
[10] D. Bovet and M. Cesati. Understanding the Linux Kernel, Second

Edition. O'Reilly & Associates, Inc., Sebastopol, CA, USA, 2002.
[11] H. Casanova and J. Dongarra. NetSolve: A network server for solving

computational science problems. Technical Report CS-96-328,
Knoxville, TN 37996, USA, 1996.

[12] H. Casanova, M. Kim, J. S. Plank, and J. Dongarra. Adaptive
scheduling for task farming with grid middleware. International

Journal of High Performance Computing, 13(3):231-240, Fall 1999.
[13] T. L. Casavant and J. G. Kuhl. A taxonomy of scheduling in

general-purpose distributed computing systems. IEEE Transactions on
Software Engineering, 14(2):141-154, 1988.

[14] A. Chakrabarti, R. A. Dheepak, and S. Sengupta. Integration of
scheduling and replication in data grids. In International Conference on

High Performance Computing (HiPC), December 2004.
[15] F. Desprez and A. Vernois. Simultaneous scheduling of replication and

computation for data-intensive applications on the grid. Technical
Report RR2005-01, Lyon, France, January.

[16] C. Dovrolis, P. Ramanathan, and D. Moore. Packet-dispersion
techniques and a capacity-estimation methodology. IEEE/ACM

Transactions on Networking, 12(6):963-977, 2004.
[17] T. Hagerup. Allocating independent tasks to parallel processors: an

experimental study. Journal of Parallel and Distributed Computing,
47(2):185-197, 1997.

[18] E. Heymann, M. A. Senar, E. Luque, and M. Livny. Adaptive
scheduling for master-worker applications on the computational grid.

In GRID '00: Proceedings of the First IEEE/ACM International
Workshop on Grid Computing, pages 214-227, London, UK, 2000.

Springer-Verlag.
[19] D. S. Hochbaum, editor. Approximation algorithms for NP-hard

problems. PWS Publishing Co., Boston, MA, USA, 1997.
[20] A. Page, T. Keane, and T. J. Naughton. Adaptive scheduling across a

distributed computation platform. In John P. Morrisson, editor, Third
International Symposium on Parallel and Distributed Computing, pages

141-149, Cork, Ireland, July 2004. IEEE Computer Society.
[21] J. S. Plank, S. Atchley, Y. Ding, and M. Beck. Algorithms for high

performance, wide-area distributed file downloads. Parallel
Processing Letters, 13(2):207-224, June 2003.

[22] K. Ranganathan and I. T. Foster. Simulation studies of computation and
data scheduling algorithms for data grids. Journal of Grid Computing,

1(1):53-62, 2003.
[23] R. Samanta, T. Funkhouser, and K. Li. Parallel rendering with k-way

replication. In PVG '01: Proceedings of the IEEE 2001 symposium on
parallel and large-data visualization and graphics, pages 75-84,

Piscataway, NJ, USA, 2001. IEEE Press.
[24] G. Shao, R. Wolskiy, and F. D. Berman. Performance effects of

scheduling strategies for master/slave distributed applications.
Technical report, University of California, San Diego, 1998.

[25] A. Silberschatz, P. B. Galvin, and G. Gagne. Operating System
Concepts. John Wiley & Sons, Inc., 2001.

[26] L. Silva and R. Buyya. High Performance Cluster Computing:
Programming and Applications, volume 2, chapter Parallel

Programming Models and Paradigms. Prentice Hall, NJ, USA, 1999.
[27] R. Wolski, N. T. Spring, and J. Hayes. The network weather service: a

distributed resource performance forecasting service for
metacomputing. Future Generation Computer Systems,

15(5-6):757-768, 1999.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

