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ABSTRACT

Typically there is a high coherence in data values between neigh-
boring time steps in an iterative scientific software simulation; this
characteristic similarly contributes to a corresponding coherence
in the visibility of volume blocks when these consecutive time
steps are rendered. Yet traditional visibility culling algorithms were
mainly designed for static data, without consideration of such po-
tential temporal coherency. In this paper, we explore the use of Tem-
poral Occlusion Coherence (TOC) to accelerate visibility culling
for time-varying volume rendering. In our algorithm, the opacity of
volume blocks is encoded by means of Plenoptic Opacity Functions
(POFs). A coherence-based block fusion technique is employed to
coalesce time-coherent data blocks over a span of time steps into
a single, representative block. Then POFs need only be computed
for these representative blocks. To quickly determine the subvol-
umes that do not require updates in their visibility status for each
subsequent time step, a hierarchical “TOC tree” data structure is
constructed to store the spans of coherent time steps. To achieve
maximal culling potential, while remaining conservative, we have
extended our previous POF into an Optimized POF (OPOF) encod-
ing scheme for this specific scenario. To test our general TOC and
OPOF approach, we have designed a parallel time-varying volume
rendering algorithm accelerated by visibility culling. Results from
experimental runs on a 32-processor cluster confirm both the effec-
tiveness and scalability of our approach.

CR Categories: I.3.1 [Computer Graphics]: Parallel processing—
; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—visible line/surface algorithms

Keywords: visibility culling, time-varying data visualization, vol-
ume rendering, plenoptic opacity function, large data visualization

1 INTRODUCTION

It has become increasingly common for scientists to model com-
plex physical phenomena using large-scale computer simulations.
The dynamic nature of such physical simulations typically gener-
ates massive time-varying volumetric datasets. One example is the
Richtmyer-Meshkov Turbulent Simulation [22] at Lawrence Liver-
more National Laboratory. This simulation is designed to study in-
stabilities at the interface between two gases of different densities,
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and produces datasets containing hundreds of time steps, each being
7.5 gigabytes in size. Astrophysics simulations of supernovae [21]
performed at Oak Ridge National Laboratory have generated sev-
eral terabytes of data per run and will produce even larger datasets
in the near future. Although past research has explored a variety
of techniques for visualizing large-scale datasets, with both static
and time-varying data [3, 26, 19, 9], major challenges remain to
efficiently store, process and visualize such massive datasets at in-
teractive rates, especially with the increasingly high resolutions re-
quired.

A central obstacle to efficient time-varying data visualization
stems from the ever-widening disparity between the available I/O,
memory and computing bandwidth, and the rapidly increasing
amount of data to be visualized. Various aspects of data coherence
could be exploited to reduce the amount of data that pass through
the visualization pipeline. Coherence in both space and time can be
applied as a means of acceleration. Often, large datasets are parti-
tioned into spatial blocks. Here we refer to all blocks residing in the
same spatial location over time as a set of “co-spatial” blocks. A
number of different types of coherence can be leveraged among co-
spatial blocks. Many existing algorithms focus on coherence in raw
data values among co-spatial blocks. If a set of co-spatial blocks do
not vary over time, then much I/O and computing overhead can be
saved.

Previous research [15, 17, 11, 4] has suggested that a consider-
able portion of a large dataset is often invisible due to the spatial
occlusion. We hypothesize that the visibility of a set of co-spatial
blocks could also be correlated over time. In fact, we observe that
an invisible block at time step t often remains invisible at time step
t +4t (4t is a small integer value), especially when the view an-
gle doesn’t change significantly over the course of the entire ren-
dering sequence. An obvious approach to capitalize on visibility
culling in time-varying volume rendering might be to apply a stan-
dard static data visibility culling scheme repeatedly to each indi-
vidual time step. However, this simplistic approach will likely in-
cur unnecessary visibility estimation overhead for subsequent time
steps, without utilizing the visibility coherence. A modified scheme
is required to apply minimal re-computation of the visibility from
time step to time step. Such extensions to culling algorithms should
also maintain high efficiency in the context of accelerating existing
parallel solutions. In this paper, we present our work to develop an
efficient visibility culling framework for scalable parallel volume
rendering of large-scale time-varying datasets.

The remainder of this paper is organized as follows. The related
work of visibility culling and time-varying data visualization are
briefly discussed in Section 2. The overview and details of our vis-
ibility culling scheme for time-varying volume rendering and the
experimental results are presented in Sections 3 through 7. In Sec-
tion 8, we summarize our contributions and discuss future work.

2 RELATED WORK

Much research has been explored in algorithms for visibility culling
and time-varying data visualization, but primarily in separate con-
texts. Integrating visibility culling to accelerate time-varying data



visualization has not been widely studied. Below we briefly review
some related research work.

2.1 Visibility Culling

Visibility culling, also known as occlusion culling, is an effective
technique for reducing unnecessary rendering computation by elim-
inating invisible portions of data before visualization. Visibility
acceleration has become widely used in many polygon rendering
applications; a thorough survey can be found in [2].

As pioneered in work on early ray termination [15], visibility
culling has been applied both in direct volume rendering and isosur-
face extraction, especially when dealing with large-scale datasets.
Law and Yagel [14] presented a ray-front scheme that employs
visibility culling. In the image-aligned sheet-based splatting algo-
rithm [11], both individual and groups of voxels can be culled away
when the corresponding screen footprint is covered by fully opaque
pixels. Guthe and Strasser [8] applied visibility test to multireso-
lution volume rendering which also allows the change of transfer
function. Livnat and Hansen [17] introduced a view-dependent al-
gorithm for isosurface extraction. Parker et al. [24] developed a
highly efficient ray-casting system to visualize view-dependent iso-
surfaces in volume datasets without explicit extraction of the sur-
faced triangles. Later, Liu et al. [16] described a progressive view-
dependent isosurface extraction algorithm. This approach deter-
mines visible voxels by casting a small number of viewing rays and
then propagating the visibility information up from these “seed”
voxels to obtain the full visibility information for the volume. All of
these visibility acceleration methods are very effective for datasets
exhibiting sufficient opaqueness.

Beyond accelerating the sequential visualization algorithms us-
ing visibility heuristics, a few methods have been developed to
accelerate parallel visualization. Huang et al. [12] developed a
visibility-assisted parallel splatting algorithm for volume datasets
with moderate to heavy occlusion. To accelerate parallel isosurface
extraction, Gao and Shen [5, 6] proposed a progressive visibility
culling method that efficiently eliminates invisible isosurface trian-
gles, achieving satisfactory parallel speedups. Recently, Gao et al.
[4] proposed a highly-scalable visibility culling method based on
Plenoptic Opacity Functions (POFs), which will be discussed in
more detail as part of our design overview in Section 3.

2.2 Time-Varying Volume Visualization

Efficient algorithms for time-varying data visualization have be-
come increasingly important to the visualization community. A
number of algorithms have been developed that enable high inter-
activity and improve data understanding.

A wealth of literature exists on the compression of time-varying
data. Blocks at different time steps can be compressed using
Wavelet Transforms [31]. In a hierarchical manner, Discrete Co-
sine Transforms, Vector Quantization, 3-D Wavelet Transforms and
MPEG compression schemes [18, 7, 29] have all been explored. Hi-
erarchical compression schemes have been applied to capitalize on
inter-block dependencies, and to eliminate insignificant frequency
coefficients that correspond to minor features in the data. Exploit-
ing data coherence, Shen and Johnson [27] proposed a differen-
tial volume rendering strategy that was shown to reduce rendering
time and storage space by upwards of 90% for two test data sets.
Shen et al. [26] introduced a time-space partitioning (TSP) tree
structure to capture both spatial and temporal coherence in time-
varying data sets. Sutton and Hansen [30] presented a temporal
Branch-on-Need tree structure for efficient time-varying isosurface
extraction. Using quite a different compression approach, Neophy-
tou and Mueller [23] converted a 4-D dataset from a regular grid
into a Body-Centered Cartesian grid and achieved better efficiency.

Other research on time-varying data visualization includes the
tracking of features in a time-varying dataset [28, 13], high-
performance parallel algorithms [25, 19] and various alternative
methods [10, 1, 32].

3 ALGORITHM OVERVIEW

Our design goal is to utilize Temporal Occlusion Coherence (TOC),
that is, the temporal coherence in terms of a block’s capability to oc-
clude other blocks behind it along the viewing direction, to acceler-
ate volume rendering of time-varying datasets. This work exploits
a visibility culling scheme based on Plenoptic Opacity Functions
(POF) [4]. This scheme was introduced to encode volume blocks’
occluding capabilities, which we will refer to as opacities, from all
external viewpoints. After the POF-encoding preprocessing step is
completed, efficient visibility culling can be performed at run time.
A framework using POF was shown to achieve highly scalable par-
allel volume rendering. Here we further develop the concept of
POF to accelerate the visibility culling for time-varying data visu-
alization.

Due to the potentially overwhelming size of the time-varying
data, it is desirable to determine the minimal possible set of visible
blocks. A mathematically sound mechanism is needed to efficiently
encode the opacity of representative blocks, in an effective but con-
servative manner. The POF scheme is generally a viable technique
for this purpose, however, it can be overly conservative for cer-
tain cases, which could hamper the achievable acceleration. Even a
moderate increase in the amount of false positives, where an invis-
ible block is classified as visible during visibility estimation, could
result in a considerable increase in I/O and rendering time. Our ini-
tial study of this work shows that the original POF scheme needs to
be optimized to minimize such over-conservativeness. We call our
new scheme Optimized Plenoptic Opacity Function (OPOF). We
have carefully extended our original POF concept to construct an
OPOF scheme; this new scheme is still conservative but encodes
the opacity distribution of any block with a much tighter lower
bound. Significant improvements in culling performance have been
observed in experiments using OPOFs (see Section 7).

To determine the temporal coherence of the opacity among co-
spatial blocks, we need a means for effective detection of opacity
variations for each block over time. Traditionally, researchers have
analyzed the differences in raw data values to search for temporal
coherence. However, opacity also depends on the specific transfer
functions utilized. In our algorithm, we attempt to find the opac-
ity variations among co-spatial blocks. If the opacity variations are
below a user-specified threshold for two co-spatial blocks at neigh-
boring time steps, then we classify these blocks as temporally co-
herent. For each set of co-spatial blocks, a set of contiguous time
spans defines the temporal coherence. For each time span, the co-
spatial blocks are fused into a representative block, and an OPOF is
computed for this representative block.

Using pre-computed OPOFs at each time step, the opacity of
each representative block can easily be computed at run time.
Clearly, there can be a high coherence in occluding capability
among representative blocks residing in local spatial vicinities. To
further accelerate the visibility estimation process, a hierarchical
TOC tree is constructed during pre-processing. Using the TOC tree,
those blocks whose opacity has changed versus the previous time
step can be quickly identified. This allows us to perform visibility
estimation only for the blocks whose visibility has been affected by
those blocks.

To demonstrate the viability of our approach, we present a paral-
lel time-varying volume rendering system that leverages both TOC
and OPOF in the visibility acceleration. In Sections 4, 5 and 6,
we discuss OPOF, block fusion and TOC tree construction, respec-
tively, in detail for our time-varying volume rendering system.
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Figure 1: For each view (upper-left), the opacity channel of a volume
block B is rendered into a frame buffer. Suppose the pixel shaded
with blue has the minimal opacity among all non-empty pixels. This
minimal opacity value is stored into the entry shaded with green in
a 2D table indexed by θ and φ (bottom). The same process is done
for all sample views around block B.

4 OPTIMIZED PLENOPTIC OPACITY FUNCTION (OPOF)

In [4], we proposed a Plenoptic Opacity Function (POF) scheme,
which encodes the minimal occluding capability, or the opacity, of
a volume block under all possible external views. For a given view,
considering all the rays intersecting a block, the minimal opacity
value accumulated within the block is defined as its opacity un-
der this view. The computational process for computing a POF is
briefly illustrated in Figure 1. A 2-D POF table (Figure 1, bottom),
parameterized by the angular part of spherical coordinates, θ and
φ , is built as follows. For any sample view (θi,φi) (Figure 1, upper-
left), an opacity image S of a block B is rendered. The lowest value
among all pixels inside S shows the minimal occluding capability
of B, which is stored at the location corresponding to (θi,φi) in the
POF table. To be more space-efficient, a discrete POF table can be
encoded by a polynomial or spline, as long as the process remains
conservative. The POF can fully capture the view dependent vari-
ation of a block’s opacity under all possible external views, so the
opacity of the block for any specific view can always be obtained
by simply evaluating the POF. By accumulating the opacities only
at the block level, visible blocks can be quickly identified at run
time.

Our original POF scheme has proven to be very effective when
used in large-scale parallel volume rendering. However, using the
minimum opacity of a block as the overall opacity can sometimes
be too conservative, potentially producing false positives. For in-
stance, with blocks of uniform voxel values, the minimum opac-
ity will most likely be found at the corners of the block. Figure 2
shows an example 32×32×32 block with uniform voxel values all
mapped to an opacity of 0.1, rendered at a (45,45) viewing angle.
The minimal opacity of the block is 0.1, found at the corners, yet the
opacities at the center are significantly higher. In a large-scale simu-
lation, such homogeneous blocks commonly exist, especially when
the size of each block is relatively small. In fact, for the Richtmyer-
Meshkov Turbulent data set [22], which has a 1024× 1024× 960
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Figure 2: Illustration of conservative POF computations: (a) A uni-
form block is rendered from a sample view, and (b) Scalar plot of
POF as a height field showing the values in the opacity buffer.
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Figure 3: 2-D examples of the thickness mask D, the opacity mask
O, the ratio mask τ (τp = Op/Dp for each pixel p) and the encoded
opacity mask O′ (O′

p = DpMIN(τp)) for a block during the OPOF
computation. A red star points out the minimal ratio MIN(τp). Note
that the thickness values and opacity values are selected only for
illustration purpose.

spatial resolution and a block size of 32× 32× 32, about 70% of
all blocks have very small internal variations in their voxel val-
ues. For those blocks, the minimum accumulated opacity will be
too conservative. This resulting opacity estimation will produce a
suboptimal culling rate for such time-varying datasets. An opti-
mized opacity encoding scheme is necessary to alleviate this over-
conservativeness.

We have developed an optimized algorithm based on the orig-
inal POF scheme, called Optimized Plenoptic Opacity Function
(OPOF) scheme (Refer to Section 7 and Figure 11 for the com-
parison of culling effect between POF and OPOF). This revised
scheme is based on the following observation: in a homogeneous
block, the opacity accumulated at each pixel is related to the length
of the corresponding ray segment inside the block. Here, we refer
to this length as the thickness of a pixel. By computing the thick-
ness for all pixels in the block’s screen projection S, we obtain a
thickness mask D. We can also compute an opacity mask O, by ac-
cumulating the opacities along the ray segments inside each block.
According to [20], the opacity along a viewing ray is computed as
α = 1− e−

∫ d
0 τ(t)dt , where τ(t) is the extinction coefficient defined

along the viewing ray and α is the resulting opacity. Assuming uni-
form voxel values along the corresponding ray segment, for every
pixel p inside the block’s screen projection S, the resulting opacity
becomes αp = 1− e−Dpτ where αp and Dp represent the opacity
and the thickness at the pixel p. The term e−Dpτ can be approxi-
mated by the first two terms of its Taylor expansion: 1−Dpτ , thus
αp can be approximated by Dpτ . Therefore, the opacity of a ray
segment can be approximated by a linear function of its thickness.

Of course, not all volume blocks are uniform. To account for this



case, we compute the ratio between the opacity mask and the thick-
ness mask on per pixel basis. The minimal ratio is used to encode
the opacity of the block to remain conservative. The minimal ratios
from all sample views are stored in an OPOF for runtime visibility
estimation. This process is illustrated in Figure 3.

To estimate the opacity of a block at run time, we first compute
its thickness mask D, which is the same for all blocks if ortho-
graphic projection is used. Then, after looking up the ratio τ from
its pre-computed OPOFs, a conservative opacity mask O can be
easily computed from D as: Op = Dpτ for every pixel p inside the
block’s screen projection S. This opacity mask serves as a conser-
vative but tighter estimate of the block’s opacity. In the worst case,
where the block’s raw data distribution is irregular and therefore
causes the resulting opacity to be unrelated to the thickness, then
the opacity computed will reduce to the minimal opacity as used in
the original POF algorithm. This case still remains conservative.

5 COHERENCE BASED BLOCK FUSION

Having constructed a viable and efficient scheme to encode the
opacity of volume blocks, we must now develop a mechanism for
extracting the temporal coherence of blocks’ opacity. In this sec-
tion, we describe the details of our metric for identifying this tem-
poral occlusion coherence between consecutive time steps for co-
spatial blocks. This metric relies on a coherence-based block fusion
method that combines coherent co-spatial blocks into a single rep-
resentative block. We also discuss a hierarchical data structure, a
Temporal Occlusion Coherence (TOC) tree, that enables efficient
querying of these representative blocks as time progresses.

5.1 Opacity Enhanced Temporal Difference Metric

To determine whether data coherence exists between co-spatial
blocks for two consecutive time steps, a difference metric is de-
fined. For the purpose of visibility culling, the difference metric
need only measure the variance in the blocks’ opacity which de-
pends on the raw data as well as the underlying opacity transfer
function. To distinguish this metric from traditional temporal data
coherence, we refer to such a categorization as temporal occlusion
coherence. For a given opacity transfer function, we define the dis-
tance between two scalar raw data values as:

Dis(v1,v2) = |Opa(v1)−Opa(v2)| (1)

where Opa(v) is the opacity for the data value v. The distance is
defined as the difference between corresponding opacity values.

Let Bi(t) represent the ith block at tth time step. The difference
between Bi(t1) and Bi(t2) can be defined as:

Di f f (t1, t2) =

∑
(x,y,z)∈Bi

(Dis(bi(x,y,z, t1),bi(x,y,z, t2)))
2

N
(2)

where bi(x,y,z, t) is the data value at the location (x,y,z) in Bi(t)
and N is the number of voxels that are non-empty in either Bi(t1) or
Bi(t2).

5.2 Block Fusion

Based on the difference metric defined above, we can fuse two data
blocks, Bi(t) and Bi(t

′) into a new representative data block Bi,[t,t ′],
if Di f f (t, t ′) is below a certain small difference threshold, such as
0.001. In particular, the fusion operation performs the following:

bi,[t,t ′] = {
bi,t i f (Opa(bi,t) ≤ Opa(bi,t ′))

bi,t ′ Otherwise (3)

Bi
 Bi
 Bi
 Bi
…...


Time Step
 t1
 t1+1
 t1+2
 t2


Check


…...


Representative Block


fuse


Check
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Figure 4: An example of block fusion. Bi(t1), Bi(t1 +1) ... Bi(t2) are
fused into a representative block based on Di f f (t, t +1).

where bi,t represents the data value at location (x,y,z) in the ith

block at tth time step. The new fused block will keep the raw value
associated with the lower opacity for each (x,y,z) coordinate.

Our algorithm fuses together as many blocks as possible to con-
struct coherent time spans. This is achieved by performing the
block fusion incrementally. Figure 4 illustrates the process. Starting
from the block at the first time step t1, we calculate the difference
between co-spatial blocks at time step t1 and t1 + 1. If the differ-
ence Di f f (t1, t1 + 1) is smaller than our threshold, then we fuse
these two blocks together. The resulting fused block will then be
applied to continue the coherence test with subsequent blocks. Af-
ter time step t2, if the temporal difference rises above our difference
threshold, then the fusion process is terminated for that particular
fused block, and a new round of block fusion will begin from time
step t2 + 1. The complete fused block is the representative block,
denoted as B

[t1,t2]
, for the coherent time span t1 through t2. We as-

sume that the opacity of this block throughout the coherent time
span is invariant for any given view. Therefore, only a single OPOF
need be computed for the representative block B

[t1,t2]
, offering an

additional savings in OPOF computation and storage.
As mentioned in Section 4, a conservative opacity mask for each

block can be easily computed at run time, based on the thickness
mask D, which is same for all blocks in the volume if an orthogonal
projection is used. After constructing the opacity mask for each
representative block, the visibility estimation can then be done by
front-to-back compositing.

As discussed in [4], an initial opacity transfer function can be de-
composed into several basis functions. These bases, together with
their scaling factors, can be used to generate a family of transfer
functions. Using this methodology, visibility estimation can be per-
formed even when the transfer function changes at run time. To
handle this case, the above computational steps must be applied to
each basis function. The coherent time spans determined for each
basis are likely to be different. The runtime computation of an opac-
ity mask for any transfer function in the family will be similar to the
opacity calculation described in [4]. That is, the opacity value of a
pixel p in the overall opacity mask is:

α ′
p = 1−

p

∏
i=1

(1−αp,i)
ki (4)

where α ′
p is the opacity value at pixel p in the final opacity mask,

and αp,i is the opacity value at pixel p in the opacity mask computed
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Figure 5: An example of a TOC tree (a binary tree is used for il-
lustration purposes). The numbers represent the ids of time steps
separating adjacent coherent time spans.

for the ith basis function.

5.3 Temporal Occlusion Coherence Tree Construction

Block fusion allows for utilizing temporal coherence. At each time
step, it is only necessary to perform a visibility check for a volume
block if those other blocks that affect its visibility have experienced
a change in their opacities. Even so, this search through the whole
spatial volume, for representative blocks that have expired, can still
be optimized for better efficiency. In the spatial domain, it is ex-
pected that neighboring blocks in a local vicinity will have similar
coherent time spans. Hence, to enable an efficient search, a hierar-
chical Octree structure is computed spatially. At each tree node, the
coherent time spans of the corresponding co-spatial (meta)-blocks
are stored. This tree is referred to as Temporal Occlusion Coher-
ence (TOC) tree.

The coherent spans stored in the tree nodes are computed in a
bottom-up manner. The leaf nodes correspond to the true volume
blocks in the partitioned volume. The coherent time spans on the
leaf nodes are the result of the block fusion process. On each in-
ternal node, the coherent time span can be calculated from the time
spans of all child nodes as shown in Figure 5.

At run time, the TOC tree is traversed for each new time step t +1
in a top-down manner. When visiting each tree node, our algorithm
checks t and t + 1 to verify that they belong to the same coherent
time span. If not, then the search descends to the next lower level to
check this condition for each of the child nodes. When a leaf node is
reached, if the two time steps still do not belong to the same coher-
ent time span, the corresponding block is marked as having had its
opacity changed, thereby affecting the visibility of all other blocks
behind it along the viewing direction. Upon traversing the TOC
tree in this way, all volume blocks whose opacities have changed
will have been identified. Then the algorithm commences the visi-
bility check for all volume blocks whose visibility is affected by a
marked block. The visibility of other blocks remains the same as
in the previous time step t. This approach significantly reduces the
visibility estimation cost if data at two consecutive time steps are
highly coherent.

6 PARALLEL TIME-VARYING VOLUME RENDERING WITH
OPOF ASSISTED VISIBILITY CULLING

The data flow for the pre-processing and run-time phases of our par-
allel time-varying volume rendering algorithm with visibility accel-
eration is illustrated in Figure 6. Data distribution, block fusion and
OPOF pre-computation are the three major tasks performed at the
pre-processing stage. The data at each time step is first partitioned
into volume blocks, which are then distributed to processors along
a space-filling curve. As discussed in [4], such static data distribu-
tion allows the run-time algorithm to achieve a balanced workload,
without the need for dynamic data redistribution. Controlled by a

Pre-processing


Object Space Partition


Data Distribution


Block Fusion


OPOF Computation


Data Blocks
 …...


Representative

Blocks


…...


OPOF Files


Run-Time Algorithm


OPOF Files

TOC Tree


Visibility Estimation


Parallel Volume

Rendering


Image


Next Frame


TOC Tree


Figure 6: The data flow of our parallel time-varying volume rendering
algorithm accelerated by visibility culling.

user-supplied difference threshold, our algorithm fuses co-spatial
blocks into a set of representative blocks with coherent time spans.
Based on the fusion results, a TOC tree is constructed to manage
the coherent time intervals for every spatial partition. The tree is
used to reduce the run-time visibility estimation cost. Finally, an
OPOF is pre-computed for each representative block and stored for
run-time usage. Due to the negligible storage required for OPOFs,
we can afford to replicate a copy of the entire OPOF results for all
blocks on every node, reducing run-time communication cost.

Our run-time time-varying volume rendering algorithm performs
both the visibility estimation and parallel volume rendering. The
goal of the visibility estimation is to identify all visible blocks be-
fore starting the parallel rendering. By doing this, our algorithm
avoids the global synchronization that is needed in other multi-pass
algorithms [5]. Workload balancing is also easier as the exact ren-
dering load is known in advance. Similarly to the method used
in [4], our visibility culling scheme is done in parallel as follows.
First, the bounding box of the whole volume’s screen projection is
partitioned into image tiles of equal size, where the number of tiles
equals the number of processors. Each processor is assigned one
tile and is responsible for identifying which visible block’s screen
footprints overlap with the tile, as well as compositing the final im-
age for the assigned tile. Then, for a given view (θ ,φ), all volume
blocks’ bounding boxes are checked in a front-to-back order. Only
those blocks whose screen footprints overlap with the assigned tile
need be tested for visibility. An opacity buffer, of a size equal
to the tile size, is used to store an accumulated opacity value for
each pixel in the tile. To test the visibility of each volume block,
the screen footprint of the block is computed based on the opacity
buffer queried. If all values inside a screen footprint are beyond
a pre-defined threshold of opaqueness, say 0.95, then the volume
block is identified as invisible. Otherwise, the volume block is vis-
ible, and its opacity, computed from the thickness buffer and the
block’s OPOF, will be composited into the opacity values in the
block’s screen footprint. The visibility estimation tests are done in
parallel to further reduce the cost. At the end of visibility estima-
tion, a global communication is done so that all processors know
the indices of all visible blocks. Each processor then starts to load
and render the visible blocks locally, as pre-assigned during the data
distribution. The partial image rendered for each block is sent to all
processors whose tiles overlap with the partial image. When the
rendering process finishes, each processor composites all the par-
tial images it has received to generate the final image for its tile.
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Figure 7: Average number of non-empty blocks rendered for 18 sam-
ple views, with or without visibility culling, at each time step.

(a) (b) (c)

Figure 8: Rendering results of: (a) 8th time step (8671 visible blocks,
6377 invisible blocks), (b) 36th time step (12138 visible blocks, 6200
invisible blocks) and (c) 63th time step (12878 visible blocks, 7388
invisible blocks), under the view (225, 45).

Finally, a host processor collects these image tiles to form the final
image.

Utilizing temporal occlusion coherence, we can effectively re-
duce the visibility estimation time over the course of a time-varying
volume visualization. For the first time step, visibility must be
estimated for every block, in the front-to-back order as described
above. After that, however, for each subsequent time step the vis-
ibility estimation is only needed for those blocks whose visibility
status may have changed, as determined via the temporal occlusion
coherence tree described in Section 5.3.

7 RESULTS

In this section, we present and analyze experimental results ob-
tained using a time-varying volume rendering system with TOC-
accelerated visibility culling. A software ray casting algorithm was
implemented to perform volume rendering and the image size was
set to be 512 × 512. Our testing platform is a PC cluster with
32 2.4GHz Pentium IV Xeon processors, with an interconnection
by Dolphin Networks. Our primary testing dataset came from a
Richtmyer-Mevhkov Instability (RMI) simulation at Lawrence Liv-
ermore National Laboratory. At each of the 274 time steps, the
simulation produced 7.5GB of data with a spatial resolution of
2048× 2048× 1920. Due to the storage limitation, we chose 64
time steps from the data set, starting with the 4th time step and pick-
ing one out of every four time steps, with each spatial dimension
downsampled to half of its original resolution. The total size of this
selection is 60GB. Each of the experiments assumes a fixed view-
ing direction until all time steps have been visualized. To further
demonstrate the benefit of OPOF, as compared to our previous POF
approach, we also ran experiments using a static volume dataset,
the 512×512×1728 Visible Woman. During pre-processing, each
dataset was partitioned into 32× 32× 32 data blocks, which were
then evenly distributed to 32 processors along a space filling curve.
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Figure 9: Percentage of the blocks that utilize temporal occlusion
coherence at each time step for three difference thresholds.

We tested visibility acceleration for the RMI dataset from a set
of sample views. Under a sample view from which the temporal
evolvement of the data is clearly shown, without leveraging visi-
bility culling, 64 time steps of the RMI dataset required approx-
imately 7.6 minutes to complete on 32 processors, including the
time for both parallel rendering and parallel I/O. Utilizing our TOC-
accelerated visibility culling framework, we reduced the total time
to less than 1.5 minutes (about 1.4 seconds per time step on aver-
age), or an 80% reduction in the rendering and I/O costs for this test
view. Figure 7 shows the average culling effects, as measured by the
average number of blocks rendered under 18 sample views, spaced
20 degrees apart, for each time step. On average, 50% of nonempty
blocks were culled away for most time steps. A few sample images
of the RMI dataset are shown in Figure 8.

Temporal occlusion coherence typically exists to some degree in
all time-varying datasets, which is captured by a threshold in our al-
gorithm. To demonstrate the existence of such coherence, Figure 9
shows the percentage of blocks that exhibit temporal occlusion co-
herence at each time step, for three difference thresholds. It can be
seen that the tighter the difference threshold, the less coherence is
observed.

The occlusion coherence determined during block fusion must
be efficiently accessible at runtime, to achieve the full potential of
visibility acceleration. Using a TOC tree to heuristically analyze
and fuse spatial coherence among neighboring blocks, visibility is
checked only for those pixels whose occlusion accumulation is af-
fected by the advent of a new time step. The runtime cost of visibil-
ity estimation is proportional to the number of pixels covered by the
screen footprints of incoherent blocks. The overhead of TOC tree
usage was negligible, at about 0.25 seconds for construction and
1.8MB total storage, for the RMI dataset with a difference thresh-
old of 0.001. In Figure 10, we compare the number of affected
pixels at each time step, with or without using the temporal occlu-
sion coherence. Without using the temporal occlusion coherence,
all pixels need be checked to update the blocks’ visibility. When
the temporal occlusion coherence is used, the total time for visibil-
ity determination throughout the entire time sequence was reduced
from from 2.4 seconds to 1.1 seconds, using 32 processors.

As an additional benefit of temporal occlusion coherence, we
need only compute one OPOF for each representative block. Al-
though the use of OPOFs is highly efficient at runtime, OPOF pre-
computation still incurs some overhead, especially for very large
time-varying datasets. The actual pre-computation overhead from
using OPOF depends on the user-chosen difference thresholds. Ta-
ble 1 compares OPOF computation time (in seconds), storage cost
(in Mbytes) and the resulting number of visible blocks under a given
view, for five difference thresholds. With a difference threshold
of 0, essentially no temporal coherence is considered and the best
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Figure 10: Comparison of the number of pixels checked for visibility
estimation in each of 64 time steps, with or without the TOC tree.

Diff Threshold Time (min) Storage (MB) # Visible Blocks
0 204.7 91.9 191,082

0.00001 109.1 41.2 191,282
0.0001 77.5 35.1 191,736
0.001 25.0 10.7 194,832
0.01 8.8 2.8 1,148,677

Table 1: OPOF computation time (in seconds), storage cost (in
MBytes) and number of visible blocks (under one sample view) for
five difference thresholds.

culling effects can be achieved, but at high pre-computation cost.
However, even with a very small non-zero difference threshold,
both computation time and storage space are used more efficiently.
Note that although an increased difference threshold can save time
and storage overheads with OPOF, it can ultimately have an ad-
verse effect on culling performance if the threshold is chosen to be
too large. This is because each fusion operation ensures conserva-
tiveness. The occluding capability of the new block after a fusion
operation is always lower or equal to that of any original block.
The higher the threshold, the more the fusion operations that are
executed. The aggregate effect of a large number of fusion opera-
tions is a culling that is too conservative, which means more blocks
will be considered as visible. For instance, in our experiment, us-
ing thresholds as high as 0.001 offers great culling results, but using
0.01 causes a dramatic increase in the number of blocks determined
as visible, most of which are clearly false positives. Thus, we be-
lieve 0.001 is a good choice for this particular dataset.

Using OPOF, our run-time visibility culling algorithm can
achieve better culling effects than our previous POF-assisted visi-
bility culling algorithm. In Figure 11, we compare the culling effect
of an early-ray termination type of culling algorithm with meth-
ods using POF and OPOF, from 18 sample views spaced 20 de-
grees apart around the test dataset. (Note that early-ray termination
represents the theoretical limit of occlusion culling performance,
although it cannot be used efficiently in practice with large-scale
parallelism, due to overwhelming runtime communication for very
large datasets.) All three algorithms are coarse-grained and cull
away volume blocks directly, not individual voxels. For this com-
parison, both the Visible Woman data set and a single time step of
the RMI dataset were used. By adjusting the opacity transfer func-
tion, the regions of interest, such as the skin in the Visible Woman
data, were made highly opaque, but in the RMI dataset very low
opacity values were used. It can be seen that, for both datasets, us-
ing OPOF can achieve culling results very close to the benchmark
algorithm, while POF sometimes produces somewhat more false
positives, especially for highly transparent datasets like RMI.

With our space-filling curve mechanism of data distribution, and
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(a) Visible Woman

Visibility Culling Effect (RMI)
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Figure 11: The culling effects of three algorithms - Optimal, POF
and OPOF - from 18 sample views during rotation around the Y axis,
using: (a) Visible Woman data set (42,193 nonempty blocks), and
(b) One time step of RMI data set (20,266 nonempty blocks).

an efficient TOC framework, our parallel time-varying volume ren-
dering algorithm achieved balanced workload and good scalability.
Figure 12 shows the number of total blocks rendered by each of
32 processors throughout 64 total time steps. During the rendering
of each time step, our parallel renderer consistently achieved above
80% CPU utilization on a 32-processor PC cluster.

8 CONCLUSION AND FUTURE WORK

In this paper, we have introduced an algorithm based on temporal
occlusion coherence that is able to perform coarse-grained visibility
culling for large-scale time-varying volume rendering with effec-
tiveness, efficiency and parallel scalability. There are three essential
components to this algorithm: OPOF encoding of opacities, block
fusion to determine temporal occlusion coherence, and a TOC tree
data structure to facilitate highly-efficient runtime visibility deter-
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Figure 12: The number of total blocks rendered by each processor
throughout 64 time steps.



mination. A parallel time-varying volume rendering algorithm ac-
celerated by visibility culling was implemented to demonstrate the
effectiveness of these components.

In the future, we plan to investigate the fully interactive explo-
ration of time-varying datasets, allowing both runtime variation of
spatial viewpoints and time tick, which we expect to be very use-
ful to real world production scientific users. In addition, many ex-
isting techniques such as TSP-tree, hardware acceleration, multi-
resolution rendering and compression-accelerated rendering should
all be incorporated into our system to improve its performance.

ACKNOWLEDGEMENTS

This work was supported in part by NSF grant ACI-0329323, NSF
ITR grant ACI-0325934, DOE Early Career Principal Investiga-
tor award DE-FG02-03ER25572, and NSF Career Award CCF-
0346883 and in part by the Mathematics, Information and Compu-
tational Sciences Office, Office of Advanced Scientific Computing
Research, U. S. Department of Energy, under contract No. DE-
AC05-00OR22725 with UT-Battelle, LLC. Special thanks to Pro-
fessor Jack Dongarra and Clay England at University of Tennessee,
Don Stredney, Dennis Sessanna and Jason Bryan from Ohio Su-
percomputer Center. The RMI data set was provided by Mark
Duchaineau at Lawrence Livermore National Laboratory. The
Visible Woman dataset was provided by the National Library of
Medicine.

REFERENCES

[1] C. Bajaj, C. Pascucci, G. Rabbiolo, and D. Schikore. Hypervolume
visualization: A challenge in simplicity. In IEEE/ACM Symposium on
Volume Visualization’98, pages 95–102, 1998.
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