
CS 420/594 Biologically Inspired Computation
Project 4

Due Thursday, Nov. 4, 2010

Bruce J. MacLennan

Implement a Back-Propagation Software System.1 Your system should permit specifi-
ation of:

1. number of layers

2. number of neurons in each layer

3. learning rate

4. training, testing, and validation files (see below)

5. number of training epochs

Inputs and outputs to the net are floating-point numbers.
Your program takes three files as input (it is permissible to combine them into one file

divided into three parts):

Training Set — used for training the net by modifying the weights according to the back-
propagation algorithm.

Testing Set — used at the end of each epoch to test generalization (the weights are not
modified).

Validation Set — used at the end of training to evaluate the performance of the trained
net.

I suggest that you test your BP program on some simple problems, such as and, inclu-
sive or, and exclusive or, to make sure it’s operating correctly, before trying the problems
on the next page.

1Additional information, including data files, can be found on Kristy’s website,
<http://www.cs.utk.edu/∼kvanhorn/cs594 bio/project4/backprop.html>.

1



You will generate two sets of Training/Testing/Validating data from the following func-
tions:2

Problem 1:3

f(x, y) =
1 + sin(πx/2) cos(πy/2)

2
, x ∈ (−2, 2), y ∈ (−2, 2).

Problem 2:

f(x, y, z) =
3

13

[
x2

2
+
y2

3
+
z2

4

]
, x ∈ (−2, 2), y ∈ (−2, 2), z ∈ (−2, 2).

In each case generate (input, output) pairs from random inputs in the ranges specified, and
outputs determined by the above formulas. For each problem, generate:

• 200 training patterns

• 100 testing patterns

• 50 validation problems

For each Problem, do the following experiments:

• Experiment with the number of hidden layers.

• Experiment with the number of neurons in each hidden layer.

• Try to determine the optimum network architecture for each problem.

• Try to determine how sensitive the performance is to the architecture.

In evaluating the architectures, pay attention to performance on the training, testing, and
validation datasets.4 Note that, depending on the architecture, these problems might take
several thousands of epochs to converge.

Be sure to include some graphs in your report. For example, you could plot how the
error changes as you increase the number of nodes, or plot how the error changes as you
increase the learning rate, or plot the error as a function of time (number of epochs), or
anything else you can think of. Of course including more graphs/experiments/discussion
will lead to higher grades.

2You can use the datasets from Kristy’s website or generate your own.
3Note that in this formula the arguments to sin and cos are expressed in radian measure; you will have to

make appropriate changes if your sin and cos expect arguments in degrees.
4For small architectures, the net should achieve average errors less than 4% (which corresponds to 0.001

average square error) within a few hundred, or at most a few thousand, epochs. The error may not seem to
change for many epochs and then drop in steps.

2



For graduate credit: Problem 3
In addition to the preceding, explore your network’s ability to classify points generated

from the following two overlapping two-dimensional Gaussians:

A(x, y) =
1

2π
exp

(
− x

2 + y2

2

)
,

B(x, y) =
1

8π
exp

(
− (x− 2)2 + y2

8

)
.

Let x ∈ (−4, 10) and y ∈ (−6, 6). Generate input-output pairs ((x, y), 1) with probability
A(x, y) and pairs ((x, y), 0) with probability B(x, y), with equal probability for A and B.
Explore your network’s ability to discriminate points generated by distributionA (1 output)
from those generated by distribution B (0 output). Experiment with network architecture,
generalization, etc.

The simplest way to generate the N samples is as follows:

1. Generate N/2 samples from A as follows:

(a) Generate a pair of coordinates (x, y) with probability A(x, y).

(b) Add ((x, y), 1) to the dataset.
One way to do (a) and (b) is (1) generate random (x, y), (2) generate a ran-
dom number r uniformly distributed in (0, 1), and (3) if r < A(x, y), then put
((x, y), 1) into the dataset and count it.

2. Generate N/2 samples from B as follows:

(a) Generate a pair of coordinates (x, y) with probability B(x, y).

(b) Add ((x, y), 0) to the dataset.

Then you will have an equal number of points from the A and B distributions. (Note, you
will probably want to shuffle their order if you do online learning.)

Here is a scenario that may help you to understand this problem. Suppose x and y rep-
resent two physiological measurements, such as heart rate and body temperature. (Maybe
they are measured relative to some baseline so that negative values make sense.) Suppose
that people with a certain serious medical condition are determined to have (x, y) mea-
surements distributed as A(x, y). On the other hand, people with a different, non-serious
medical condition have measurements distributed as B(x, y). The problem is to train the
network so that given a particular set of (x, y) measurements the network can make the
best guess as to whether the patient has the serious condition or the non-serious condition.
(Because the distributions overlap, it cannot be correct all the time. However, since the
network produces outputs in [0, 1], it in effect estimates the probability of the two condi-
tions given the measurements. For example, if the net output is 0.5 it is saying that the two
conditions are equally likely.)

3


