Read Ch. 17:
 Cooperation \& Competition

11/17/10

Autonomous Agent

- "a unit that interacts with its environment (which probably consists of other agents)
- but acts independently from all other agents in that it does not take commands from some seen or unseen leader,
- nor does an agent have some idea of a global plan that it should be following." -Flake (p. 261)

11/17/10

A. Schools, Flocks, \& Herds
"and the thousands of fishes moved as a huge beast, piercing the water. They appeared united, inexorably bound to a common fate.
How comes this unity?"

Coordinated Collective Movement

- Groups of animals can behave almost like a single organism
- Can execute swift maneuvers - for predation or to avoid predation
- Individuals rarely collide, even in frenzy of attack or escape
- Shape is characteristic of species, but flexible
- Prey avoiding predation
- More efficient predation by predators
- Other efficiencies

Adaptive Significance

Avoiding Predation

- More compact aggregation
- predator risks injury by attacking
- Confusing predator by:
- united erratic maneuvers (e.g. zigzagging)
- separation into subgroups (e.g., flash expansion \& fountain effect)

11/17/10

Fountain Effect

Better Predation

- Coordinated movements to trap prey
- e.g. parabolic formation of tuna
- More efficient predation
- e.g., killer whales encircle dolphins
- take turns eating

Other Efficiencies

- Fish schooling may increase hydrodynamic efficiency
- endurance may be increased up to $6 x$
- school acts like "group-level vehicle"
- V-formation increases efficiency of geese - range 70% greater than that of individual
- Lobsters line up single file by touch
- move 40% faster than when isolated
- decreased hydrodynamic drag

Characteristic Arrangement of School

- Shape is characteristic of species
- Fish have preferred distance, elevation \& bearing relative to neighbors
- Fish avoid coming within a certain minimum distance
- closer in larger schools
- closer in faster moving schools

11/17/10

Alternatives to Self-Organization

- "Templates"
- no evidence that water currents, light, chemicals guide collective movement
- "Leaders"
- no evidence for leaders
- those in front may drop behind
- those on flank may find selves in front
- each adjusts to several neighbors
- "Blueprint" or "Recipe"
- implausible for coordination of large schools
- e.g., millions of herring, hundreds of millions of cod 11/17/10

Self-Organization Hypothesis

- Simple attraction \& repulsion rules generate schooling behavior
- positive feedback: brings individuals together
- negative feedback: but not too close
- Rules rely on local information
- i.e. positions \& headings of a few nearby fish
- no global plan or centralized leader

Mechanisms of Individual Coordination

- Vision
- governs attraction
- \& alignment
- Lateral line
- sensitive to water movement
- provides information on speed \& direction of neighbors
- governs repulsion
- \& speed matching
- How is this information integrated into a behavioral plan?
- most sensitive to nearest neighbors

111/7/10

Basic Assumptions

 of Huth \& Wissel (1992) Model- All fish follow same rules
- Each uses some sort of weighted average of positions \& orientations of nearest neighbors
- Fish respond to neighbors probabilistically
- imperfect information gathering
- imperfect execution of actions
- No external influences affect fish
- e.g. no water currents, obstacles, ...

11/17/10

Model Behavior of Individual

1. Determine a target direction from each of three nearest neighbors:
if in repel range, then $180^{\circ}+$ direction to neighbor
else if in orient range, then heading of neighbor
else if in attract range, then
accelerate if ahead, decelerate if behind; return direction to neighbor
else return our own current heading
2. Determine overall target direc. as average of 3 neighbors inversely weighted by their distances
3. Turn a fraction in this direction (determined by flexibility) + some randomness
11/17/10

Limitations of Model

- Model addresses only motion in absence of external influences
- Ignores obstacle avoidance
- Ignores avoidance behaviors such as:
- flash expansion
- fountain effect
- Recent work (since 1997) has addressed some of these issues

NetLogo Simulation

- Flockmates are those within "vision"
- If nearest flockmate < minimum separation, turn away
- Else:
- align with average heading of flockmates
- cohere by turning toward average flockmate direction
- All turns limited specified maxima
- Note fluid behavior from deterministic rules

11/1710

Obstacle Avoidance

- Boid flock avoiding cylindrical obstacles (Reynolds 1986)
- This model incorporates:
- predictive obstacle avoidance
- goal seeking (scripted path)

11/17/10

Jon Klein’s Flocking Algorithm

- Sight limited by "vision"
- Balances 6 "urges":
- be near center of flock
- have same velocity as flockmates
- keep spacing correct
- avoid collisions with obstacles
- be near center of world
- wander throughout world
- Strength of urge affects acceleration 11/17/10 ${ }^{31}$

Demonstration of Klein's

Flocking Algorithm

Run Flocking 3D Alternate.nlogo

11/17/10

Use in Computer Animation

- Extract from Stanley and Stella in
"Breaking the Ice" (1987)
- store.yahoo.com/ odyssey3d/ comanclascli2.html

Particle Swarm Optimization
(Kennedy \& Eberhart, 1995)

11/17/10

Motivation

- Originally a model of social information sharing
- Abstract vs. concrete spaces
- cannot occupy same locations in concrete space
- can in abstract space (two individuals can have same idea)
- Global optimum (\& perhaps many suboptima)
- Combines:
- private knowledge (best solution each has found)
- public knowledge (best solution entire group has found)

11/17/10
35

Particle Swarms

Idea
\square moving points in the search space, which refine their
knowledge by interaction
What is a particle?

- a particle consists of:
$\begin{array}{ll}\overrightarrow{x_{i}} & \text { position } \\ \overrightarrow{v_{i}} & \text { velocity }\end{array}$
p_{i} best position found so far velocity and position update rules

(Kennedy and Eberhart, 1995)

Example
Particle Swarms

11/17/10
Fig. from EVALife site
38

Example
Particle Swarms

Example
Particle Swarms

Example
Particle Swarms

11/17/10 Fig. from EVALife site

Variables

$\mathbf{x}_{k}=$ current position of particle k
$\mathbf{v}_{k}=$ current velocity of particle k
$\mathbf{p}_{k}=$ best position found by particle k
$Q(\mathbf{x})=$ quality of position \mathbf{x}
$g=$ index of best position found so far i.e., $g=\operatorname{argmax}_{k} Q\left(\mathbf{p}_{k}\right)$
$\phi_{1}, \phi_{2}=$ random variables uniformly distributed over $[0,2]$
$w=$ inertia <1
11/17/10

Velocity \& Position Updating

$\mathbf{v}_{k}{ }^{\prime}=w \mathbf{v}_{k}+\phi_{1}\left(\mathbf{p}_{k}-\mathbf{x}_{k}\right)+\phi_{2}\left(\mathbf{p}_{g}-\mathbf{x}_{k}\right)$
$w \mathbf{v}_{k}$ maintains direction (inertial part)
$\phi_{1}\left(\mathbf{p}_{k}-\mathbf{x}_{k}\right)$ turns toward private best (cognition part)
$\phi_{2}\left(\mathbf{p}_{g}-\mathbf{x}_{k}\right)$ turns towards public best (social part)
$\mathbf{x}_{k}{ }^{\prime}=\mathbf{x}_{k}+\mathbf{v}_{k}{ }^{\prime}$

- Allowing $\phi_{1}, \phi_{2}>1$ permits overshooting and better exploration (important!')
- Good balance of exploration \& exploitation
- Limiting $\left\|\mathbf{v}_{k}\right\|<\left\|\mathbf{v}_{\text {max }}\right\|$ controls resolution of search 11/17/10

> Yuhui Shi’s Demonstration of Particle Swarm Optimization

Run www.engr.iupui.edu/~shi/PSO/ AppletGUI.html

Improvements

- Alternative velocity update equation:
$\mathbf{v}_{k}{ }^{\prime}=\chi\left[w \mathbf{v}_{k}+\phi_{1}\left(\mathbf{p}_{k}-\mathbf{x}_{k}\right)+\phi_{2}\left(\mathbf{p}_{g}-\mathbf{x}_{k}\right)\right]$
$\chi=$ constriction coefficient (controls magnitude of \mathbf{v}_{k})
- Alternative neighbor relations:
- star: fully connected (each responds to best of all others; fast information flow)
- circle: connected to K immediate neighbors (slows information flow)
- wheel: connected to one axis particle (moderate information flow)

11/17/10

Netlogo Demonstration of

 Particle Swarm Optimization with Collision Avoidance
Run PSO.nlogo

Millonas' Five Basic Principles of Swarm Intelligence

1. Proximity principle:
pop. should perform simple space \& time computations
2. Quality principle:
pop. should respond to quality factors in environment
3. Principle of diverse response:
pop. should not commit to overly narrow channels
4. Principle of stability:
pop. should not change behavior every time env. changes
5. Principle of adaptability:
pop. should change behavior when it's worth comp. price
11/17/10
Millonas 1994)

Some Applications of PSO

- integer programming
- minimax problems
- in optimal control
- engineering design
- discrete optimization
- Chebyshev approximation
- game theory
- multiobjective optimization
- hydrologic problems
- musical improvisation!

11/17/10

- Spatial extension avoids premature convergence
- Preserves diversity in population
- More like flocking/schooling models

11/17/10 Fig. from EVALife site

Spatial Extension

x_{1}
\qquad

Additional Bibliography

1. Camazine, S., Deneubourg, J.-L., Franks, N. R., Sneyd, J., Theraulaz, G., \& Bonabeau, E. Self-Organization in Biological Systems. Princeton, 2001, chs. 11, 13, 18, 19.
2. Bonabeau, E., Dorigo, M., \& Theraulaz, G. Swarm Intelligence From Natural to Artificial Systems. Oxford, 1999, chs. 2, 6.
3. Solé, R., \& Goodwin, B. Signs of Life: How Complexity Pervades Biology. Basic Books, 2000, ch. 6.
4. Resnick, M. Turtles, Termites, and Traffic Jams: Explorations in Massively Parallel Microworlds. MIT Press, 1994, pp. 59-68, 75-81.
5. Kennedy, J., \& Eberhart, R. "Particle Swarm Optimization," Proc. IEEE Int'l. Conf. Neural Networks (Perth, Australia), 1995. http://www.engr.iupui.edu/~shi/pso.html.
