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Abstract:
This paper presents a method to preserve sharp edge details in
splatting for volume rendering. Conventional splatting algorithms
produce fuzzy images for views close to the volume model. The lack
of details in such views greatly hinders study and manipulation of
data sets using virtual navigation. Our method applies a non-lin-
ear warping to the footprints of conventional splat and builds a
table of footprints for different possible edge positions and edge
strengths. When rendering, we pick a footprint from the table for
each splat, based on the relative position of the voxel to the closest
edge. Encouraging results have been achieved both for synthetic
data and medical data.

1. Introduction
Surface models offer a sharp representation of a particular iso-con-
tour surface. Volume rendering can mimic these surfaces rather
well using a ray-tracing scheme [Levoy88]. Polyhedral projection
schemes for volume rendering can split the volume by a contour
surface and render a volume interval with a sharp inter-voxel edge.
However, these techniques are very expensive. Baining Guo [Guo
95] uses alpha shapes to calculate a polyhedra model of the inter-
val between two iso-contour surfaces. Likewise, Issei Fujishiro
[Fujishiro95], et al, generate tables similar to the marching cubes
tables, but which output polyhedral elements bounded by two iso-
contour surfaces. Both of these techniques are two-pass algo-
rithms, generating a polyhedral model first, which must then be
sorted and volume rendered. Max, Hanrahan and Crawfis [Max90]
imbedded an iso-contouring method in their polyhedral volume
renderer. Here, not only is the polyhedral model split by the iso-
contour surface, but a semi-transparent glass surface can also be
integrated into the visualization. All of these techniques are com-
putationally expensive and not amenable for fast direct volume
rendering.

The problem of enhancing edges or details is different from the
problem addressed in [Swan 97] and [Mueller 98], where many
splats projecting to the same pixels need to be blurred out to avoid
aliasing. The appearance of the surface is dictated by a sharp tran-
sition from one material to another and also by the light reflections

from the surface. To date, it is very difficult to maintain these sharp
transitions with a volume renderer using a splatting approach.
When the splats project to a very small area of the screen, sharp
changes are certainly viewable, but a problem arises when one
wishes to zoom in or through a voxel model. The reconstruction
process inherent within splatting blurs out these (perhaps artificial)
high frequencies. For many of the other volume rendering tech-
niques, this effect may also be a problem when using just simple
tri-linear interpolation.

Interpolation-based techniques have the advantage, however, in
that, for a minor increase in cost, they can develop new (non-lin-
ear) interpolation techniques to sharpen or preserve these edges.
Levoy [Levoy88] uses the gradient of the scalar field to ensure that
a contour surface is not missed. This function blurs out the opacity
transfer function in regions of high gradient. To date, no one has
addressed the problem of preserving edges or surface boundaries
within the volume in the context of direct volume rendering, and in
particular, in the context of splatting.

2. Motivations and General Idea
For many medical applications, important features in structures of
the human body, such as nasal passageways [Stredney98], colons
[Kaufman97], and even blood vessels need to be studied or simu-
lated by navigating through a virtual simulation. These features
may comprise only a small number of voxels in their cross sec-
tions. With the conventional splatting renderer, these fine struc-
tures are blurred and navigation is hampered by the lack of contrast
and detail. However, volume rendering is preferred over surface
model for applications that need to deform or modify the underly-
ing volume.

Likewise, for computational simulation, many users require the
crisp, familiar representation of surfaces but with the ability to see
the entire 3D volume. Mixed semi-transparent contour surfaces
and volume rendering are still difficult. The techniques presented
here allow for a more crisp surface representation while preserving
the volume rendering.

Much research is needed into techniques that preserve edges in
volume rendering. We examined two possible paths toward
enhancing the edge details of a voxel model. The first technique
was to simply add new voxels in the areas where we wished to
induce high frequencies or edges, similar to supersampling. We
explored various hierarchical schemes to add these new data
points, either as a pre-process or as a view-dependent process. The
second technique entails a direct manipulation of the underlying
reconstruction kernels and resulting footprints used in the splatting
process. This latter technique is the focus of this paper.
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Traditional splatting uses the same footprint for all voxels. As we
zoom in, the overlapping interpolation kernels ensure a smooth
transition from one voxel to another, preventing a preservation of
the edges. Our research has asked whether we can use different
footprints for different voxels near an edge With the idea of manip-
ulating the underlying reconstruction kernels, our goal was to
imbed into the footprint tables a non-linear and anisotropic inter-
polation or reconstruction function. Crawfis and Max [Crawfis93]
successfully constructed a large table of anisotropic splats to repre-
sent flow fields. Here, each voxel selected an appropriate footprint
from the table, based on the voxel’s projected vector field direc-
tion. To reconstruct or fabricate sharpened edge details from dis-
crete data samples, we needed non-linear operations, and we
constructed a similar table for our purposes.

3. Manipulations of Kernel Footprints
This section describes the kernel manipulation process we have
developed. We first describe the basic goals and approaches in
designing the new footprints and then include some implementa-
tion details. Finally, we present some results from both synthetic
and real datasets.

3.1 Some considerations in designing new foot-
prints
First, we wanted the choice of which footprint to use to be based
solely on local information of the voxel data point only. Second,
we wanted to support edges at different positions with different
strengths and slopes. This criterion is essential for an accurate rep-

resentation of an edge. Third, preservation ofC1 continuity is
desired. Discontinuity in the footprints introduces artifacts and
aliasing in the images. Fourthly, the profile of the reconstructed
edge should be reasonable, with a monotonoic shape and no addi-
tional notches. This criterion prevents sharpened edges from hav-
ing unrealistic hill and valleys.

3.2 Compressing the edge effecting regions in
footprints of kernels

For our C1 constraint, an edge always strides over some finite
region, and relatively speaking, the sharpness is dictated by the
size of this region. Our principal idea was to contract the footprint
around this region. This action increases the slope of the function
in the area, and sharpens the edge. See Figure 6(b) for a profile of a
compressed splat. For proper reconstruction on both sides of the
edge, we need to adjust the other regions of the splat accordingly,
as well as the footprints of neighboring voxels.

Our new method is based on the kernel Crawfis and Max
[Crawfis93] optimized to achieve optimal reconstruction in areas
of uniform intensity. This kernel is a low-pass filter that, when
applied to discrete spatial data, around the edge, causes blurring of
the image. This kernel decays rapidly to zero at an extent of about
1.6 voxel units. This small splat enables us to keep our stretching/
compressing operations as local as possible. Using this kernel, for
any point in 3D space, only 64 (4x4x4) space reconstruction basis
functions come into play. Therefore, on the direction perpendicular
to the edge, no more than 4 consecutive voxels, with 2 on each side
of the edge, need to be taken care of.

As shown in Fig.1 below, only the shaded region of the splats in
columns 0, 1, 2 and 3 interact with the edge. The four circles
denote the extent of the four voxels on row i, and columns 0, 1, 2
and 3, respectively.

Practically, edges don’t often align strictly in the direction of voxel
grids. When the orientation of the edge is rotated, it is problematic
to still define the kernels, 0, 1, 2 and 3 along the direction perpen-
dicular to the edge, as above. We thus introduced the concept of
primary kernels and secondary kernels. Primary kernels are the
ones with edges closer than 1.0 voxel units to the center. Second-
ary kernels have edges still within a splat’s extent, but farther than
1.0 voxel units to the center. Figure 2, below, illustrates this idea.
Since the splats are rotationally symmetric, any edge direction can
be dealt with by rotating a canonical edge-enhanced splat. For the
rest of this discussion, we will therefore use a vertical edge for
illustration

According to this definition, the kernels on columns 0 and 3 in
Fig.1 are secondary kernels, and the kernels on columns 1 and 2
are primary kernels.

3.3 The stretching function
The stretching function we use for the shaded region in Fig. 1
applies both to primary and secondary kernels and is illustrated in
the diagram below. The splats are stretched/compressed only on
the direction perpendicular to the edge. Hence, we assume that the
edge is locally linear.

We divide the shaded region in Figure 1 into three parts, which we
label Interval 1, 2 and 3. The edge lies within Interval 2, and we
wish to compress this region to a much smaller region surrounding
the edge. To ensure smoothness and an accurate reconstruction, the
footprint must be stretched in Intervals 1 and 3. We define two
parameters and , which separate Interval 1 and 2 and Interval

0 1 2 3 : Edge Regions

0,1,2,3: 4 columns of

: Edge

   Fig.1 Each edge involves 4 consecutive voxels in the
 direction perpendicular to it.
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2 and 3, respectively. The smaller region to which we compress
Interval 2 is specified using two additional parameters, and

. Hence, will be warped to , and will be warped to

. Together, , , and also specify the strength of the

edge being constructed.

To achieve this compression/stretching of the basic splat footprint,
we define a change of variables mapping. Let the values in the iso-
tropic splat be g(x,y) and the values in the stretched/compressed
splat be h(x,y). We denote the compression/stretching function in
Fig.3 as , which maps from [0,1] on the vertical axis
to [0,1] on the horizontal axis. We need to manipulate only one-
half of each splat for values of x between 0 and 1.6 for the splats 0
and 1 in Figure 1, and x between -1.6 and 0, for the splats 2 and 3
in Figure 1. Because of the anti-symmetric nature of the map(x),
the stretching/compressions applied to the Splats 0,1,2 and 3 in
Figure 1 are all different. We desire a simple relation between
g(x,y) and h(x,y) and need to determine the mapping functions
such that:

For Splat 0 in Figure 1 (secondary kernel with larger data value):

For Splat 1 in Figure 1 (primary kernel with larger data value):

For Splat 2 in Figure 1 (primary kernel with lower data value):

For Splat 3 in Figure 1 (secondary kernel with lower data value):

Note that the above “primary and secondary kernels with larger or
lower data value” are specified for each splat. Because the com-
pression/stretching function is not symmetric, we define the way of
differentiating which side a splat is on by how large its data value
is. This specification can certainly be switched, as long as the defi-
nition is consistent whenever it is applied.

Now, let’s analytically define the function map(x). Since it’s
always more intuitive to study a function that maps from the hori-

zontal axis to the vertical axis, let’s define p as the inverse function

of map(x), i.e. .

To allow for flexibility in positioning the edges as well as specify-
ing different strengths, we chose a cosine profile

as the com-

pressing curve for Interval 2. For Intervals 1 and 3, we use a Cubic

Spline of the form: . The values of
a,b,c and d can be obtained from the boundary conditions specify-
ing the function value and the first derivative at the two end points
of Interval 1 and Interval 3.

Interval 1:

Interval 3:

Since we impose the first derivative of p(x) be 1 at and

, C1 is preserved across the splats. We can see this effect by
examining the equation:

Where rmap(x) is any one of , ,

and , having a first derivative of

, for each choice. When or ,

, then

.

The general shape of the computed stretching and compressing
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profiles for Intervals 1, 2 and 3 are shown in Figure 4 for different
edge strengths. The straight line y=x is drawn as a reference for
comparison and indicates the case in which no compression/
stretching is applied to the footprint. The compression/stretching
curves for several different extents, corresponding to increasing the
width of Interval 2 (the region between and ), are also shown.

As the width between the two t values increases from 0.1 to 0.5,
we increases the compression of Interval 2.

3.4 Reconstruction on synthetic data sets.
Here we show how to apply the stretching/compressing functions
to reconstruct edges. Please note, by compressing/stretching the
2D Crawfis kernel, we get edge preservation kernels for 2D
images. By compressing/stretching the reconstruction kernel from
the 3D kernel, we get the reconstruction kernels for edge preserva-
tion. These kernels then need to be integrated for all possible
views. We choose to focus on the manageable and efficient proce-
dure of manipulating the footprint functions. Future research is
needed to compare this approximation to a more accurate solution
for volume rendering.

We use four different footprints for the four consecutive voxels on
the direction most perpendicular to the edge. A comparison
between conventional splatting and our new edge preservation

method is illustrated in Figure 6 below for a 1D cross section. To
reconstruct an edge stepping from a value of 1 to a value of 0.5,
(using :0.1, :0.8, :0.2, :0.4), we multiply the corre-

sponding weights with the appropriate kernels at each voxel. The
step-shaped curves shown at the top of the two diagrams represent
the step function we are attempting to reproduce.

Note that in Figure 6(b), the splats with compression/stretching,
have much sharper decreasing regions than the optimal splats in
Figure 6(a). The four corresponding footprints for these kernels are
shown in Figure 7 from left to right.

The reconstructed function for this sample edge is illustrated in
Figure 8. The left side of Figure 8 shows the 1D cross section pro-
file of the reconstructed 2D edge, along with the smooth curve
generated using normal splats. The diagram on the right side is an
image of the sharpened edge generated using several rows of the
splats in Figure 6(b).

3.5 3D Implementation
For interactive rendering, we precomputed the splats at different
edge positions and strength values. While rendering, we loaded the
precomputed splats into texture memory and use textured poly-
gons[Crawfis93].

So far, our analysis has dealt with edges in two dimensions only.
For arbitrary 3D views, we can have edge directions pointing to
any point on the 3D sphere. This section discusses our solution. Of
course, if the edge direction is perpendicular to the viewing direc-
tion, we arrive back at our 2D edge reconstruction. When the view-
ing direction is parallel to the edge direction, the edge is
imperceptible and no special treatment is needed for these voxels.
For the cases between these two extremes, we project the edge

t1 t2

t1 2, 0.5 i 0.05•( ) with m1:0.45, m2:0.55,±=

     Fig.4 Samples compression/stretching
Curves

     (a) Profile of Conventional
Kernels

  (b) Profile of Edge-Enhanced
Kernels

         Fig.6 The relative position of the 4 kernel involved in reconstruction.

t1 t2 m1 m2

Fig.5 Crawfis’s Splat
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direction onto the viewing plane. We then use this projected length
to select a strength for the edge. We store a normalized edge direc-
tion separately from the edge distance or position for this purpose.
For each voxel that needs an edge enhanced splat, we choose the
footprint according to the projected edge position and strength,
from the corresponding precomputed footprint table.

We have analyzed our method on a synthesized dataset with very
low resolution, comprising a12x12x12grid. This dataset simulates
small passageway, like a cube with a cylindrical hole in it. When
viewed in a direction parallel to the hole with the conventional
splatter, we obtain the image on the left in Figure 9. With our edge
preservation method, we achieve the image on the right. The con-
trast here is obvious, and our method produces a nice sharp edge.

4. Challenges for Practical Applications
and Current Results
This method of edge preservation requires an edge detection/esti-
mation scheme with fairly good accuracy. Iso-contouring produce
a sharp discontinuity in the volume, and we can obtain fairly good
estimates of the edge direction and contour distance for each
voxel. This distance is estimated using the gradient and the differ-
ence between the voxel value and the contour value [Levoy88],
where the gradient corresponds to the edge direction. For experi-
mental or acquired data sets, such as CT or MRI data, advanced
techniques of edge detection, model extraction, data segmentation
etc., are indispensable. Unlike most of the previous work in this
area, we desire more information than a simple binary classifica-
tion. Discussions about existing or needed research into these tech-

nologies are beyond the scope of this paper.

4.1 Sinus Cavity Dataset
We have, however, applied our technique to a sinus cavity dataset
derived from the Visible Human dataset. We applied a low pass fil-
tering (3x3x3 averaging) and a binary threshold at 128. Estimates
of gradients were based on central differences, and edge position
estimation based on trilinear interpolation.

Having the gradient for each splat allows us to preform view-
dependent light source shading. For the images shown, we used
directional light located to the top left of the viewer. We apply this
lighting only to those voxels labeled primary or secondary edge
splats, regardless of whether an edge enhanced footprint is used.

Figures 10 and 10c (color) show various images from a virtual nav-
igation through this dataset. As can be seen, in regions of close-up
views, such as on the sidewalls, and regions of coarse resolution in
the cross-section, such as the small hump to the right, edge preser-
vation enhances the images. The details on the walls are also con-
siderably enhanced. Because the inner surface of the data is not
very smooth, we can see small extrusions comprising only several
voxels protruding into the cavity. In images rendered with normal
splatting algorithms, these details are not very visible.

4.2 Hipip Dataset
We have also applied our method to enhance details in the Hipip
(HIgh Potential Iron Protein) data set, which is available from
‘ftp://omicron.cs.unc.edu/pub/projects/softlab/CHVRTD/volI’,

Fig.7 Corresponding footprints used for edge-enhanced reconstruction.
From left to right, correspond to the 4 kernels in the right diagram in Fig.6(b)

EdgeImage of Enhanced

  Fig.8 The profile and image of the reconstructed edge

Profile of Re-constructed Edge with/without
Edge-Enhancement
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credited to Louis Noodleman and David Case, Scripps Clinic, La
Jolla, California. This64x64x64dataset is a description of quan-
tum mechanics calculation of a one-electron orbital of a four-iron,
eight-sulfur cluster found in many natural proteins.

We threshold the data set at 0.0017 and 0.5 to create iso-contour
surfaces. Rendering the thresholded dataset, we get enhanced
views into the data sets. In Figures 11, and 12, the images on the
left are rendered with our conventional splatter, the ones on the
right are edge enhanced with our method. Here, the necessary edge
information is calculated directly from the gradient of the original
scalar field and the desired iso-contour value, using a simple Tay-
lor’ series expansion. Color images from this data set are shown in
Figure 11c.

5. Future Research
Several open problems still occur iwth our method.. Among them,
the most prominent is how to stretch or compress the kernels in 3D
and then integrate them into view-dependent 2D footprints. This
method would be more accurate than manipulating the 2D foot-
print directly and would allow us to analyze possible errors and
determine better compression and stretching functions. Our current
stretching/compressing function can still be applied the 3D recon-
struction kernels to produce a continuous 3D function with sharp
C1 transitions. Pre-integrating these for all views, edge positions,

and edge strengths and building a table of different footprints
would still enable efficient rendering on the fly.

Finally, the small structures popping up into the sinus cavity are
usually undersampled, an inherent problem with digitizing any
data sets with high frequency components. Adaptive multivariate
representations would be beneficial here. One practical case would
be mix to different datasets obtained with 8-Tesla and 1.5-Tesla
MRI’s to resolve areas. The question is how to carry out edge pres-
ervation efficiently within this problem context.
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