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Abstract—This paper proposes a passive islanding detection 

technique for distributed generations in grid-connected 

microgrids and presents a comprehensive comparative analysis of 

intelligent classifiers for passive islanding detection application. 

The proposed method utilizes pattern recognition techniques in 

classification of underlying signatures of wide variety of system 

events on critical system parameters for islanding detection. Case 

study on a grid-connected microgrid model with different types 

of distributed generations is performed to evaluate the proposed 

method and compare the classifier performances. Test results 

demonstrate the effectiveness of the proposed method in detection 

of islanding events. 

Index Terms--Decision trees, islanding detection, microgrids, 

naïve-Bayes, neural networks, support vector machines.  

I. INTRODUCTION 

Integration of distributed generation (DG) resources with 
electric power systems (EPS) offers potential solution to energy 
security and reliability with minimum environmental impacts. 
However, several technical considerations are required in 
system planning and operation processes for DG integration. 
Inadvertent islanding is one of the major issues associated with 
DG integrations. IEEE Std. 1547 defines islanding as “A 
condition in which a portion of area electric power system 
(EPS) is energized solely by one or more local EPSs through 
associated points of common couplings (PCC) while the portion 
of area EPS is electrically isolated from rest of the area EPS”. 
IEEE Std. 1547 recommends isolation of DGs within a 
maximum of 2 seconds in events of island formation [1]. 
Although islanded operations may be able to enhance reliability 
by supplying local loads and reducing downtime when supply 
from area EPS is unavailable, but several operational and safety 
considerations including power quality standards, voltage and 
frequency controls, and safety hazards are required before such 
operations can be realized in practice.  

The concept of microgrids allows such self-governing 
system operations. A microgrid is essentially a distribution 
network consisting of a cluster of DG resources and loads with 
advanced controls, protections and energy management system 

to operate in grid-connected mode, islanded (autonomous) 
mode and ride through between the two modes. Transition from 
grid-connected mode to islanded mode requires fast and 
accurate islanding detection as the primary step. Islanding 
detection techniques are generally divided into three main 
categories, namely active, passive and communication based 
techniques. Communication based islanding detection methods 
mainly use “transfer trip” or “power line signaling” in order to 
detect islanding conditions. These methods require extensive 
communication infrastructures and hence expensive. Active 
techniques rely on perturb and observe methods. Although 
active methods have smaller non-detection zones (NDZ) 
compared to passive techniques, they cause degradation of 
power quality and require complex control for perturbation 
injections [2-3]. Passive islanding detection methods rely on 
local measurements of system parameters (such as- voltage and 
current) and detects islanding events by locating abnormalities 
in those system parameters. Several passive islanding detection 
methods have been proposed in literature [4-12]. Passive 
islanding detection methods do not degrade power quality, but 
these methods suffer from a larger non-detection zone (NDZ). 
Especially, in presence of power balance in the island (i.e. 
generation and load are approximately balanced in the islanded 
section of the system). 

This paper investigates passive islanding detection based on 
pattern recognition techniques and presents a comprehensive 
comparative analysis of pattern recognition techniques based 
classifiers for passive islanding detection in distributed 
generation (DG) from microgrid standpoint. The passive 
islanding detection method is based on extraction of a unique 
set of critical system features from voltage and current 
measurements at target DG locations, and utilization of 
intelligent classifiers for detection of islanding events. The set 
of system features were selected to enhance islanding detection 
accuracy in presence of multiple types of DG units, under 
different system operating and loading conditions. A detailed 
case study on grid connected microgrid model implemented 
with IEEE 13 node distribution feeder system is performed to 
validate the effectiveness of the proposed islanding detection 
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method and evaluate the performances of five different 
intelligent classifiers based on pattern recognition techniques 
for the proposed islanding detection application. 

The paper is organized as follows. Principles of pattern 
recognition based classification methods are presented in 
Section II. Section III describes the proposed passive islanding 
detection method. Section IV describes the test system model. 
In Section V, case study results are presented, and performance 
of the classification methods are compared and analyzed. 
Finally, Conclusions are presented in Section VI. 

II. CLASSIFICATION METHODS 

This paper investigates five different classification 
techniques: (1) Decision Trees, (2) Naïve-Bayes, (3) Support 
Vector Machines, (4) Multilayer Perceptron Neural Networks, 
and (5) Radial Basis Function Neural Networks. [15] A brief 
overview of these methods is presented in this section. 

A. Decision Trees 

 

Figure 1. A simple illustrative decision tree. 

Decision trees (DT) belong to a class of pattern recognition 
tools capable of extracting useful information from large data 
set and provide assistance in classification of input vectors into 
discrete categories. The classification algorithm combines 
hyperplanes parallel to coordinate axes to approximate multiple 
separation boundaries for splitting a complex decision process 
into a collection of simple decision processes [13]. The DT 
algorithm initiates with “Root Node” which contains the 
complete learning set (LS). Each of the “Internal Nodes” tests 
a critical attribute (CA) and each “Arc” corresponds to an 
attribute value. The learning process is achieved by recursively 
splitting the learning set (LS) into two purer subsets according 
to the critical splitting rule (CSR) at each of the internal nodes. 
The “Terminal Node” represents the predicted class of an input 
vector [14, 15]. DT classifiers offer robustness, ease of 
interpretation and implementation compared with other popular 
pattern recognition tools. 

B. Naïve-Bayes Classification Method 

The Naïve-Bayes classifier is a probabilistic classifier 
method based on Bayesian theorem with strong independence 
assumptions. NB classifiers are particularly suitable for 
classification tasks where the dimensionality of the input data 
is high. In Naïve-Bayes classification model, the final 
classification is derived from posterior probability of an event 
which is computed from prior probability and likelihood. The 
posterior probability and likelihood of an event 𝑐𝑗 among a set 

of possible outcomes 𝐶 = {𝑐1, 𝑐2, 𝑐3, … , 𝑐𝑛} for a given set of 
predictor 𝑋 = {𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛} can be expressed as follows. 

𝑝(𝑐𝑗|𝑋) =
𝑝(𝑐𝑗)𝑝(𝑋|𝑐𝑗)

𝑝(𝑋)
                            (1) 

𝑝(𝑋|𝑐𝑗) = ∏ 𝑝(𝑥𝑘|𝑐𝑗)                        (2)
𝑛

𝑘=1
 

where 𝑝(𝑐𝑗  | 𝑋) is the posterior probability of class 

membership, i.e., the probability that 𝑋 belongs to 𝑐𝑗. Naïve-

Bayes classifiers can be trained very efficiently in a supervised 
learning setting and require small amount of training data to 
estimate parameters necessary for classification. 

C. Support Vector Machines 

Support vector machines (SVMs) are based on the concept 
of decision planes which define decision boundaries. SVM 
classifiers perform classification by constructing hyperplanes in 
a multidimensional space to separate cases of different classes. 
An optimal hyperplane is constructed by minimizing an error 
function through iterative training algorithm, which maximizes 
the separation margin between different classes. For a set of 
input vectors 𝑋𝑖 and vector of classes 𝑌𝑖, the training process 
involves minimization of the error function presented in (3) 
subjected to the constraint presented in (4). 

1

2
𝑤𝑇𝑤 + 𝐶 ∑ 𝜉𝑖

𝑘

𝑖=1
 ;  𝜉𝑖 > 0, 𝑖 = 1,2, … , 𝑘        (3) 

𝑌𝑖(𝑤𝑇𝜙(𝑋𝑖) + 𝑏) ≥ 1 − 𝜉𝑖                                     (4) 

where, 𝐶 is the capacity constant corresponding to the penalty 
factor for error term 𝜉𝑖, 𝑤 is the vector of coefficients, 𝑏 is the 
bias constant. The kernel function 𝜙(𝑥)is applied to transform 
data from input vectors to feature space. The kernel function 
can be linear, polynomial, radial or sigmoid functions. 

D. Artificial Neural Networks 

Artificial neural networks (ANN) are highly sophisticated 
modeling technique which have been successfully applied 
across diversified classification problems in the domain of 
power systems. ANN architecture consists of input layer, 
hidden layers (pattern and summation layers) and output layer. 
Two different types of ANNs are investigated in this paper. 

 
Figure 2. Generic artificial neural network architecture. 

1) Multilayer Perceptrons (MLP): MLP architecture offers 
simplicity and capability to model functions of almost arbitrary 
complexity. In MLP architecture, nodes are arranged in a 
layered feed-forward topology. Each node is modeled as 
sigmoid functions and performs a biased weighted sum of their 
inputs. The response function is modeled by dividing up the 
pattern space into hyperplanes and computing the Euclidian 
distance of the test case from the line of sigmoid-cliff. Output 
is generated by passing the nodal outputs through a transfer 
function (called activation function). 

2) Radial Basis Function Networks: Radial basis function 
(RBF) networks model the response function using Gaussian 
functions and divides the pattern space using hyperspheres. 
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Therefore, in radial basis function networks, hidden layer 
nodes are modeled as radial units which are nonlinear and a 
single hidden layer with sufficient number of nodes is capable 
of modeling any function. The network output is a linear 
combination of the outputs from hidden layer radial nodes 
which are weighted sum of the Gaussian functions. 

III. ISLANDING DETECTION METHODOLOGY 

The conceptual model of the proposed islanding detection 
methodology is presented in Fig.3. The method relies on 
extraction of critical system features by post-processing voltage 
and current waveforms obtained at target DG locations, and 
detection of event specific signatures associated with these 
critical features through the application of classification 
methods based on pattern recognition techniques. Knowledge 
base (KB) for training and testing the classifiers is generated 
through extensive offline event simulations to capture the 
essential characteristics of the system.  

Figure 3. Conceptual model of the proposed islanding detection scheme. 

TABLE I.  CRITICAL FEATURES USED IN ISLANDING DETECTION 

𝐱𝟏
𝐢 = ∆𝐕𝐢 Voltage deviation (V) under ith event;  

𝐱𝟐
𝐢 = (∆𝐕

∆𝐭⁄ )
𝐢
 Rate-of-change of voltage (V/sec) under ith event; 

𝐱𝟑
𝐢 = ∆𝐟𝐢 Frequency deviation (Hz) under ith event;  

𝐱𝟒
𝐢 = (∆𝐟

∆𝐭⁄ )
𝐢
 Rate-of-change of Frequency (Hz/sec) under ith 

event; 

𝐱𝟓
𝐢 = 𝐏𝐢 Active power output (Watts) at target DG location 

under ith event; 

𝐱𝟔
𝐢 = (∆𝐏

∆𝐭⁄ ) 𝐢 Rate-of-change of active power output (Watts/sec) 
at target DG location under ith event; 

𝐱𝟕
𝐢 = 𝐐𝐢 Reactive power output (VARs) at target DG 

location under ith event; 

𝐱𝟖
𝐢 = (∆𝐐

∆𝐭⁄ ) 𝐢 
Rate-of-change of reactive power output 

(VARs/sec) at target DG location under ith event; 

𝐱𝟗
𝐢 = (∆𝐟

∆𝐏⁄ ) 𝐢 Change in frequency with respect to DG active 
power output (Hz/Watts) under ith event;  

𝐱𝟏𝟎
𝐢 = (∆𝐕

∆𝐐⁄ ) 𝐢 Change in voltage with respect to DG reactive 

power output (V/VARs) under ith event; 

𝐱𝟏𝟏
𝐢 = 𝐕𝐓𝐇𝐃𝐢 Total harmonic distortion in voltage under ith event; 

𝐱𝟏𝟐
𝐢 = 𝐂𝐓𝐇𝐃𝐢 Total harmonic distortion in current under ith event; 

𝐱𝟏𝟑
𝐢 = (

∆(𝜹𝑽 − 𝜹𝑰) 

∆𝐭
)

𝐢

 
Rate-of-change of phase angle deviation 

(ROCPAD) at target DG location under ith event; 

𝐱𝟏𝟒
𝐢 = (

𝐕𝟐
𝐕𝟏

⁄ ) 𝐢 
Voltage unbalance at target DG location under ith 
event. 

 

In this paper, a set of 14 features have been selected for the 
classification purpose which is used for supervised learning of 
five different types of classifiers. Table I lists all the 
independent system features used in islanding detection.  

A wide variety of system disturbances leading to islanding 
and non-islanding events have been considered in offline 
simulations. The islanding events include all possible tripping 
of circuit breakers leading to islanding situations, islanding in 
area EPS transmission network or loss of distribution line, and 
sudden loss of power at PCC with area EPS. Non-islanding 

events considered include tripping of circuit breakers not 
leading to islanding situations, abrupt changes in loadings at 
target DG locations, at PCC and in overall microgrid, and 
capacitor bank switching. These events have been simulated 
under various operating states of area EPS and microgrid. 

The methodology of the proposed passive islanding 
detection approach can be outlined according to the flow 
diagram presented in Fig.4. 

 

Figure 4. Outline of the proposed passive islanding detection scheme. 

IV. TEST SYSTEM MODEL 

The test system model is developed using Matlab/Simulink 
platform. A brief overview of the grid-connected microgrid 
model used as the test system is presented in this section. 

A. Main Grid Model 

The main grid is modeled as 4-generator, 2-area system 
described in [16]. The system has a relatively small size but is 
able to exhibit typical power system dynamics. Thus, 
interactions between main grid and microgrid can be studied. 

TABLE II.  TWO AREA SYSTEM MODEL OVERVIEW 

Generators G-1: 700MW,185MVar 

G-2: 700MW, 235MVar 

G-3: 719MW, 176MVar 

G-4: 700MW, 202MVar 

Load Bus-7: 967MW, 100MVar Bus-9: 1767MW, 100MVar 

Shunt 

Capacitors 
Bus-7: 200MVar Bus-9: 350MVar 

B. Microgrid Model 

The microgrid model is implemented using IEEE 13 bus 
distribution system model with two different types of 
distributed generators (i.e. diesel generator and PV array) and 
one storage unit (i.e. battery). The 13-bus test feeder system is 
operated at 4.16kV with unbalanced loads (both single-phase 
and there-phase loads) and shunt capacitor banks to model a 
representative distribution system. The microgrid model is 
connected to area-2 of the main grid model.  
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Figure 5. Microgrid model implemented in IEEE 13 node distribution feeder. 

V. CASE STUDY RESULTS AND ANALYSIS 

In this case study, a total of 162 islanding (I) cases and 324 
non-islanding (NI) cases were simulated under 27 different 
operating conditions (i.e. EPS loading, microgrid loading) to 
generate the measurement database at target DG locations (at 
PCC of the DG unit with microgrid). Voltage and current 
signals at target DG locations were sampled at 60 Hz. The set 
of critical system features presented in Table I was extracted 
from the measurement dataset and data model for setting the 
islanding detection relay at target DG location was developed. 

Based on the data model, five different classifiers explained 
in Section II were developed using “Waikato Environment for 
Knowledge Analysis (WEKA)” [17] data mining platform. For 
each of the classification methods, three different classifiers 
(i.e. separate classifiers for DG-1 and DG-2, and common 
classifier for both DGs) were developed.  

Two different testing methods -a) K-fold cross validation 
and b) percent split were applied to test the classifiers. K-fold 
cross validation method partitions the original dataset into K 
subsets and performs K iterations. In each iteration, (K-1) 
subsets are used as training sets and a single subset as validation 
set. Each of the K subsets is used as the validation set once in 
the process and results over K iterations are averaged to 
generate the final result. In this paper, 10-fold cross validation 
method is used for the evaluation of the developed classifiers. 
In percent split method, entire dataset is divided into a learning 
set (LS) for training and a test set (TS) for testing the classifiers. 
This study uses 70% of the data set as the training set and 
remaining 30% of the data set as the test set in percent split 
validation method.     

Merits of the selected critical system features were 
evaluated in WEKA. Table III presents the average merits of 
the selected critical features for classifier training. Results 
indicate that voltage unbalance (VU) has the highest merit 
among the selected features. This is mainly due to the fact that 
islanding scenarios suddenly change DG loading conditions 
and even in scenarios of minimum DG load variations due to 
islanding, VU varies because of the changes in network 

topologies caused by islanding events. List of features with 
higher merits towards classifier training also include ∆V/∆Q, 
∆V/∆t, ∆V, ∆f/∆P, ∆f/∆t, VTHD and CTHD. Since DGs are 
operated at unity power factor, islanding events can possibly 
lead to lack of reactive power and subsequent voltage 
variations. Hence variations in indices like ∆V/∆Q, ∆V/∆t, ∆V 
can be utilized for accurate identification of islanding events. 
Moreover, abrupt changes in loading conditions might 
introduce shifts in the operating frequency, and harmonics in 
voltages and currents in the network. Hence indices like ∆f/∆P, 
∆f/∆t, VTHD and CTHD can be monitored and utilized in 
classifier training for successful islanding detections.  

TABLE III.    AVERAGE MERIT OF FEATURES IN CLASSIFIER TRAINING 

Feature Average Merit Feature Average Merit 

VU 0.901 CTHD 0.690 

∆V/∆Q 0.881 ∆f 0.68 
∆V/∆t 0.881 ROCPAD 0.674 

∆V 0.881 ∆P/∆t 0.653 

∆f/∆P 0.843 ∆P/∆t 0.566 
VTHD 0.823 ∆Q/∆t 0.485 

∆f/∆t 0.691 Q 0.305 

Figure.6 presents the distribution of the values of system 
features with highest merits towards classifier training 
corresponding to the 18 events (5 islanding events and 13 non-
islanding events) under a certain system operating condition. 

 

Figure 6. Distribution of system feature values corresponding to the 18 
system events simulated under a certain operating condition. 

A. Decision Tree Classifiers 

Decision tree classifiers were developed using J48 decision 
tree algorithm in WEKA. Table IV and Table V summarize the 
performances of developed DT classifiers. In cross validation 
method, obtained average classifier accuracy is 96.55%, 
average dependability index (i.e. islanding detection accuracy) 
is 97.01 and average security index (i.e. non-islanding detection 
accuracy) is 96.31. In percent split method, average classifier 
accuracy is 97.53%, average security index is 98.14 and 
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average dependability index is 97.24. In general, DT classifiers 
offer higher dependability index compared to security index. 

TABLE IV.  DT PERFORMANCE (10-FOLD CROSS VALIDATION) 

Classifier 
Type 

Actual 
Class 

Total 
Cases 

% 
Correct 

Classifier 
Accuracy 

Misclassification 
Rate 

DG1 
NI 324 96.30 

96.71 3.29 
I 162 97.53 

DG2 
NI 297 96.97 

97.17 2.83 
I 162 97.53 

Common 
classifier 

NI 621 95.65 
95.77 4.23 

I 324 95.98 

TABLE V.  DT PERFORMANCE (LS-70% VS. TS-30%) 

Classifier 

Type 

Actual 

Class 

Total 

Cases 

% 

Correct 

Classifier 

Accuracy 

Misclassification 
Rate 

DG1 
NI 98 97.96 

97.94 2.06 
I 48 97.92 

DG2 
NI 92 97.82 

98.55 1.45 
I 46 100 

Common 

classifier 

NI 197 95.94 
96.11 3.89 

I 86 96.51 

B. Naïve-Bayes Classifiers 

Table VI and Table VII present classification results with 
Naïve-Bayes classifiers. In cross validation method, average 
classifier accuracy is 92.76%, average dependability index is 
85.6 and security index is 96.53. In percent split method, 
average classifier accuracy is 93.53%, average dependability 
index is 91.52 and average security index is 94.45. 

TABLE VI.  NAÏVE-BAYES PERFORMANCE (10-FOLD CROSS 

VALIDATION) 

Classifier 

Type 

Actual 

Class 

Total 

Cases 

% 

Correct 

Classifier 

Accuracy 

Misclassification 
Rate 

DG1 
NI 324 96.91 

93.62 6.38 
I 162 87.04 

DG2 
NI 297 97.98 

93.03 6.97 
I 162 83.95 

Common 

classifier 

NI 621 94.69 
91.64 8.36 

I 324 85.80 

TABLE VII.  NAÏVE-BAYES PERFORMANCE (LS-70% VS. TS-30%) 

Classifier 
Type 

Actual 
Class 

Total 
Cases 

% 
Correct 

Classifier 
Accuracy 

Misclassification 
Rate 

DG1 
NI 98 94.89 

94.52 5.48 
I 48 93.75 

DG2 
NI 92 94.56 

93.48 6.52 
I 46 91.3 

Common 
classifier 

NI 197 93.90 
92.58 7.42 

I 86 89.53 

In general, Naïve-Bayes classifiers have lower overall 
classification accuracies compared to DT classifiers and also 
suffer heavily from inaccuracies in detection of islanding cases. 

C. Support Vector Machines 

SVM classifiers were developed using linear kernel 
function in LIBSVM toolbox [18]. Table VIII presents results 
from cross validation study, in which average classifier 
accuracy is 85.27%, average dependability index is 82.8 and 
average security index is 86.52. Evaluation results from percent 
split approach is presented in Table IX. In this method, average 

classifier accuracy is 86.35%, dependability index is 83.82 and 
average security index is 87.54. Test results indicate, SVM 
classifiers have less accurate performance compared to other 
classification methods studied in this paper. 

TABLE VIII.  SVM PERFORMANCE  (10-FOLD CROSS VALIDATION) 

Classifier 

Type 

Actual 

Class 

Total 

Cases 

% 

Correct 

Classifier 

Accuracy 

Misclassification 
Rate 

DG1 
NI 324 90.12 

88.27 11.73 
I 162 84.57 

DG2 
NI 297 85.86 

85.84 14.16 
I 162 85.80 

Common 
classifier 

NI 621 83.57 
81.69 18.31 

I 324 78.09 

TABLE IX.  SVM PERFORMACNE (LS-70% VS TS-30%) 

Classifier 

Type 

Actual 

Class 

Total 

Cases 

% 

Correct 

Classifier 

Accuracy 

Misclassification 

Rate 

DG1 
NI 98 90.82 

89.04 10.96 
I 48 85.42 

DG2 
NI 92 88.04 

87.68 12.32 
I 46 86.96 

Common 

classifier 

NI 197 83.76 
82.33 17.67 

I 86 79.07 

D. Multilayer Perceptrons 

Classification results for MLP classifiers trained with back-
propagation algorithm are presented in Table X and Table XI. 

TABLE X.  MLP PERFORMANCE (10-FOLD CROSS VALIDATION) 

Classifier 

Type 

Actual 

Class 

Total 

Cases 

% 

Correct 

Classifier 

Accuracy 

Misclassification 
Rate 

DG1 
NI 324 97.53 

97.32 2.68 
I 162 96.91 

DG2 
NI 297 98.31 

97.82 2.18 
I 162 96.91 

Common 

classifier 

NI 621 96.13 
95.87 4.13 

I 324 95.37 

TABLE XI.  MLP PERFORMANCE (LS-70% VS. TS-30%) 

Classifier 
Type 

Actual 
Class 

Total 
Cases 

% 
Correct 

Classifier 
Accuracy 

Misclassification 
Rate 

DG1 
NI 98 100 

98.63 1.37 
I 48 95.83 

DG2 
NI 92 98.91 

97.82 2.18 
I 46 95.65 

Common 

classifier 

NI 197 97.96 
96.46 3.18 

I 86 93.02 

For cross validation study, average classifier accuracy 
achieved is 97%, average dependability index is 96.4 and 
average security index is 97.32. For percent split method, 
obtained average classifier accuracy is 97.64%, average 
dependability index is 94.83 and average security index is 
98.96. MLP based classifiers provide better security as 
compared to dependability as evident from the study results. 

E. Radial Basis Function Networks 

Results for RBF network based classifier are presented in 
Table XII and Table XIII. In cross validation study, obtained 
average classifier accuracy is 94.03%, dependability index is 
94.54 and security index is 93.75. In percent split method, the 
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average classifier accuracy is 94.7%, dependability index is 
94.11 and security index is 94.31. 

 

TABLE XII.  RBF PERFORMANCE (10-FOLD CROSS VALIDATION) 

Classifier 

Type 

Actual 

Class 

Total 

Cases 

% 

Correct 

Classifier 

Accuracy 

Misclassification 
Rate 

DG1 
NI 324 94.75 

94.85 5.15 
I 162 95.05 

DG2 
NI 297 93.26 

94.11 5.89 
I 162 95.68 

Common 
classifier 

NI 621 93.24 
93.12 6.88 

I 324 92.90 

TABLE XIII.  RBF PERFORMANCE (LS-70% VS. TS-30%) 

Classifier 

Type 

Actual 

Class 

Total 

Cases 

% 

Correct 

Classifier 

Accuracy 

Misclassification 

Rate 

DG1 
NI 98 93.88 

95.89 4.11 
I 48 95.83 

DG2 
NI 92 95.65 

94.92 5.08 
I 46 93.48 

Common 

classifier 

NI 197 93.40 
93.29 6.71 

I 86 93.02 

Classifiers implemented with decision trees and multiplayer 
perceptrons offer higher accuracies compared to other methods 
studied in this paper. Although MLP classifiers have slightly 
better overall classification accuracies, but decision trees 
provide higher dependability index in the classification process. 
This points to a reduced chance of missing an islanding event 
in the detection process. Classifiers based on RBF networks 
have better performance than Naïve-Bayes classifiers but both 
classifiers are less accurate than MLP and DT classifiers. 
Moreover, Naïve-Bayes classifiers are significantly less 
accurate in classifying islanding cases. 

VI. CONCLUSION 

An intelligent classifier based passive islanding detection 
method for DG islanding detection in microgrids is investigated 
and a comprehensive performance analysis of five different 
classifier techniques is presented. Three different classifiers 
were developed for each of the classification methods. A 
detailed case study on a grid-connected microgrid model 
consisting of both synchronous and inverter based DGs 
indicates that the proposed method can detect islanding events 
with high degree of accuracy and reliability. Among the 
classification methods considered, multilayer perceptron and 
decision tree based classifiers offer best performances. Overall 
classification accuracy for MLP classifiers is slightly higher 
than the DT classifiers. However, DT classifiers offer higher 
dependability in islanding detection which is critical, since the 
cost of misclassifying an islanding case as non-islanding is 
often larger than misclassifying a non-islanding case. 
Moreover, DT classifiers offer ease of implementation with the 
easily interpretable rules defining decision boundaries. Test 
results also shows that, classifiers trained separately for each 

DG unit have better performances compared to the common 
classifiers. The classifier performances can be further improved 
by enhancing the knowledge base used to develop the 
classifiers. Further investigations may include studying the 
effects of reducing the number of features by selecting only 
important features in the classification process and varying the 
sampling rate in preparation of measurement database. 
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