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Abstract 
Diffusion Tensor MRI (DT-MRI) provides valuable 3D 
data describing diffusion characteristics of water molecules 
in the human brain. From DT-MRI, it is hoped that 
neuronal fiber connections among cortical regions can be 
reliably extracted and adequately interpreted. To achieve 
this goal, several significant challenges persist. In this 
paper, by means of dynamic programming we have 
developed a global fiber reconstruction algorithm enabling 
efficient visualization of neuronal connections queried by 
both the start and end points on the fly. Besides an inherent 
ability to handle noisy datasets, our algorithm also naturally 
addresses situations where neuronal fibers branch or cross 
each other. We demonstrate the efficacy of our approach 
with visualization of neuronal connections among activated 
brain cortical regions detected by functional MRI (fMRI). 
Keywords: DT-MRI, fMRI, reconstruction, fiber tracking, 
optimal pathway, dynamic programming, conditional probability 
and Bayes rule. 

1. Introduction 
In recent years advances in medical imaging have 

produced powerful non-invasive techniques for exploring 
the human brain. In particular, Diffusion Tensor MRI (DT-
MRI) and functional MRI (fMRI) have emerged as 
potentially revolutionary tools for exploration of brain 
structure and function, respectively. While the opportunity 
for new discoveries is great, effective interpretation of these 
modalities is still a maturing discipline. 

Inside the brain, water diffuses according to local 
structure; in areas such as white matter (WM) water will 
diffuse linearly in the direction of the fiber tracts. In other 
areas, such as gray matter (GM), water diffuses 
isotropically. DT-MRI indirectly measures the directional-
dependent motion of water molecules in the brain, 
producing a set of coefficients which are then used to 
calculate a symmetric rank-2 tensor. A common geometric 
representation of this tensor is an oriented ellipsoid, where 
the surface represents the probability of diffusion in every 
direction. In order to recover the underlying neuronal fibers, 
researchers have developed a variety of methods. These 
methods can be divided into two categories, as observed by 
S. Mori and P. Zijl in their comprehensive review of fiber 
tracking [1]. First are line propagation methods, which 
propagate fibers based on local tensor information. In this 
category are streamlines and hyper-streamlines [2], as well 
as tensorlines [3] and several others [4,5,6]. The usual 
approach is to start at a seed point and step through the 
volume, with the direction of propagation taken from the 
local tensor. In general the eigenvector corresponding to the 
largest eigenvalue of the tensor defines the local fiber 

orientation, and so most methods essentially reduce the 
tensor field to a vector field in which well-established 
vector field integration techniques are applied. The second 
category includes methods which attempt to find the most 
energetically favorable path between two points, and are 
therefore referred to as global methods. Included in this 
category are the fast marching [7] and simulated annealing 
[8] methods, both of which find optimal connections 
between points in the vector field of major eigenvectors. 

 

2. Global Fiber Tracking 

2.1 Overview 
Constructing neuronal fibers in DT-MRI is a 

challenging endeavor in general. Signal noise and partial 
volume effects (PVE) are the two primary obstacles. Signal 
noise could cause significant deviation of the major 
eigenvector of the tensor matrix from the underlying fiber 
direction, thus misguiding the tracking process. This 
phenomenon is especially problematic for line propagation 
techniques, since errors accumulate as propagation 
proceeds. PVE is a consequence of limited imaging 
resolution. A single voxel may contain hundreds of 
individual fibers; the tensor matrix acquired for a voxel is 
representative of the average fiber orientations within the 
voxel. This fact can lead to poorly defined major eigen-
directions in voxels wherein fibers cross or branch. Similar 
to noise effects, PVE can also mislead tracking but in a 
more unpredictable manner. 

In order to overcome the limitations inherent in fiber 
tracking based on local information, we propose a method 
that integrates fiber segments within each voxel while 
constructing complete fibers using global optimization.  By 
using global information we create a context within which 
questions regarding connectivity can be answered.  The 
piecewise construction of fiber segments eliminates the 
accumulation of error along fiber paths. In global 
optimization, instead of reducing the tensor field to a vector 
field, our method operates directly on the tensor field, 
leveraging Bayes rule to rigorously evaluate the probability 
of a connection’s existence considering all possible 
directions in which the fiber may enter and leave each 
voxel.  

The algorithm begins by constructing fiber segments 
between voxels.  For each voxel hypothetical segments are 
created which connect the voxel to its 26 neighbors, as 
illustrated in Figure 1a.  We then evaluate the probability 
that these fiber segments exist based on the local tensors. 
Each segment is marked with its corresponding probability 
of existence, and the process is repeated for each voxel. At 



 

  

this point we end up with a connected graph in 3D space, 
with the nodes as voxels and the edges as plausible fiber 
segments (Figure 1b). We can now perform operations on 
this graph, such as finding the path of highest probability 
connecting two points.  

 

 
(a) 

 
(b) 

Figure 1. 2D views of (a) discrete fiber segments connecting 
voxels, and (b) the graph resulting from segments joining all 
voxels in the volume. 

 
In summary, the algorithm proceeds in four steps: 

1. For a given voxel, construct segments connecting 
it to the 26 nearest neighbors. 

2. Evaluate the probability of each segment’s 
existence. 

3. Repeat for all voxels to construct a 3D graph. 
4. Take two points as input and query graph to find 

the most likely fiber(s) connecting the points. 
 
While constraining the fiber paths to lie along these 

discrete segments may produce fibers, which locally vary 
from the underlying physical fibers, the global topology of 
the fibers is unaffected (see Figure 2). We construct final 
smooth fibers between the two points by using the 
approximated path from the graph as a guide for 
conventional tracking using line propagation. 
 

 
Figure 2. Approximation of a physical neuronal fiber (red) by 
graph edges (black) in 2D. 

2.2 Fiber Segment Probabilities 
In order for our method to construct fibers which 

reflect the underlying physical fibers, it is necessary that we 
obtain an accurate estimate of the probability of a given 
fiber segment connecting two voxels.  This probability is 
certainly a function of the local tensor, but how should it be 
computed? Looking to line propagation methods will not 

help, because these methods generally do not provide a 
probability for each direction, but rather the direction with 
the maximum probability.  We could directly use the local 
tensor, which provides a probability distribution function 
(pdf) capable of answering the question, but PVE will still 
be a problem in regions where fibers cross or branch. 

In order to address this problem we developed a 
framework based on conditional probabilities, similar to 
that used in [9]. The idea behind conditional probabilities is 
that of updating an estimate of the current probability based 
on past information.  More specifically, conditional 
probability allows us to better calculate the probability of 
an event Di occurring given the fact that another event Dk 
has occurred.  If we further consider the events Dk and Di as 
members of an event space U of size n containing many 
events D, then the conditional probability P(Di|Dk) for any 
Dk and Di in U can be computed using Bayes Rule: 
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The analogy to computing fiber segment 
probabilities can be found by letting the event space U be 
all possible directions of fiber propagation.  The event Di is 
the fiber following direction Di, and thus the term P(Di|Dk) 
is the probability of a fiber taking the outgoing direction Di 
given that it came from direction Dk.  

The term P(Di) is the unconditional probability of a 
fiber following direction Di and can be taken directly from 
the pdf given by the local tensor. A convenient visualization 
of this probability profile can be obtained by plotting 
probability as a function of the two spherical angles θ and 
φ.  This creates a surface representing the probability as a 
function of direction, as shown in Figure 3. 

 
 

 

 

 

  
Figure 3. Two different tensors represented as ellipsoids (left) 
and pdfs (right). 

The term P(Dk|Di) is the probability of a fiber 
entering from direction Dk, given that it leaves in direction 
Di.  Intuitively this term is related to the concept of bending 
energy; that is, the energy needed to bend the fiber from Dk 
to Di.  The selection of P(Dk|Di) can therefore be made 
based on fiber modeling.  If we assume fibers to be 
somewhat stiff, then P(Dk|Di) will have a maximum 
probability along the incoming direction (i.e. no bending) 



 

  

and decrease as the angle widens.  The profile of this fall-
off will determine the stiffness of the fibers.  In practice we 
choose a smooth profile like a Gaussian or elevated cosine, 
which allows us to use a single parameter to vary the 
profile. The cosine-shaped profile is favored due to the 
simplicity of its computation (a single dot product). 
 

 
Figure 4. Application of Bayes Rule to different types of tensors
using a cosine profile for P(Dk|Di).  The input direction is the z-
axis (red line in leftmost column). The top tensor is prolate
(spindle-shaped), the middle tensor is oblate (disc-shaped), and 
the bottom tensor is spherical. 
 

Once the selection of the profile of P(Dk|Di) has 
been made then the conditional probabilities P(Di|Dk) can 
be computed for each outgoing direction Di given an 
incoming direction Dk.  Figure 4 shows the resulting pdfs 
for the three types of tensors (prolate, oblate, and spherical) 
using a cosine profile for P(Dk|Di).  Notice that the 
ambiguity in the case of oblate and spherical tensors is 
resolved.  
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Figure 5. A PCM is kept for each voxel, indicating the probability 
Pij of a fiber entering from direction I and leaving in direction j. 

The use of Bayes Rule in calculating probabilities 
for fiber segments requires considering both incoming and 
outgoing directions. On each voxel, for each outgoing 
direction (pointing to one of its 26 neighbors), we compute 
and store 26 probabilities, each correspond to a possible 
incoming direction (again, from one of its 26 neighbors). 
Obviously, if a fiber cannot double back there would be 
only 25 possible incoming directions for each outgoing 
direction. However, for regularity in storage, we still store 
26 probabilities for each outgoing direction. This forms a 
probabilistic connection map (PCM) to be stored for each 
voxel (see Figure 5). A PCM is a 26x26 matrix. Entry pij in 
the PCM is the probability of the fiber leaving in direction j, 

given that it arrived from direction i. In practice many of 
these probabilities will be close to zero, allowing 
compressing PCM with classic schemes developed for 
sparse matrices. 

In summary, we can leverage Bayes rule to estimate 
the probabilities for each fiber segment. In our 
implementation we use the cosine or Gaussian function for 
the P(Dk|Di) term. Finally, we note that filtering techniques 
could be used with our algorithm to further reduce noise by 
modifying the local tensor pdf directly. 

 

2.3 Domain Restriction 
As our goal is to derive fiber pathways through the 

WM of the brain, it would be beneficial to limit the extent 
of the graph to WM regions only.  In this way the size of 
the graph is greatly reduced, thereby aiding the 
computationally expensive step of searching for probable 
fiber paths as well as the time to construct the graph. In our 
implementation we use a simple region-growing scheme 
based on anisotropy to segment the WM areas from other 
regions (see Figure 6). 

 
 

 
Figure 6. Picture taken of actual WM in the brain (left). 
Reconstructed WM resulting from region-growing using 
anisotropy for thresholding, followed by volume rendering (right). 

 

2.4 Discovering Fiber Paths using 
Dynamic Programming 

Once the segments connecting each voxel are assigned 
probabilities, the resulting graph may then be used to query 
for specific connections.  A statement of the problem is: 

 
Given two end points, S and E, are there plausible 
fiber(s) connecting S to E, and if so, what are those? 

 
This is an especially difficult problem to answer, 

considering that the probability of an edge leaving a node in 
the graph depends on which edge was taken to get to the 
node in question.  A brute-force approach is to consider all 
combinations of paths between S and E, taking the one(s) 
whose segments’ probabilities give the largest product. As 
is, this approach is computational intractable; however, we 
can leverage the paradigm of dynamic programming to 
compute the optimal solution in polynomial time. To 



 

  

further speed up the computations, we make a few 
reasonable simplifications in the problem.   

First, although the graph itself is cyclic, we do not 
allow cycles in fibers.  This means paths cannot double 
back, nor can they pass through the same voxel twice.  
Second, we restrict the length of fibers to be not too much 
longer than the Euclidean distance between S and E.  How 
much longer is a controllable parameter.  Third, paths 
leaving the WM or the volume boundaries are terminated.  
Finally, we assume that the most probable path from a 
voxel to a directly adjacent voxel is the segment connecting 
them directly. 

Despite these simplifications the problem is still large 
enough to require extensive computational resources.  We 
observe that a path of highest probability will consist of 
subpaths of highest probability, although the overall 
optimal solution would only consist of a subset of the entire 
set of optimal subpaths. These subpaths are not independent 
(subpaths may share other subpaths), thus leading to a 
plausible solution by means of dynamic programming. 
Dynamic programming allows us to reuse previously 
computed subpaths by storing them in a table.  In this way 
we achieve significant computational savings, albeit at the 
expense of increased storage. 

In order to use dynamic programming we recast the 
goal of finding probable fibers as an optimization problem 
having many potential solutions, each with an associated 
“cost”.  The process of finding an optimal solution involves 
a series of decisions. In our case the decision is which 
segment to follow next in the construction of a neuronal 
path.  The cost of our decision is simply the probability of 
that segment.  In this way we construct a potential solution 
as a choice of connected fiber segments which taken 
together yield a probability for the entire path.  In order to 
compute the potential solutions we subdivide the problem 
recursively using the following equation: 
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where n(S) denotes the set of neighbors of S such that 

||n(S)|| = 26.  There are two base cases for terminating the 
recursion: P(S,S’), which is taken directly from the 
corresponding PCM table, and P(E,E), which is by 
definition zero. In dynamic programming, we compute each 
subpath P(S’,E) once, obtaining significant savings. 

While the metric of optimality in this equation is the 
probability of fiber segments, it is trivial to incorporate 
other information in the definition of an optimal fiber, such 
as diffusion rate or curvature. Ideally, our definition of 
optimality should be based on knowledge of real fibers.  
Since this information is not available, we here use as few 
assumptions as possible and therefore our implementation 
simply uses a segment’s probability of existence as the 
metric of optimality. 

 
// find optimum path: S E 
targetpath = Path(S,E); 
stack.push(targetpath); 
 
while(stack.notempy()) { 
    path = stack.top(); 
 
    // check if already computed 
    if (table.find(path)) 
        stack.pop(); 
        continue; 
 
    // need all path: s n(s) and path: n(s) E 
    haveAllSubPaths = true; 
    for (n : neighbor(s)) { 
        if (!table.find(Path(s,n))) 
            table.insert(graph.getedge(s,n)); 
        if (!table.find(Path(n,E))) 
            stack.push(Path(n,E)); 
            haveAllSubPaths = false; 
    } 
    if (!haveAllSubPaths) continue; 
 
    // have all subpaths necessary to calc opt path: s E 
    for (n : neighbor(s)) { 
        p0 = table.find(Path(s,n)); 
        p1 = table.find(Path(n,E)); 
        p = p0 ×  p1; //to compute Equ. 4 (see below) 
        if (p.prob() >maxprob) 
            maxprob = p.prob(); 
            optpath = p; 
    } 
 
    // insert the optimum path from s to E into the table 
    table.insert(optpath); 
    stack.pop(); 
} 
Figure 7: Pseudo code to find optimal (highest probability) path 
from S to E.  graph is the graph of fiber segments and table refers 
to the dynamic programming table. 

 
While there are many ways to implement dynamic 

programming, our implementation uses stack recursion to 
propagate possible fibers. Pseudo code of the algorithm is 
given in Figure 7. For a single query, we proceed in three 
steps. In the first step we check the dynamic table to see if 
the given query has already been computed. If not then in 
the second step we check to see if all subpaths required for 
the computation are available. The terms P(S,S’) are taken 
directly from their respective edges in the graph. The terms 
P(S’,E), if not found in the dynamic table and not a terminal 
case, must be pushed onto the stack for subsequent 
calculation. At this point if any terms P(S’,E) are not 
available then we halt the calculation of the current subpath, 
but keep it on the stack. When the stack once again unwinds 
to this calculation we will then have all subpaths necessary 
to continue on to the third step. In the third step the 
probability of subpaths are combined. Although the classic 
way to combine costs in dynamic programming is an 



 

  

addition as in Equation 4, we multiply the two costs 
together since they are really probabilities. At last, the fiber 
segment with the highest probability is selected and stored 
in the dynamic table.   

2.5 Constructing Final Nerve Connections 
Once an optimal path has been found, connecting the 

voxel centers on the fiber path produces a piece-wise 
approximation of the real fiber connection, which is only 

0C  continuous. To construct smooth neuronal connections 
that faithfully reflect the path we have discovered, we again 
employ Bayes Rule in a more conventional fiber tracking 
procedure. Our approach is similar to tensorline 
propagation.  In particular, we use a linear combination of 
two vectors according to: 

BayestrackGuidetrackout vvv )1( αα −+=  (5) 

 
where vBayes is the direction of maximum probability 

resulting from the evaluation of Bayes Rule and vGuide is the 
direction of the guide path, i.e. the direction pointing 
towards the next voxel in the path. The parameter αtrack 
controls how tightly the fiber follows the guide path, with 
smaller values allowing the fiber to “wander” more.  Fiber 
tracking starts by choosing a seed near the starting point of 
the path, and from there the fiber is propagated using vout.  
The tracking stops when the fiber arrives at a point within 
the ending voxel of the path. 

 

3. Results 
In this section we present the results of the global path 

algorithm along with images depicting the visualization of 
possible neural fibers within the WM.  All testing was 
performed using a single machine equipped with a Pentium 
IV 3.4 GHz with 2.0 GB RAM. Test subjects included two 
separate tensor data suites, one ‘small’ (64x64x18, 
corresponding to the resolution for current clinical use) and 
one ‘large’ (256x256x30) research dataset. Each set 
consists of the tensor volume and an associated fMRI 
volume marking the ROI. fMRI identifies ROI in the brain 
based on the correlation between brain activity and a given 
task performed by the patient. By using the ROI from fMRI 
as the endpoints of the global path search, we can explore 
the structural connectivity between regions known to be 
functionally connected. 

As described in Section 3.1, the first step is to create a 
graph from the tensor dataset by building edges between 
voxels and computing the PCM tables, while excluding any 
voxels not within the WM. This construction occurs once as 
a preprocessing step and the graph is stored for later use. 
Table 1 gives the size of the resulting graphs and the time 
needed to construct the graph for each dataset. Note that for 
the large dataset we create the graph at a lower resolution to 
facilitate reasonable search times. 

 

 Small Suite Large Suite 
Volume Dimensions 64x64x18 256x256x30 
Voxel Dimensions 3x3x5 mm 1x1x3 mm 
Graph Dimensions 64x64x18 128x128x30 

Graph Size 16 MB 120 MB 
Graph Construction 

Time 
5 min. 35 min. 

Table 1. Test data and associated 3D probability graphs. 
 
In our implementation the user selects both the start 

and end ROI (derived from fMRI) and then searches for 
high probability paths. For a given session the dynamic 
table is maintained between consecutive searches to further 
increase the search speed. At some point, however, main 
memory fills up and the table must be purged. The 
drawback to this enhancement is that search times, already 
quite irregular, become even more unpredictable. Once 
path(s) have been found, fibers are integrated according to 
Equation 5. Based on our experiments, αtrack should be set 
between 0.4 and 0.8. Values below 0.4 almost always allow 
the fiber to wander off, and values above 0.8 result in fibers 
that look almost exactly like the guide path. We set αtrack to 
0.6 for all our results. 

 
 

 
 

Figure 8. WM surface based on anisotropy for two DT-MRI 
datasets. The dataset on the left is 64x64x18, whereas the dataset 
on the right is 256x256x30. 

 
Upon completion of the path search and fiber tracking 

session, the user is offered a visualization of the results. An 
important part of this visualization is the WM, which 
provides important contextual clues. We render the WM as 
a scalar volume using a hardware volume renderer in order 
to provide flexible real-time visualization. The scalar 
volume is built from the tensor volume in two steps. First, 
region growing is used with an appropriate anisotropy 
threshold to create a binary volume or mask with ‘1’ 
indicating WM and ‘0’ otherwise. Then in the second step a 
scalar volume of anisotropy is calculated only within the 
WM using the generated mask. Figure 8 shows the WM 
rendered as an opaque surface for both datasets.  
 



 

  

 

 

 
 
Figure 9. Paths connecting the same side of the brain. 
 

 
 

 

 
Figure 10. Paths connecting opposite sides of the brain. 
 
Figures 9 and 10. Integrated visualization of neuronal connections 
in the brain. WM is rendered transparently in blue, and ROI from 
fMRI are rendered opaquely in orange. The top images (red lines) 
show the computed optimal paths, and fibers integrated along 
those paths are shown on the bottom (gold lines). 

In Figures 9 and 10, paths resulting from the optimal 
path algorithm are displayed for the high-resolution dataset, 
together with fibers integrated along the paths. Due to the 
confidential nature of this data set, we are not at liberty to 
identify the ROI. As the ROI consist of more than one 
voxel, our method uses the centroid of the ROI to define a 
single start/end point. For large ROIs we manually 
subdivide the region and use the centroid of each partition. 

In some cases there may be two different paths with 
almost the same probability. In these cases we keep and 
display all such paths, as each path may be valid. In 
addition, as the designation of the start and end ROI is 
arbitrary, we run each search twice, switching the start and 
end points for the second run. In Figure 9 several paths 
connecting ROIs on the same side of the brain are shown. 
These paths are relatively short, consisting of 20-30 edges 
and requiring anywhere from 4 minutes to 10 minutes to 
compute. In Figure 10 paths connecting regions on opposite 
sides are computed. These paths consist of 35-45 edges and 
require 30-45 minutes to compute. For searches on the same 
side, typical memory usage is about 500-700 MB for the 
first search. If the table is maintained between searches and 
the same area is searched, as many as ten searches can be 
conducted before flushing is required. In the case of 
searches across the brain, the table must be flushed after 
each search. We chose not to store temporary results to 
disk, although this could further reduce search times. Times 
for the small dataset (not shown here) are approximately 30 
seconds to 2 minutes for searches on the same side and 3 
minutes to 12 minutes for searches on the opposite side.    

4. Conclusions and Future Work 
We have proposed a framework based on global 

optimization, by means of dynamic programming and cost 
assignment using Bayes rule. Three issues are tackled here. 
First, we provide the functionality to explicitly query the 
optimal connectivity between two end points. This 
capability is useful to understand the structural connectivity 
among functionally related cortical regions. Second, our 
method inherently addresses PVE, which introduces 
difficulty to reconstruct neural connectivity in areas where 
nerves cross and branch. In our framework, if the 
reconstructed optimal connections between two pairs of end 
points share a common segment of nerve fiber, then a case 
of nerve branching is discovered, as shown in Figure 9. 
Nerve crossing can be handled in a similar fashion. Third, 
the segment-by-segment reconstruction procedure, as well 
as the dynamic programming method, help to eliminate 
error accumulation and misguidance by noisy local tensors. 
However, we recognize that extremely large amounts of 
signal noise could cause difficulty to even reconstruct a 
probable nerve segment in a voxel, and thus filtering would 
still be necessary as a pre-processing. 

A key issue regarding any fiber reconstruction 
algorithm is verification. Although tracers and phantoms 
have been used previously, this problem is still largely 



 

  

unsolved. In particular, our method is aimed at discovering 
new fibers which cannot be discovered any other way, and 
so verification is largely unattainable at present. 
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