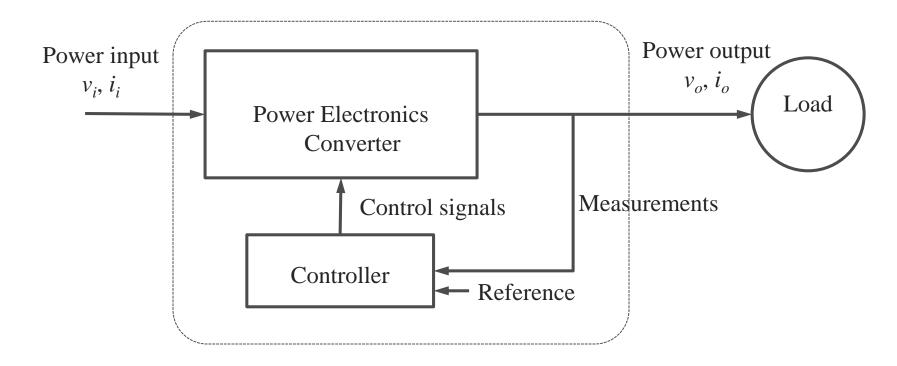
ECE 325 – Electric Energy System Components 8- Fundamental Elements of Power Electronics

Instructor: Kai Sun Fall 2018

(Selected materials from Chapter 21)

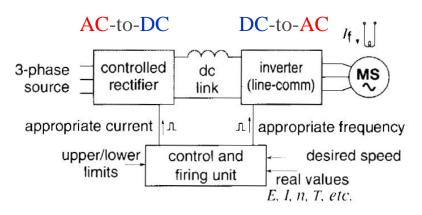

• Power semiconductor switches

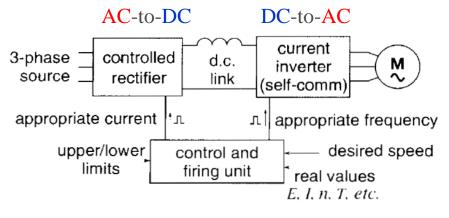
-Diodes, thyristors and controllable switches.

• Principles of AC-to-DC, DC-to-DC and DC-to-AC converters

Introduction

- A power electronics system is to process and control the flow of electric energy by supplying voltages and currents in a form that optimally suits the loads
- A typical power electronics (PE) system:


Applications of PE converters


- For DC voltage/current, a PE converter can regulate and adjust the magnitude to a desired level
- For AC voltage/current, a PE converter can adjust the magnitude and frequency and change the number of phases
- Applications:
 - Switched-mode (DC) power supplies
 - Uninterrupted power supplies (UPS)
 - Adjustable speed motor drives
 - High-voltage DC transmission (HVDC)
 - Battery-based utility energy storage
 - Electric vehicles (EVs) and hybrid electric vehicles (HEVs)
 - Renewable energy integration, e.g. solar PV and wind generation

Classification of PE converters

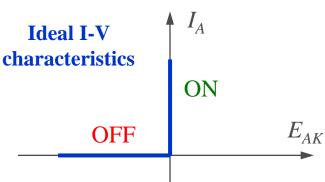
Four types of PE converters	Examples of application
AC-to-DC (rectifier)	The battery (charging) interface to the power grid and power adapters for electronic devices
DC-to-DC (boost up/step down)	Power supplies for electronic devices
DC-to-AC (inverter, to 1-phase or 3-phase AC)	The battery (discharging) and solar PV interfaces to the power grid
AC-to-AC	Variable-speed motor drive

• Examples of variable-speed motor drives (AC-to-AC converters)

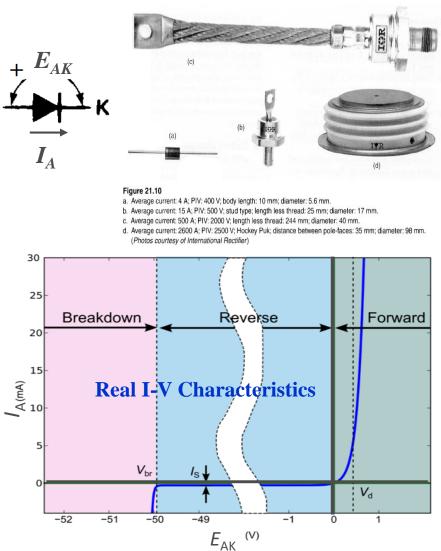
Figure 23.3

Variable-speed synchronous motor drive using a controlled rectifier and a line-commutated inverter fed from a dc link current source (see Section 23.2).

Figure 23.5

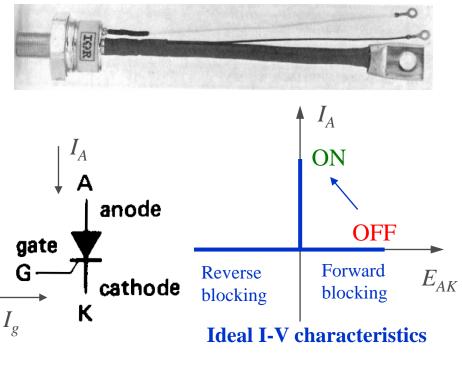

Variable-speed drive using a controlled rectifier and a self-commutated inverter fed from a dc link current source (see Section 23.9).

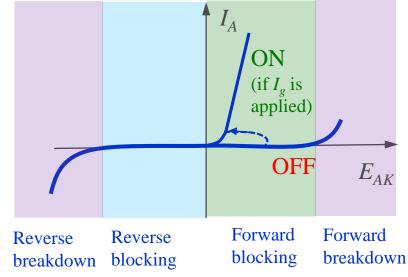
Power semiconductor switches


- They are key functional components in a PE converter besides resistors, inductors and capacitors.
- Two states: ON (conducting) and OFF (open-circuit)
- Three types in terms of the controllability
 - Not receiving control signal, e.g.
 - **Diode**: ON and OFF states controlled by the polarity and magnitude of voltage and the magnitude of current.
 - Partially controlled by a control signal, e.g.
 - **Thyristor**: turned ON by a control signal and OFF when current goes to zero
 - Controllable switch, e.g.
 - GTO, IGBT, BJT, MOSFET: both ON and OFF states are controllable by control signals

Ideal and Practical Diodes

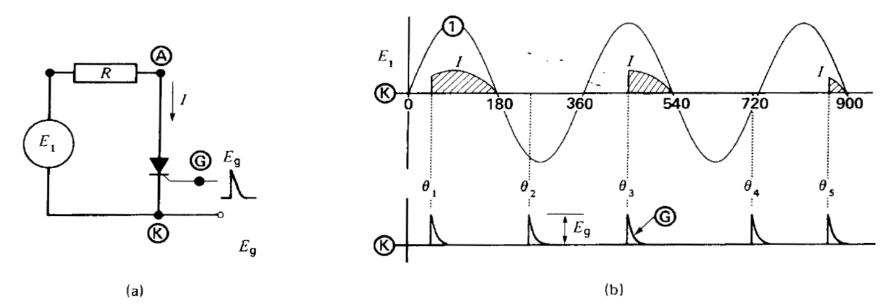
- 2 terminals: A (anode) and K (cathode)
- **Rule 1**: OFF when $E_{AK}=0$
- **Rule 2**: OFF when $E_{AK} < 0$ (reverse biased)
- **Rule 3**: ON (short-circuited) when *E*_{AK}>0 (forward biased)
- **Rule 4**: OFF when *I* becomes 0
- Both ON and OFF switches are instantaneous


- Practical Diode:
 - Turns ON when forward biased with a voltage V_d about 0.7V or more, and it has a negligible voltage drop <1.5V.
 - When it is OFF (reverse biased), it has a negligible current I_S flowing through.
 - At very large reverse bias beyond its peak inverse voltage (V_{br} =50 to 4000V), it is usually damaged and begins to conduct in reverse.



7

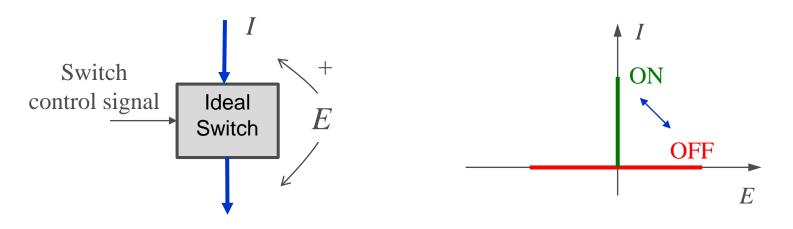
Thyristors


- Usually referred to semiconductor/silicon controlled rectifier (SCR)
- 3 terminals: A (anode), K (cathode) and G (gate)
- A thyristor behaves like a diode except that the instant of conduction can be controlled by "G"; that enables converting DC to AC
- Two conditions to conduct
 - 1. $E_{AK} > 0$
 - 2. Positive current I_g flows into "G" for at least a few microseconds
- Once conduction starts, "G" will lose control and conduction will continue until the current *I_A* into "A" falls to zero
- If "G" and "K" are short-circuited, the thyristor is blocked
- A thyristor is **partially controllable**

Real I-V characteristics

Principles of gate firing

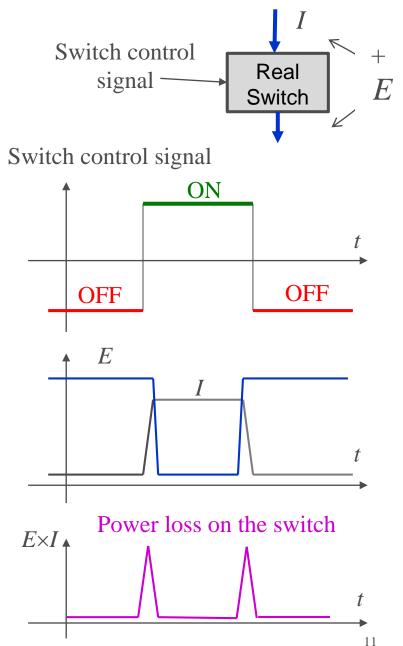
- We can control the current in an AC circuit by delaying the gate (G) pulses with respect to the start of each positive half-cycle.
 - If the pulses occur at the very beginning of each half-cycle, conduction lasts for 180° like a diode
 - If the pulses are delayed by θ , current only flows during the remaining 180°- θ

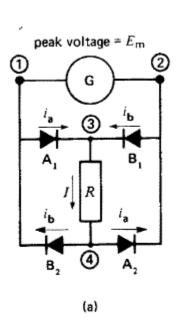

Controllable power semi-conductor switches

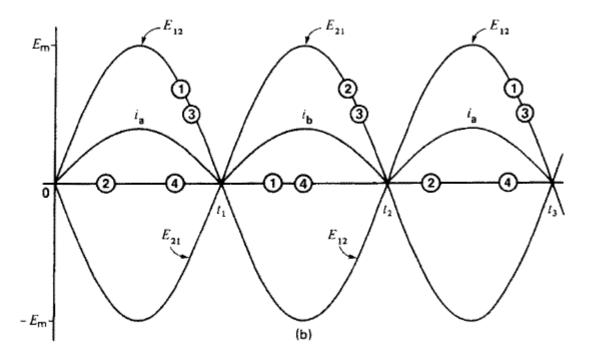
• Examples:

- GTO (Gate-turn-off thyristor)
- **IGBT** (Insulated gate bipolar transistor)
- **BJT** (Bipolar junction transistor)
- MOSFET (Metal-oxide-semiconductor field effect transistor)

• Ideal switch


- Vanishingly small power required from the control signal to trigger the switch
- Switch between ON and OFF instantaneously when triggered by the control signal
- When OFF, block arbitrarily large forward and reverse voltages with zero current flow
- When ON, conduct arbitrarily large currents with zero voltage drop


Controllable power semi-conductor switches (cont'd)


• Real switches:

- Requiring control power for switches (the less control power the simpler the control circuit)
- Limited switching frequency
- Having OFF-state leakage current
- Having ON-state voltage (relevant to conducting losses)
- Limited forward- & reverse-voltage blocking capability (the higher voltage blocking capability, the fewer switches in series)
- Limited ON-state current rating (the higher current rating, the fewer switches in parallel)
- Limited *dE/dt* and *dI/dt* ratings (requiring additional circuit to limit |*EI*|)

AC-to-DC converter: single-phase, diode bridge rectifier

Figure 21.13

- a. Single-phase bridge rectifier.
- b. Voltage levels.

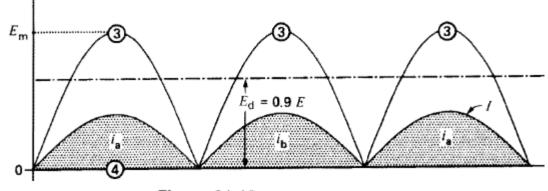
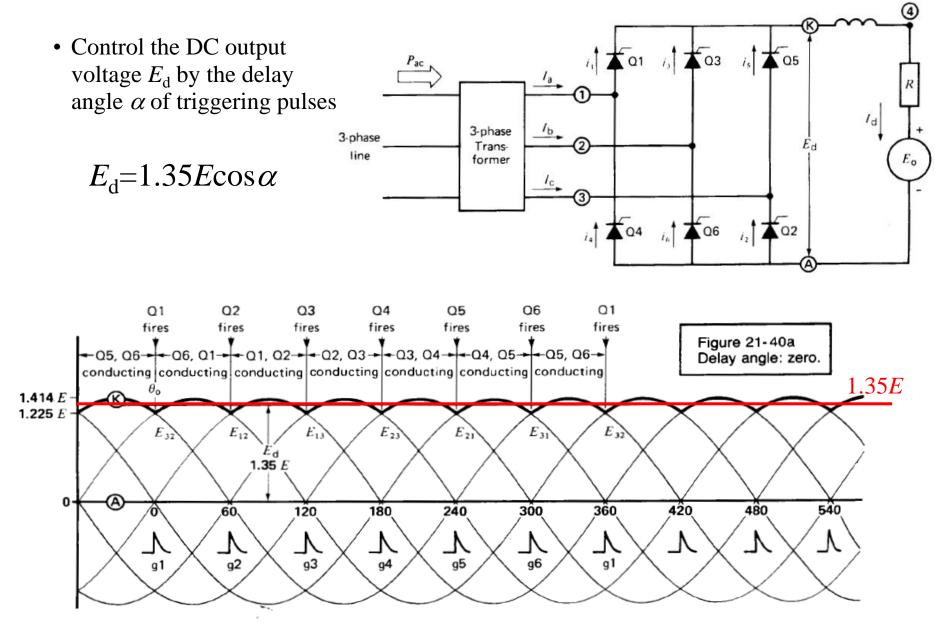
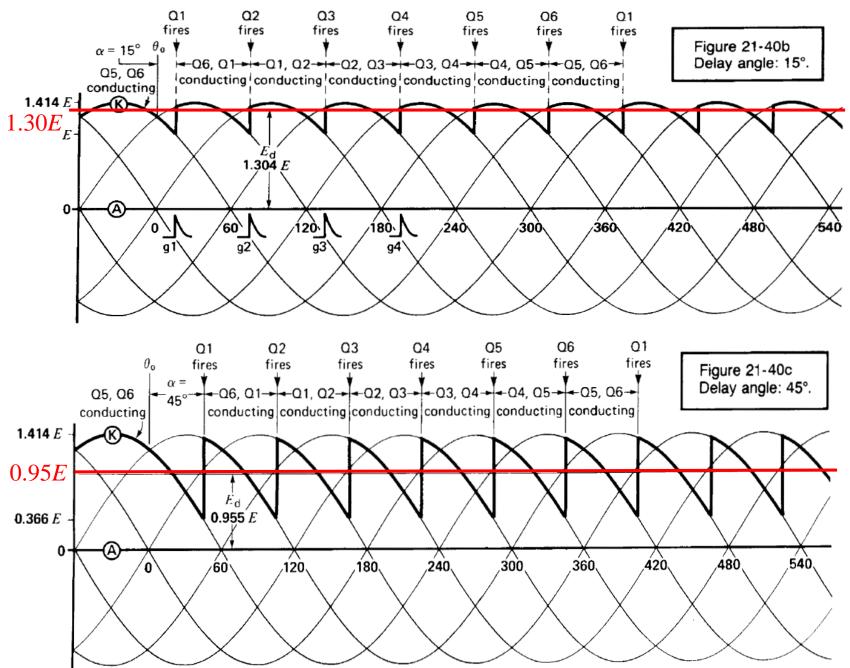
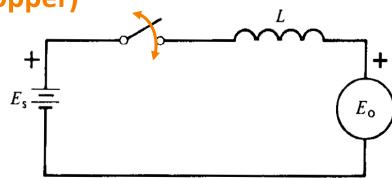
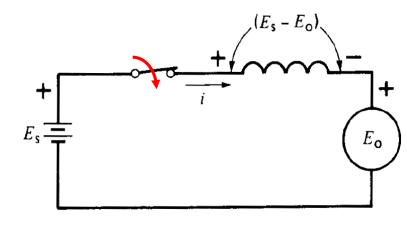
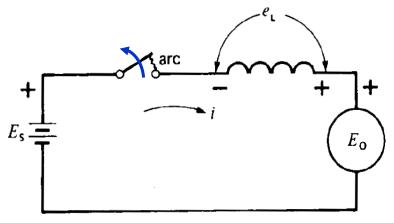




Figure 21.13c Voltage and current waveforms in load *R*.

AC-to-DC converter: 3-phase, 6-pulse thyristor rectifier

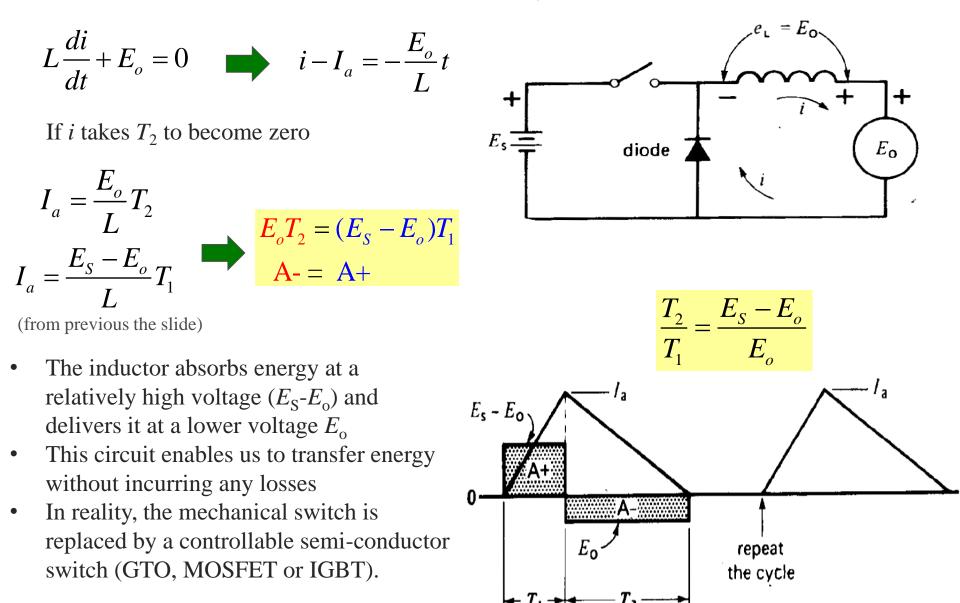



Step-down DC-to-DC converter (buck chopper)


- To transfer power from a high-voltage DC source $E_{\rm S}$ to a lower-voltage DC load $E_{\rm o}$, one solution is to connect them by an inductor and to open and close the circuit periodically
 - When switch closes, energy is transferred from E_S to E_o during time of closure T_1

$$E_{s} - E_{o} = L \frac{di}{dt} \quad \text{Integration} \quad i = \frac{E_{s} - E_{o}}{L}$$
$$I_{a} \triangleq i(T_{1}) = \frac{E_{s} - E_{o}}{L}T_{1} \quad W = \frac{1}{2}LI_{a}^{2}$$

When the switch opens, magnetic energy W stored in the inductor is dissipated in the arc across the switch, so efficiency of power transfer is poor



1-Quadrant DC-to-DC converter

• Add an diode in order to deliver energy W to load E_0 also when the switch opens:

Rapid switching

- Open and close the switch rapidly so that the current increases and decreases in a narrow range between I_a and I_b
 - When the current falls to I_b (after T_b), the switch recloses
 - When the current rises to I_a (after T_a), the switch reopens
- Duty cycle:

 $D = T_a / (T_a + T_b) = T_a / T < 1$

- Average DC current to the load: $I_o = (I_a + I_b)/2$
- Average DC current from the source: $I_{S} = I_{o}(T_{a}/T) = I_{o}D \implies I_{o} = I_{S}/D$
- If there is no power loss

 $E_S I_S = E_o I_o = E_o I_S / D \implies E_o = D E_S$

DC output voltage can simply be controlled by varying the duty cycle

• See Example 21-11

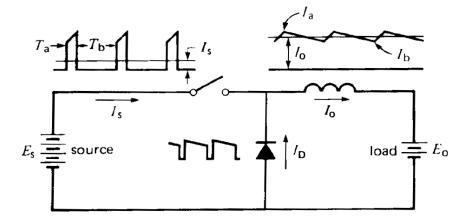
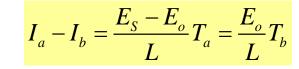



Figure 21.60a Currents in a chopper circuit.

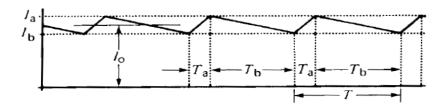


Figure 21.60b Current in the load.

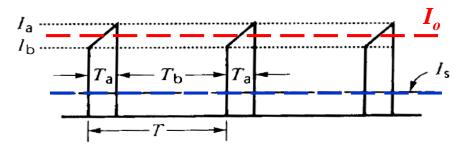
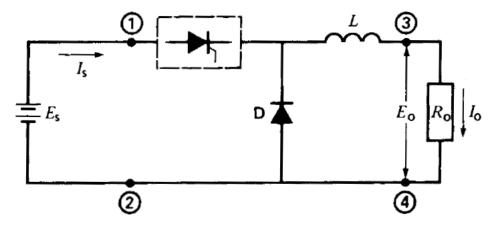



Figure 21.60c Current pulses provided by the source.

Impedance transformation

Duty cycle D < 1 $I_o = I_S / D$ $E_o = DE_S$

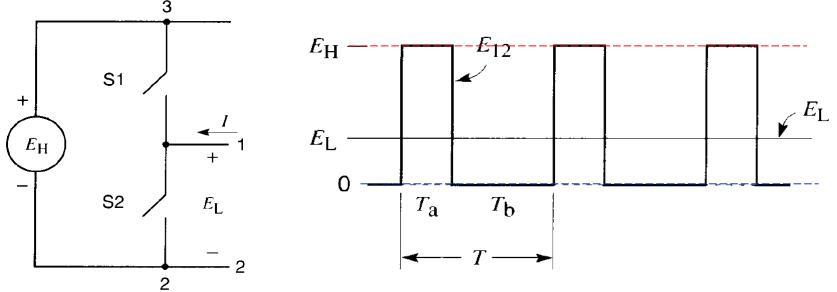

 $R_o = E_o / I_o$ $R_S = E_S / I_S = (E_o / D) / (I_o D)$ $= R_o / D^2$

Figure 21.62 A chopper can make a fixed resistor *R*_o appear as a variable resistance between terminals 1-2.

- The 1-quadrant DC-to-DC converter can transform the resistance of a fixed resistor to a higher value depending on *D*.
 - It behaves like a DC transformer whose turns ratio is 1/D
 - Unlike a transformer, which allows power to flow bi-directionally, a step-down chopper can transfer power only from the high-voltage side to the low-voltage side
- See Example 21-12

2-quadrant DC-to-DC converter

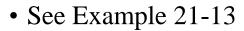
• Consider two mechanical switches S1 and S2 that open and close alternatively

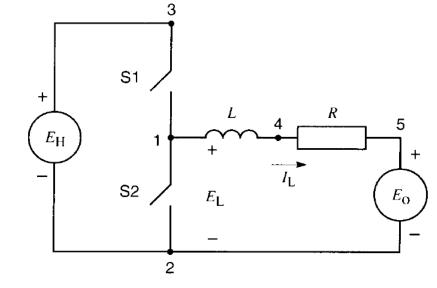
- Within the time of a cycle $T=T_a+T_b$, S1 is closed for T_a and S2 is closed for T_b
- S1 has duty cycle $D=T_a/T$ and S2 has duty cycle $T_b/T=(1-D)$
- Output voltage E_{12} fluctuates between E_H and 0, having the average DC output

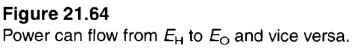
 $E_L = DE_H$ (variable by varying D)

• 2-quadrant converter:

- **Specific voltage polarity**: Terminal 1 is always (+) with respect to terminal 2
- **Bidirectional current**: current and power can flow from E_H to E_L , or vice versa since current always circulate through either S1 or S2


- Assume the load to be a battery E_o with internal resistance R
- Use inductor *L* as a buffer between the fluctuating E_{12} and constant E_o


Average current $I_L = (E_L - E_o)/R$


- If average DC voltage $E_L = E_o$, then $I_L = 0$ and no dc power exchange happens
- Step-down chopper (buck mode):
 - If $E_L > E_o$, power= $|E_L I_L|$ flows to E_o
- Step-up chopper (boost mode):

- If $E_L < E_o$, power= $|E_L I_L|$ flows to E_H

- In reality, mechanical switches S1 and S2 are replaced by semi-conductor switches Q1 and Q2 each with a diode placed in antiparallel for bi-directional currents
- Q1 and Q2 cannot be closed at the same time to avoid a short-circuit across E_H ; in each half cycle, they both open for a very brief **dead time** (zero current from E_H) for a safety margin

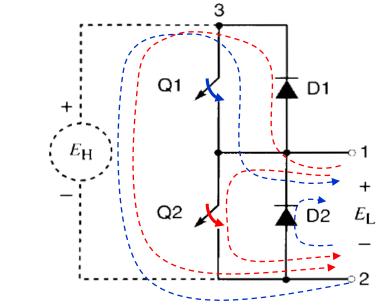
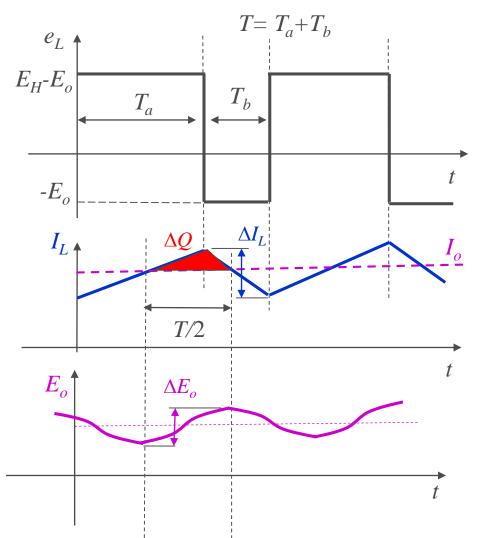
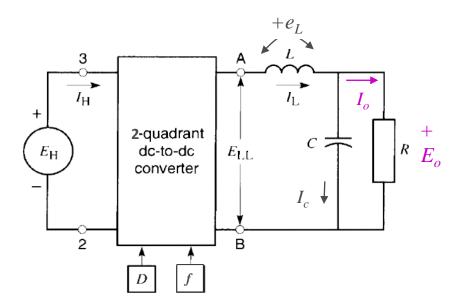




Figure 21.69 Two-quadrant electronic converter.

Output voltage ripple filter

- A LC low-pass filter is applied to create almost flat DC output voltage E_o
- Ripples only appear in I_L , not $I_{o.}$

Figure 21.73

Four-quadrant dc-to-dc converter feeding a passive dc load *R*.

$$f_{LC} = \frac{1}{2\pi\sqrt{LC}} \ll f = \frac{1}{T}$$

$$\Delta I_{L} = \frac{E_{o}}{L} T_{b} = \frac{E_{o}}{L} (1 - D)T$$
$$\Delta Q = \int I_{c} dt = \frac{1}{2} \frac{\Delta I_{L}}{2} \frac{T}{2} = \frac{\Delta I_{L}T}{8} = \frac{E_{o}}{8L} (1 - D)T^{2}$$

$$\frac{\Delta E_o}{E_o} = \frac{\Delta Q}{CE_o} = \frac{(1-D)T^2}{8LC} = \frac{\pi^2(1-D)}{2} \left(\frac{f_{LC}}{f}\right)^2 \approx 0$$

4-quadrant DC-to-DC converter

- It consists of two identical 2-quadrant converters having the same switching frequency, e.g. 100kHz
- Switching rules:
 - Q1 and Q2 on arm A open and close alternately
 - Q3 and Q4 on arm B open and close alternately
 - Q1 and Q4 open and close simultaneously (duty cycle D)
 - Q2 and Q3 open and close simultaneously (duty cycle 1-D)

• 4-quadrant:

- E_{LL} changes between $-E_H$ and $+E_H$
- The DC current flow of the load between A and B is bidirectional

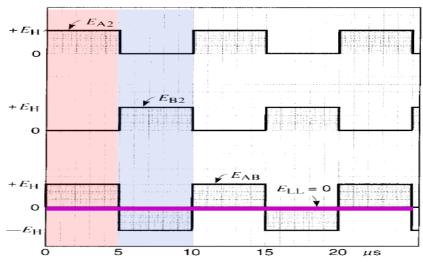
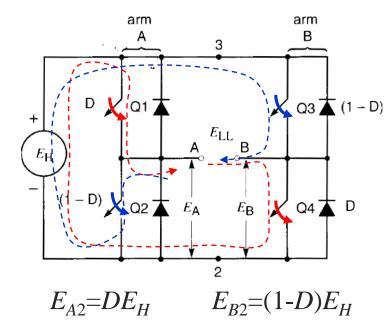
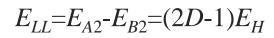




Figure 21.71 Voltage output when D = 0.5. The average voltage is zero.

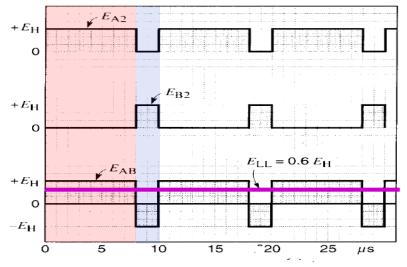
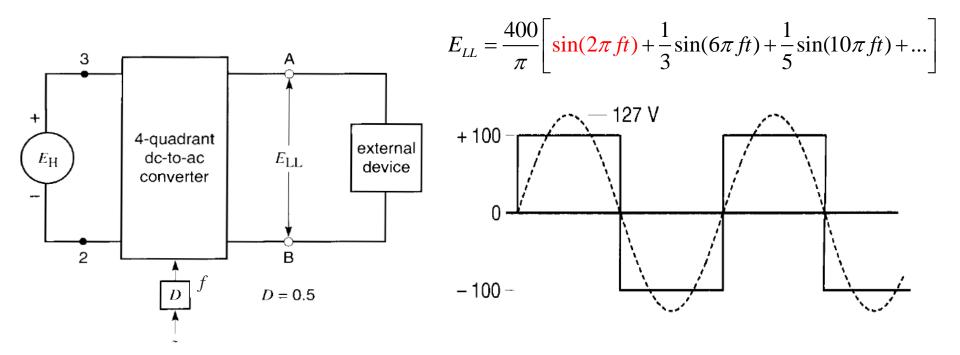
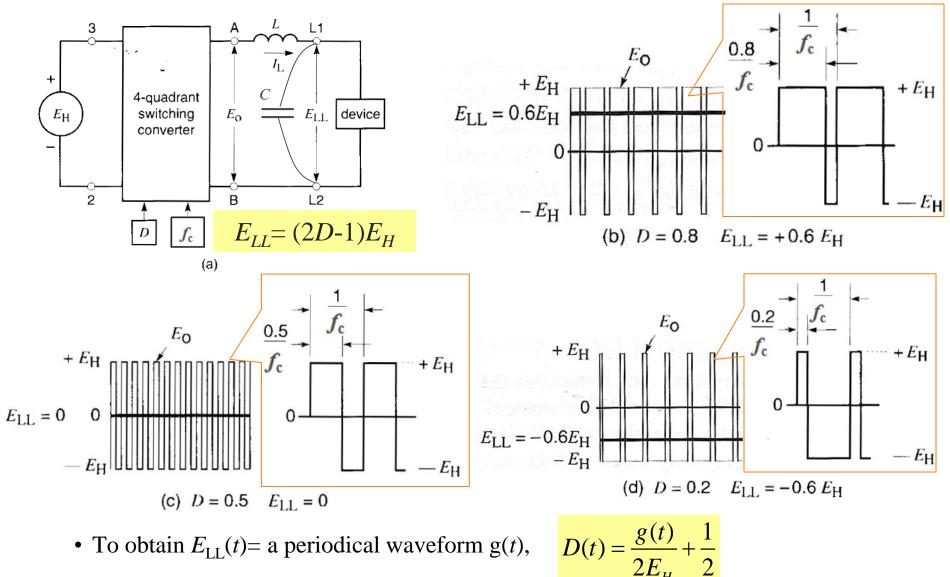
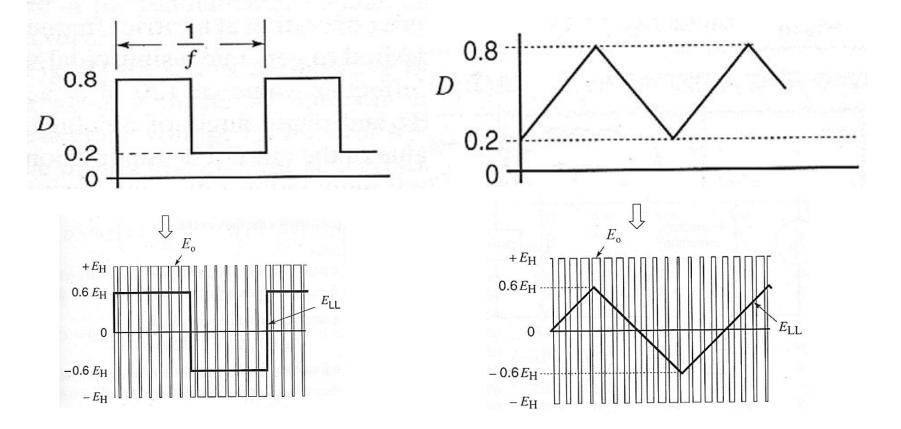



Figure 21.72Voltage output when D = 0.8. The average voltage E_{LL} is 0.6 E_{H} .


DC-to-AC rectangular wave converter

- The 4-quadrant converter with D=0.5 is able to transform a DC voltage $E_{\rm H}$ into a rectangular AC voltage $\pm E_{\rm H}$, which contains a fundamental sinusoidal component having an amplitude of $1.27E_{\rm H}$ and an effective value of $1.27E_{\rm H}/\sqrt{2}=0.90E_{\rm H}$
- It is bidirectional (DC-to-AC and AC-to-DC) and frequency-variable
- The output has a fixed amplitude and large 3rd, 5th and 7th harmonics.


PWM (pulse width modulation)

• 4-quadrant DC-to-DC converter using a carrier frequency f_c and different values of D

DC-to-AC non-sine wave converters with PWM

- With D varying periodically between 0.8 and 0.2 at a frequency $f < 0.1 f_c$
- Although f_c is fixed, the ON/OFF pulse widths change continually with D.
- That is why this type of switching is called Pulse Width Modulation (PMW)

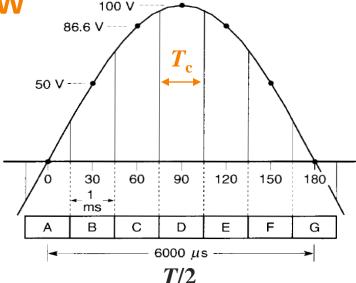
DC-to-AC sine wave converter with PMW

• To obtain $E_{LL}(t) = E_{m} \sin(2\pi f t + \theta)$

$$D(t) = \frac{E_m}{2E_H} \sin(2\pi f t + \theta) + \frac{1}{2}$$

Amplitude modulation ratio $m=E_{\rm m}/E_{\rm H}$ Frequency modulation ratio $m_{\rm f}=f_{\rm c}/f=T/T_{\rm c}$

• Create a 83.33Hz sine voltage wave with peak value E_m =100V using a DC-to-AC converter with $E_{\rm H}$ =200V and f_c =1000Hz:

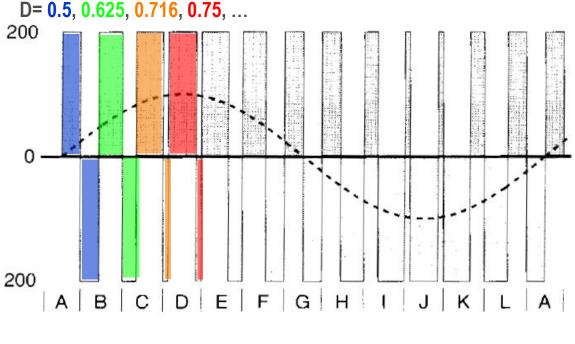

T=1/83.33=0.012s=12000µs

 $T_{\rm c} = 1/1000 = 1000 \,\mu s$

 $m_{\rm f} = T/T_{\rm c} = 12$, so each $T_{\rm c}$ covers 360/12=30°

Calculate *D* for $\phi(t)=2\pi ft+\theta=0^{\circ}, 30^{\circ}, 60^{\circ}, ...,$ which correspond to $E_{LL}=100\sin\phi$ (V)

In each carrier period T_c , Q1&Q4 are ON for first $DT_c = 1000D(\mu s)$ and then Q2&Q3 are ON for the remaining $(1-D)T_c = 1000(1-D) (\mu s)$


Figure 21.82

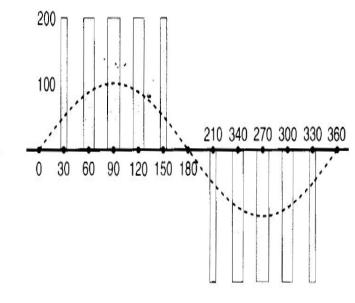

Positive half-cycle of the fundamental 83.33 Hz voltage comprises six carrier periods of 1 ms each.

TABLE 21E GENERATING A SINE WAVE

angle [deg]	E _{LL} [V]	D	Q1, Q4 on [µs]	Q2, Q3 on [µs]	interval
0	0	0.5	500	500	А
30	50	0.625	625	375	В
60	86.6	0.716	716	284	С
90	100	0.75	750	250	D
120	86.6	0.716	716	284	Е
150	50	0.625	625	375	F
180	0	0.5	500	500	G
210	-50	0.375	375	625	Н
240	-86.6	0.284	284	716	Ι
270	-100	0.250	250	750	J
300	-86.6	0.284	284	716	К
330	-50	0.375	375	625	L
360	0	0.5	500	500	М

DC-to-AC sine wave converter with Bipolar/Unipolar PWM

Figure 21.83

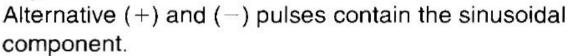


Figure 21.84 Sequential (+) and (-) pulses contain the sinusoidal components.

- Once the carrier frequency is filtered out, the resulting voltage will be sinusoidal
- A higher carrier frequency would yield a better sinusoidal waveform but would increase the power losses of the electronic switches, e.g. IGBTs