A Tale of Two Systems

Flexibility of Usage of Kraken and Nautilus at the National Institute for
Computational Sciences

Amy F. Szczepanski
Remote Data Analysis and
Visualization Center
Electrical Engineering and
Computer Science
University of Tennessee
1520 Middle Drive
Knoxville, TN 37996-2250
aszczepa@utk.edu

Jian Huang
Remote Data Analysis and
Visualization Center
Electrical Engineering and
Computer Science
University of Tennessee
1520 Middle Drive
Knoxville, TN 37996-2250
huangj@utk.edu

Mark R. Fahey

National Institute for Computational Sciences

Sean Ahern
Remote Data Analysis and
Visualization Center
National Institute for
Computational Sciences
University of Tennessee
PO Box 2008, ORNL Bldg.
5100
Oak Ridge, TN 37831-6173
ahern@utk.edu

Industrial and Information Engineering

University of Tennessee

PO Box 2008, ORNL Bldg. 5100
Oak Ridge, TN 37831-6173

mfahey@utk.edu

ABSTRACT

The National Institute for Computational Sciences (NICS)
at the University of Tennessee currently operates two com-
putational resources for the eXtreme Science and Engineer-
ing Discovery Environment (XSEDE), Kraken, a 112,896-
core Cray XT5 for general purpose computation, and Nau-
tilus, a 1,024-core SGI Altix UV 1000 for data analysis and
visualization. We analyze a year’s worth of accounting logs
for Kraken and Nautilus to understand how users take ad-
vantage of these two systems and how analysis jobs differ
from general HPC computation We find that researchers
take advantage of the flexibility offered by these systems,
running a wide variety of jobs at many scales and using
the full range of core counts and available memory for their
jobs. The jobs on Nautilus tend to use less walltime and
more memory per core than the jobs run on Kraken. Addi-
tionally, researchers are more likely to run interactive jobs
on Nautilus than on Kraken. Small jobs experience a good
quality of service on both systems. This information can be
used for the management and allocation of time on exist-
ing HPC and analysis systems as well as for planning for
deploying future HPC and analysis systems.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

XSEDEI2 July 2012, Chicago, IL

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Categories and Subject Descriptors

K.6 [Computing Milieux]: Management of Computing and
Information Systems

General Terms

Management

Keywords

management, analysis, measurement

1. INTRODUCTION

As of spring 2012, the National Institute for Computa-
tional Sciences (NICS) at the University of Tennessee op-
erates two high performance computing (HPC) systems for
the eXtreme Science and Engineering Discovery Environ-
ment (XSEDE). Kraken, the flagship system at NICS, is a
Cray XT5 with 112,896 cores and a peak performance of
1.17 petaflops. It has 9,408 compute nodes; each node has
two hex-core AMD Opteron processors and 16 GB of mem-
ory. Nautilus, the centerpiece of NICS’ Remote Data Analy-
sis and Visualization Center, is an SGI Altix UV 1000 with
1,024 cores and 4 TB of global shared memory. Each of Nau-
tilus’ 128 non-uniform memory access (NUMA) nodes has an
eight-core Intel Nehalem processor and 32 GB of memory.
Kraken, with its large core count and distributed memory
architecture, is used for a wide range of traditional HPC
applications. Nautilus is primarily intended for data anal-
ysis and visualization, especially those jobs that can take
advantage of its large memory.

In this paper we examine a year’s worth of accounting logs
representing the actual usage of Kraken and Nautilus in or-
der to quantify the differences between how XSEDE users

make use of a general HPC system and an analysis system.
Understanding the way that researchers use current anal-
ysis and visualization resources, especially in concert with
XSEDE’s only system that currently operates at the petas-
cale, is important for planning the next generation of data
analysis and visualization systems. Bethel et al. [2] reinforce
the importance of planning for the visualization and analy-
sis needs of researchers in addition to their simulation needs.
Both the creation and interpretation of data are necessary
for scientific discovery.

As the 10 petaflop Stampede system at the Texas Ad-
vanced Computing Center (TACC) is scheduled to come on-
line in 2013 [10], XSEDE will need to deal with the deluge
of data produced by users of this system. Understanding the
data analysis and visualization demands of Kraken-users is
an important step in understanding the upcoming demand.
Comparison of the usage of the Spur and Longhorn visu-
alization and analysis systems at TACC with their current
Lonestar and Ranger systems as well as comparisons of the
usage of Gordon at the San Diego Supercomputer Center
(SDSC) with other XSEDE systems would complement this
analysis and give a fuller picture of the data analysis and
visualization needs of simulations run on XSEDE systems.
Through conversations with colleagues at the Oak Ridge Na-
tional Laboratory (ORNL), we observe that the Department
of Energy’s HPC systems may exhibit different patterns
of usage than XSEDE’s systems. These differences should
be kept in mind when extrapolating to future needs in the
XSEDE research community.

Users take advantage of the flexibility of both Kraken and
Nautilus and run a wide variety of jobs. We observe that
users on both Kraken and Nautilus run jobs at a wide range
of core counts. Furthermore, requests for memory-per-core
on Nautilus also vary widely. Both systems have a small, but
significant, number of users that require the unique resources
(either large core count or large memory) that are offered by
the system.

We measure the mix of jobs and the quality of service
for different classes of users in hopes of understanding how
users are taking advantage of the unique capabilities of each
system. In particular, we quantify how analysis jobs differ
from computational jobs. Because Nautilus is a much smaller
system than Kraken, we look at particular subsets of Kraken
users so that our description of the properties of analysis
jobs is not merely an an examination of the properties of
small jobs. We do this by first comparing the jobs run on
Nautilus to the projects that only run small jobs on Kraken,
so that we can compare small HPC runs to the analysis jobs
to see how they differ. Next, we look at projects that use
both Kraken and Nautilus and compare the ways that they
use these two systems.

We note that while Kraken and Nautilus are both oper-
ated by NICS, they do not currently share a scratch filesys-
tem. Thus, users of both systems must move their data, by
staging it through the archival storage system, by using tools
such as gridftp, or by using other data-moving techniques.
Thus, to some extent our analysis can be generalized to situ-
ations where the simulation system and analysis system are
not co-located and data movement must take place between
simulation and analysis.

In addition to both systems being used flexibly, we find
other commonalities as well. Small, traditional HPC jobs
on Kraken and jobs run on Nautilus use roughly the same

number of cores, on average. However, there are also several
differences in how researchers use the systems. Small HPC
jobs on Kraken tend to run for longer walltimes than jobs
on Nautilus, but the jobs on Nautilus use more memory per
core. Users were more likely to run interactive jobs on Nau-
tilus than on Kraken. Both systems offer a good quality of
service for jobs up to 1024 cores, measured either by time
spent waiting in the queue or by the scheduler expansion
factor. While some projects on Kraken could move to Nau-
tilus to improve utilization of the latter, users would only
experience a modest improvement in quality of service as
measured either by wait time in the queues or by the sched-
uler expansion factor.

2. DATA AND COLLECTION

NICS uses TORQUE as the resource manager for both
Kraken and Nautilus, and information about each job is ex-
tracted from the TORQUE accounting logs and stored in a
database by the workload analysis system of pbsacct [8],
developed by the Ohio Supercomputer Center and NICS as
part of the PBS Tools project. The pbsacct system peri-
odically parses the TORQUE accounting logs and extracts
information such as the job identifier, the username, the
time of job submission, the time that the job begins run-
ning, the time that the job was completed, the job’s project
charge code, the queue to which the job is submitted, the
job’s maximum memory usage, and what resources were re-
quested by the job, including number of cores, memory limit,
and wallclock time limit. Users’ job scripts are also captured
at submission time and stored in the database.

In analyzing the logs, we looked at data from a one-year
period of March 8, 2011 to March 7, 2012. This time period
was chosen because it was the most recent one-year period
that avoided the most significant upgrades or changes to the
systems; we feel that this timeframe best represents a year
of typical usage of Kraken and Nautilus. Including all jobs
from all projects, Kraken had a utilization of 91% and Nau-
tilus had a utilization of 41% during this year. Excluding the
staff projects, this represents 493 projects on Kraken run-
ning 648,918 jobs for 896,317,277 CPU-hours and 62 projects
on Nautilus running 42,019 jobs for 3,497,276 CPU-hours.
From this point on, unless otherwise specified, jobs charged
to the staff projects or run in the data-moving queues are
excluded from this study.

3. CHARACTERIZING OVERALL USAGE
OF KRAKEN AND NAUTILUS

One notable feature of the usage of both Kraken and Nau-
tilus is that the users take full advantage of the flexibility of
these systems. For both systems we look at both the num-
ber of and the size of jobs running at different core counts
as well as the range of memory requests made on Nautilus.

Users on Kraken run at a variety of scales, with substan-
tial usage seen for a wide variety of job sizes, not just the
large-scale jobs that require a resource of the size of Kraken.
Jobs on Kraken are assigned to the small, medium, large,
capability, or dedicated queue based on the number of cores
requested. The mix of jobs, organized by queue, on Kraken,
both in terms of number of jobs and CPU-hours consumed,
is shown in Figure 1. Fewer than 5% of projects on Kraken
ran jobs in the capability or dedicated queues.

To demonstrate the diversity of job-sizes on Kraken, we

100% —
80% -
60% -
queue
B cedicated
% . capability
'g- . large
medium
o . small
40%
20% -
0%

I I
cpuhours jobs

Figure 1: Breakdown of jobs on Kraken. The small,
medium, and large queues represent jobs of up to
512, 8,192, and 49,536 cores, respectively. Jobs in
the capability queue use between 49,537 and 98,352
cores, and the dedicated queue is for jobs requesting
from 98,353 cores up to Kraken’s limit of 112,896
cores.

contrast the usage of Kraken to that of Jaguar. Kraken
shares a machine room with the Oak Ridge Leadership Com-
puting Facility’s Jaguar at ORNL. Prior to beginning its up-
grade to the new Titan system, Jaguar was a 224,256-core
Cray XT5 with 18,688 nodes, each with two hex-core AMD
processors. During the fall of 2011, Jaguar’s transformation
into Titan limited the number of cores available to users
(ranging to a low of 117,120 to Jaguar’s full 224,256) and
later upgraded the CPUs to 16-core AMD processors [7].

Big jobs make up a larger fraction of the job mix on
Jaguar than they do on Kraken. If we look at Kraken’s
capability and dedicated queues, which run jobs that re-
quire at least 49,537 cores—or 43% of the cores available on
Kraken—these represent roughly 10% of the CPU-hours run
on Kraken. Comparing to Jaguar, in 2011 roughly 25% of
the CPU-hours were used in jobs that required at least 40%
of Jaguar, and an even larger fraction of the CPU-hours on
Jaguar were devoted to jobs of over 50,000 cores [6]. This
pattern of usage on Kraken is reflected in Hart’s finding that
XSEDE resources, Kraken included, show a diverse mix of
capacity and capability computing [4]. This wide range of
usage is expected to continue as more users access these sys-
tems through science gateways [12].

Similarly, we see a wide range of usage for Nautilus. Ap-
proximately 18% of the CPU-hours are used in jobs that
require at least half the system (at least 512 cores). The
queuing system on Nautilus allows users to specify both the
desired number of cores and amount of memory, and the re-
quest is filled with the smallest number of NUMA nodes that
will accommodate both the cores and memory requested. We
also see a large diversity of resource requests when we look
at both cores and memory. This mix is shown in Figure 2.

Another way to look at this information is to look at the
ratio of the amount of memory requested to the number of
cores requested as well as the ratio of the amount of memory
used (for jobs that used more than zero memory—that is,
those that did not crash immediately) to the number of cores
requested. While, on average, jobs on Nautilus asked for 5.78
GB of memory per core and used 1.58 GB of memory per
core, there was a great deal of spread due to a small number
of jobs requesting—and using—hundreds of GB of memory
per CPU requested.

Overall, 9.7% of jobs requested more than 4 GB of memory
per CPU and 4.4% of jobs used more than 4 GB of memory
per CPU. Additionally, 19.2% of jobs on Nautilus used a
larger ratio of memory per CPU than the 1.33 GB of memory
per core available on Kraken. Again, we see a wide diversity
of jobs being run on the system. When analyzing data about
the amount of memory used by jobs, we exclude jobs that
used exactly 0 MB of memory but include those that used
non-zero but trivial amounts of memory that round to zero.

One other similarity that we see with these systems is that
usage by projects does not follow the 80/20 rule that would
be predicted by the Pareto principle. We find that on both
Nautilus and Kraken that 10% of projects are responsible
for 90% of the usage of the system. These are not just the
projects that run large core-count jobs; large consumers of
CPU-hours run at a wide variety of scales.

4. COMPARING ANALYSIS TO COMPUTA-
TION

It is not remarkable that there are differences in usage

27184 ? 1 R A CPU-hours
118 4 I 300000
512 GB - I " 250000
. 200000
8 256 GB - : 150000
[72]
S 128GB . o - | 100000
g . O f 50000
= 9 . @ -
> 64 GB . .
g 32684 . . . Number of jobs
2] :
E 166B- o - = -1
© . P « @ 3 . . .
S 8GB i D L . | I e 100
4GBy . 0 . . @ 1,000
2 GB - . . . 10,000
1GB . . .
512 MB \ \ \ \ \ \ \ \ \
1 2 4 8 16 32 64 128 256 512

Number of cores requested

Figure 2: Mix of jobs on Nautilus based on resources requested. Orange lines at 8 cores and 16 GB of memory
divide the space into jobs that could be run on a nice desktop computer (lower-left quadrant) and those that
require an HPC system (remaining three quadrants). The grey line represents a request of 4000 MB per core,
which is the default if the user does not specify a memory request. The size of the dot represents the number
of jobs requesting that combination of resources, and the color shows the sum total CPU-hours consumed by
all jobs making that request. The large dot at 16 cores and 64 GB of memory represents 16,133 jobs.

between a very large, traditional HPC system and a smaller
shared memory system meant for visualization and analysis.
However, there are some meaningful observations that can
be made about well-chosen subsets of users. We will make
observations based on the usage of select subgroups of users.

1. Projects on Kraken whose jobs were all small enough
to run on Nautilus.

2. Projects that ran jobs on both Nautilus and Kraken.

By looking at these groups of users, we can make compar-
isons about how users take advantage of these systems and
draw conclusions about how visualization and analysis jobs
differ from computation jobs. We will compare this collec-
tion of jobs run on Kraken to the jobs run on Nautilus.

Our analysis will describe not only the size of the jobs,
measured in terms of resources consumed but also the qual-
ity of service. These depend not only on the jobs requested
and the loads on the system but also on the queueing policies
set by NICS.

The queues on Kraken are determined solely by the num-
ber of cores requested, and jobs with the largest core counts
(up to 49,536 cores) have the highest priority. Jobs request-
ing at least 49,537 cores only run during specified “capabil-
ity” periods [1]. Nautilus, on the other hand, has two produc-
tion queues, analysis and computation. The analysis queue
is for data analysis and visualization and has higher priority.
The computation queue is for computation and simulation,
which has a lower priority and is subject to pre-emption by
jobs in the analysis queue. Furthermore, the computation
queue on Nautilus is limited to walltime requests of at most
six hours. The small, medium, and large queues on Kraken
and the analysis queue on Nautilus are all limited to 24
hours of walltime requested. Some jobs do run longer than
the maximum time for their queue, either by special arrange-
ment with the staff at NICS or due to aberrant behavior of
the system.

4.1 Small projects on Kraken vs. all projects
on Nautilus

Of the 493 non-staff projects that ran jobs on Kraken dur-
ing the timeframe, 244 of those projects had all of their jobs
require at most 1,024 cores. These projects ran a total of
115,852 jobs on Kraken, totaling 69,633,811 CPU-hours. As
Nautilus has 1,024 cores and more memory-per-core than
Kraken does, any of these projects could have run on either
Kraken or Nautilus. We note that they could not have all
run on Nautilus instead of Kraken. Even disregarding the
fact that Nautilus is designated preferentially for visualiza-
tion and analysis use and not for general-purpose compu-
tation, together these projects consumed over seven times
as many CPU-hours as are available on Nautilus running at
full-tilt for an entire year. While a few of these projects may
be working on scaling their code up to do large runs, many
of them consistently run well below the petascale capabil-
ity that Kraken offers. Because these projects are running
exclusively at under 1,024 cores for an entire year, we find
them to be representative of work at this scale.

We summarize the size of the jobs under consideration in
Tables 1 and 2. As Nautilus has separate queues for analysis
and for computation, we break those out in the tables. Users
self-select, on the honor system, which queue to submit their
jobs to. We see from Table 1 that the small jobs run on

Table 1: Number of cores used in small jobs on
Kraken and all jobs on Nautilus
System Min Median Mean Max

Kraken 12 24 64.47 1008
Nautilus-analysis 8 8 56.81 1016
Nautilus-computation 8 16 35.7 1008

Table 2: Running time, in hours, of small jobs on
Kraken and all jobs on Nautilus. Some jobs were
permitted to run longer than NICS standard policy,
so maximum values are longer than the 24-hour limit
on requested walltimes.
System Min Median Mean Max
Kraken 0 5.41 8.28 27.27
Nautilus-analysis 0 0.37 3.57 40.86
Nautilus-computation 0 0.44 0.67 30.41

Kraken use similar number of processors. If we calculate this
in terms of nodes (noting that there are 8 cores per node on
Nautilus and 12 cores per node on Kraken), we find that
these jobs use a mean of 5.4 nodes on Kraken and 5.3 nodes
on Nautilus. Where we see a difference between the systems
is in the length of time that the jobs run. On average, jobs
run for a longer period of time on Kraken. There were a few
outlier jobs with long running times on Nautilus; excluding
those, the average walltime on Nautilus would be even lower.

In addition to comparing the size of the jobs that run on
these two systems, we also compare the quality of service
that the users experience. We measure this in two ways,
first in terms of how long that jobs wait in the queue before
running and secondly in terms of the scheduler expansion
factor, as described in [5] for describing the productivity
and throughput benefits of Trestles at SDSC.

We show time that jobs wait in the queues in Table 4.1.
Looking at the time that the jobs wait in the queue, we see
that the shortest median wait times are for the analysis jobs
on Nautilus. Median wait times for jobs on Kraken were only
somewhat longer than median wait times for computation
jobs on Nautilus, but the jobs with the longest waits waited
much longer on Kraken. While some jobs had to wait roughly
two weeks before running on Nautilus, jobs on Kraken had
wait times extending to nearly two months. Long wait times
were fairly uncommon but were not limited to a few iso-
lated incidents. We expect that most of the jobs with the
longest wait times were on “hold” (not progressing up the
queue) for a substantial amount of time, either because of
job dependencies or other factors aside from machine load.

The wait time metric reflects what we would expect about

Table 3: Number of hours that jobs up to 1024 cores
wait in the queue before they run.

System Min Median Mean Max
Kraken 0.00 1.24 14.90 1630.00
Nautilus-analysis 0.00 0.02 2.75 254.1
Nautilus-computation 0.00 0.97 2.80 346.0

Table 4: The scheduler expansion factor for small
jobs on Kraken and all jobs on Nautilus.

System Median Mean St. Dev.
Kraken 1.110 2.348 32.6
Nautilus-analysis 1416 2.291 11.3
Nautilus-computation 1.004 1.654 18.4

these systems. Researchers expect fast response for their
analysis jobs, especially if they are planning on doing in-
teractive analyses, so it is consistent with our expectations
that the analysis queue on Nautilus has the fastest typical
response times. As computation is a lower priority on Nau-
tilus, we also expect those jobs to wait longer to run. The
wide spread of wait times on Kraken reflects two realities
of the system. The highest priority during normal operation
goes to large core-count jobs in the large queue on Kraken,
but smaller jobs serve as backfill while the large jobs wait to
run [1]. Jobs with short requested walltimes are most likely
to be scheduled as backfill.

We can also look at these waits in terms of the scheduler
expansion factor. This metric is defined as

requested walltime + system queue time

requested walltime

It measures by what factor the time from job submission
to job completion exceeds the requested walltime. As noted
in [5], expansion factors tend to be higher for shorter jobs;
this metric penalizes long waits for jobs that requested short
walltimes. The scheduler expansion factor for the small jobs
on Kraken and all jobs on Nautilus are shown in Table 4.1.

One essential factor to keep in mind when examining how
long jobs wait before running is the load on the machine.
A busy, highly-allocated system will have more scheduling
constraints than a less-used system. During the time pe-
riod that we examine, Kraken was fully allocated and ran at
a consistently high level of utilization, with an overall uti-
lization of 91% for the year. Nautilus, on the other hand,
was not fully allocated. In some quarters the XSEDE Re-
source Allocation Committee (XRAC) allocated less than
half of the CPU-hours available on Nautilus, and Nautilus
had an average utilization of 41% during the year. Usage on
Nautilus showed spikes of activity followed by periods of ex-
tremely low utilization. During the times that few resources
were in use, jobs on Nautilus could start immediately. By
comparison, in 2011 Trestles was nearly 70% allocated with
utilization at around 80% [5].

These expansion factors show that most jobs have a good
quality of service, but there are some outliers. These repre-
sent a longer wait time than jobs running on Trestles, which
aims to keep the scheduler expansion factor close to 1. How-
ever, they are lower than the 2009 TeraGrid-wide weighted
expansion factor of 4.96 [5] and the mean expansion factor of
3.424 for all jobs running on Kraken during our timeframe.

We note that the expansion factor on Kraken depends on
the size of the job. Mean expansion factor was 2.85 in the
small queue, 5.12 in the medium queue, 12.6 in the large
queue, and 188 in the capability queue. We compared these
means with an ANOVA and with pairwise t-tests. These sta-
tistical tests all had p-values were on the order of 107, so
the difference is means is statistically significant.

4.2 Comparing usage by projects that ran on
both systems

The next collection of projects that we analyze are those
that ran jobs on both Kraken and Nautilus. This gives us
another comparison between the systems. We assume that,
in general, researchers are choosing to submit their jobs on
the system that is most suited to the work that they are do-
ing. We expect that for researchers using both systems that
the jobs submitted on Kraken tend to be traditional com-
putation and that the jobs submitted on Nautilus are either
analysis jobs or jobs that take advantage of the larger avail-
able memory-per-core. As noted above, the quality-of-service
for small jobs on Kraken is quite reasonable, so we have no
reason to expect a significant amount of use of Nautilus is
by Kraken-users seeking improved throughput. In order to
further minimize this possibility, these analyses will further
limit the projects studied to those that were granted time on
both systems by XSEDE. This restriction excludes locally-
allocated projects, including some used for benchmarking,
code development, and for computation-only use on Nau-
tilus. Overall, 32 projects ran on both systems; we remove
four locally-allocated projects, leaving 28 projects in fields
such as astronomy, atmospheric sciences, chemical and ther-
mal systems, and physics.

We examine data from 90,540 jobs adding up to 191,887,568
CPU-hours run by researchers from these 28 projects. 59,330
jobs for 189,591,788 CPU-hours were run on Kraken, and the
remaining 31,210 jobs and 2,295,780 CPU-hours were run
on Nautilus. We note that this represents 74% of the jobs
and 66% of the CPU-hours consumed on Nautilus during
this timeframe, and 77% of this usage (measured by CPU-
hours) on Nautilus is in the analysis queue. That is, most of
the usage of Nautilus is by projects who use both Nautilus
and Kraken. This is consistent with Nautilus being used to
analyze simulation data created on Kraken.

One key feature of Nautilus is its large memory. While
jobs on Kraken are limited to 1.33 GB of memory per core,
Nautilus has 4 GB of memory per core. On average, re-
searchers who ran jobs on both systems used 1,786 MB of
memory per core on Nautilus. Due to the limitations of the
getrusage () system call, our data does not report the actual
memory used by simulations running on the compute nodes
on Kraken. Yet, we note that the typical job on Nautilus
used more memory-per-core than is available on Kraken.

When we compare the relative amount of CPU-hours that
these projects consumed on Kraken and Nautilus, almost
all of these projects expended more hours on Kraken than
the did on Nautilus; one extreme outlier project consumed
6,273,000 CPU-hours on Kraken for each CPU-hour that
they consumed on Nautilus. Excluding this outlier project,
we find that projects use a median of 255 and a mean of 2,966
CPU-hours on Kraken for each hour that they consume on
Nautilus.

Looking at walltime, we see that the jobs run by these
projects used an average of 4.6 hours of walltime on Kraken
and 1.3 hours of walltime on Nautilus. This is consistent
with what we found when comparing the small projects on
Kraken to all the projects on Nautilus. Thus, we are confi-
dent in saying that jobs on Kraken tend to run for a larger
number of hours than jobs on Nautilus.

One other difference that we see between these systems is
the fraction of jobs that are launched with the -I flag for
interactive use. We note that this does not include jobs, such

as Vislt in client-server mode, that are launched through
the standard batch system but allow real-time interaction;
these are only the interactive jobs which return a prompt
and allow for users to run from the command line. Looking
at the users who ran on both systems, 1.5% of the jobs that
they ran on Kraken were interactive while 4.9% of the jobs
that they ran on Nautilus were interactive.

There were only six projects that fell into both categories
studied, having all their usage under 1024 cores and using
both machines. Two of these were physics projects that only
ran a few jobs on either system, and one is an engineering
project that uses both Kraken and Nautilus for simulation.
The other projects are in the fields of atmospheric sciences
(two projects) and astrophysics (one project).

S. CONCLUSION

In comparing the usage of Kraken and Nautilus at NICS,
we find that there are some overall similarities as well as spe-
cific differences in how researchers use these systems. Users
take advantage of the flexibility of both systems and submit
a wide range of jobs reflecting both capacity and capabil-
ity computing. We also find that usage of Kraken reflects
a different mix of job sizes than is observed on Jaguar at
ORNL.

The quality of service on Nautilus is somewhat better that
for small jobs on Kraken. This is likely due to the fact that
Kraken is much more completely allocated and utilized than
Nautilus. However, it is unclear whether there is any benefit
of moving small core-count computational jobs to Nautilus.
Since jobs on Kraken tend to have longer walltimes than the
computational jobs on Nautilus, this may adversely effect
the quality of service for analysis users on Nautilus.

Despite some macroscopic similarities in overall patterns
of usage, we noted some distinct differences between how
researchers used Kraken and Nautilus. Jobs run on Nau-
tilus tend to have a shorter duration than jobs with simi-
lar core-counts on Kraken, and jobs on Nautilus tend to use
more memory-per-core than is available on Kraken. Further-
more, researchers were more likely to run interactive jobs
on Nautilus than on Kraken. We conclude that this reflects
Nautilus being used as more than just additional computa-
tional capacity for users at NICS. Understanding the way
that HPC is used for analysis rather than for simulation is
an important step in understanding the computing needs of
researchers in an era of data-rich science.

We make three more general hypotheses based on our ob-
servations. We are not suggesting specific actions for pro-
visioning the next generation of computation and analysis
systems; however, we identify some issues to consider when
developing future roadmaps.

First, since usage on Kraken is quite different from usage
on Jaguar, quantitative information about usage patterns
will vary between scientific communities. We conjecture that
extrapolating from experiences of other agencies may yield
inaccurate predictions of the needs of XSEDE researchers
for capability systems. As we find that 10% of the users
consume 90% of the CPU-hours on the systems at NICS,
the needs of only a small fraction of HPC users would need
to be assessed to acquire data about the majority of the
usage.

Secondly, the flip side of this 90/10 pattern of usage is that
a survey restricted to the projects that consume the most
CPU-hours may not reflect the breadth of use of these sys-

tems. A survey that is limited in focus to only the biggest
users may fail to recognize the broad scientific impact of
NSEF’s cyberinfrastructure. Understanding the research pro-
cesses of these smaller users is also important in identifying
ways in which XSEDE contributes to scientific discovery.

While a resource such as Nautilus can be used for a wide
range of data-intensive and data-driven applications, we find
that two-thirds of the usage on Nautilus was by users who
also use Kraken. Thus, our third hypothesis is that most of
the current usage of this system is limited to researchers who
are already in the HPC community and who likely generate
their data through simulation. While researchers with large
datasets from non-computational sources are likely aware of
HPC, they may not be familiar with XSEDE’s resources or
how easily their legacy code could be ported to an HPC
analysis system.

6. ACKNOWLEDGMENTS

We thank Troy Baer for his work on the pbsacct system
that provides the data and for his assistance with interpret-
ing the reports. Nick Lineback wrote scripts to help us get
the data in a convenient form.

Data were analyzed and visualized with R[9], including
the reldist[3] and ggplot2[11] packages.

This work was supported primarily by the Office of Cy-
ber Infrastructure of the National Science Foundation under
NSF Award Number ARRA-NSF-OCI-0906324 for NICS-
RDAV center, NSF-OCI-1136246 for support of undergrad-
uate research in the NICS-RDAV center, NSF-OCI-0711134
for initial funding to support Kraken and NSF-OCI-1053575
for funding to support NICS’s participation in XSEDE.

7. REFERENCES

[1] P. Andrews, P. Kovatch, V. Hazlewood, and T. Baer.
Scheduling a 100,000 core supercomputer for
maximum utilization and capability. In Proceedings of
the 2010 39th International Conference on Parallel
Processing, ICPPW’10, pages 421-427. IEEE
Computer Society, 2010.

[2] E. Bethel, J. van Rosendale, D. Southard, K. Gaither,
H. Childs, E. Brugger, and S. Ahern. Visualization at
supercomputing centers: The tale of little big iron and
the three skinny guys. Computer Graphics and
Applications, IEEE, 31(1):90-95, Jan.—Feb. 2011.

[3] M. S. Handcock. Relative Distribution Methods. Los
Angeles, CA, 2011. Version 1.6. Project home page at
http://www.stat.ucla.edu/ handcock/RelDist.

[4] D. Hart. Deep and wide metrics for HPC resource
capability and project usage. In State of the Practice
Reports, SC ’11, pages 1:1-1:7, New York, NY, USA,
2011. ACM.

[5] R. L. Moore, D. L. Hart, W. Pfeiffer, M. Tatineni,

K. Yoshimoto, and W. S. Young. Trestles: a
high-productivity HPC system targeted to
modest-scale and gateway users. In Proceedings of the
2011 TeraGrid Conference: Extreme Digital Discovery,
TG ’11, pages 25:1-25:7, New York, NY, USA, 2011.
ACM.

[6] National Center for Computational Sciences.
http://users.nccs.gov/, 2012.

[7] Oak Ridge Leadership Computing Facility. Titan
project timeline. http://www.olcf.ornl.gov/titan/

system-configuration-timeline/.

PBS Tools, National Institute for Computational
Sciences and Ohio Supercomputer Center.
http://www.nics.tennessee.edu/ troy/pbstools.
R Development Core Team. R: A Language and
Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria, 2012.
ISBN 3-900051-07-0.

[10] Texas Advanced Computing Center.
http://www.tacc.utexas.edu/stampede, 2012.

[11] H. Wickham. ggplot2: elegant graphics for data
analysis. Springer New York, 2009.

[12] N. Wilkins-Diehr, D. Gannon, G. Klimeck, S. Oster,
and S. Pamidighantam. TeraGrid science gateways
and their impact on science. Computer, 41(11):32-41,
Nov. 2008.

