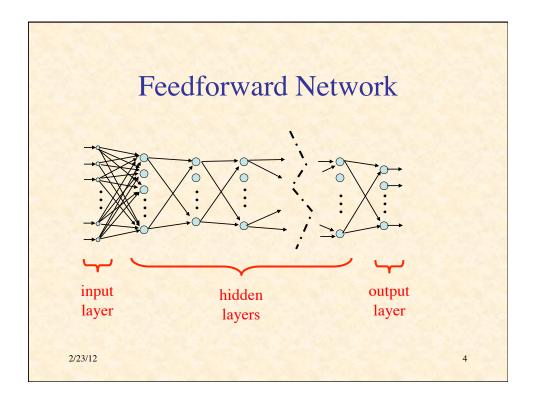
IV. Neural Network Learning

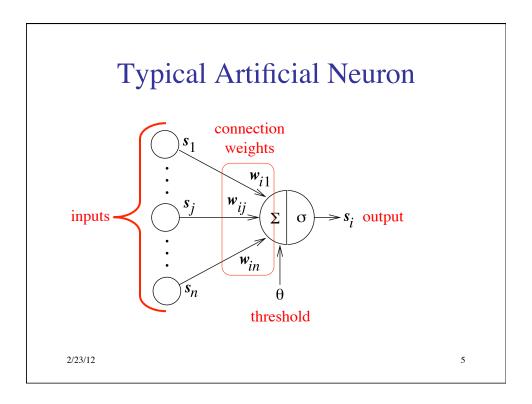
2/23/12

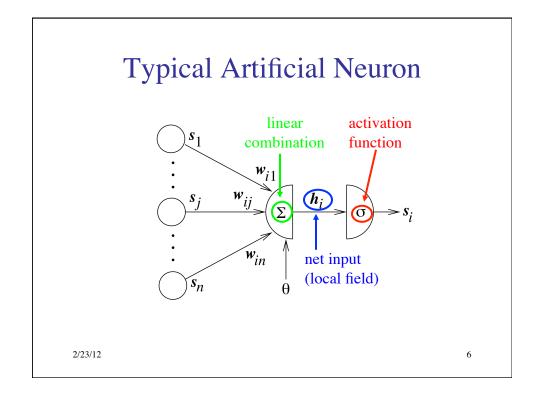
A. Artificial Neural Network Learning

Supervised Learning

- Produce desired outputs for training inputs
- Generalize reasonably & appropriately to other inputs
- Good example: pattern recognition
- Feedforward multilayer networks







Equations

Net input:
$$h_i = \left(\sum_{j=1}^n w_{ij} S_j\right) - \theta$$

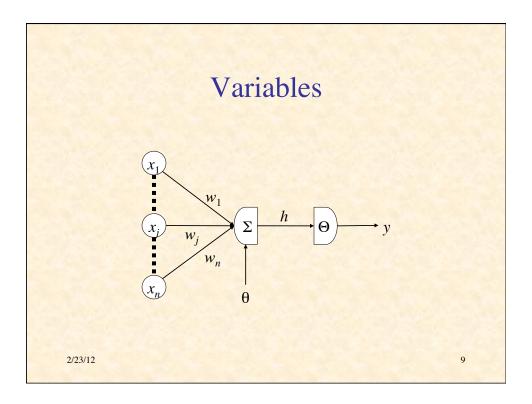
$$h = Ws - \theta$$

Neuron output:
$$s_i' = \sigma(h_i)$$

$$\mathbf{s}' = \sigma(\mathbf{h})$$

2/23/12

Single-Layer Perceptron 2/23/12 Single-Layer Perceptron



Single Layer Perceptron Equations

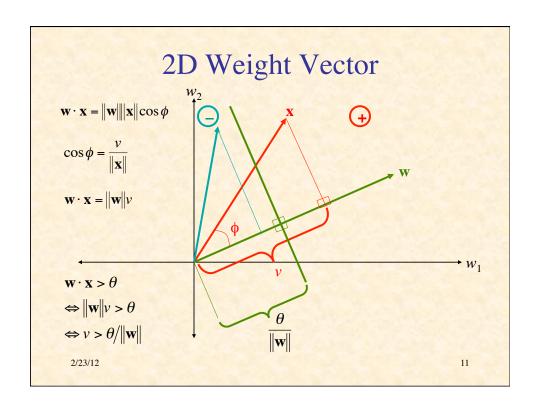
Binary threshold activation function:

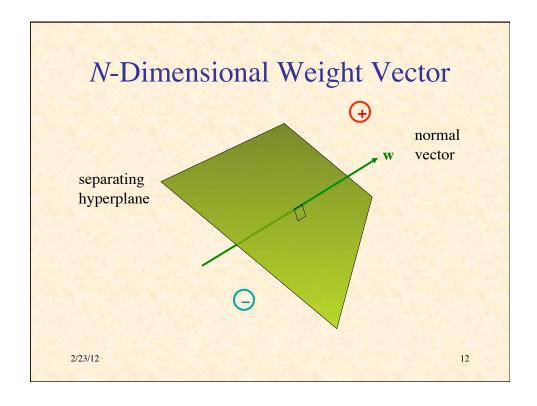
$$\sigma(h) = \Theta(h) = \begin{cases} 1, & \text{if } h > 0 \\ 0, & \text{if } h \le 0 \end{cases}$$

Hence,
$$y = \begin{cases} 1, & \text{if } \sum_{j} w_{j} x_{j} > \theta \\ 0, & \text{otherwise} \end{cases}$$

$$= \begin{cases} 1, & \text{if } \mathbf{w} \cdot \mathbf{x} > \theta \\ 0, & \text{if } \mathbf{w} \cdot \mathbf{x} \le \theta \end{cases}$$

2/23/12



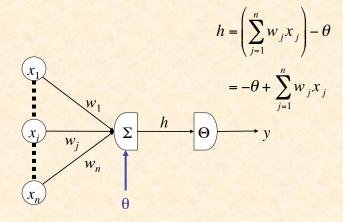


Goal of Perceptron Learning

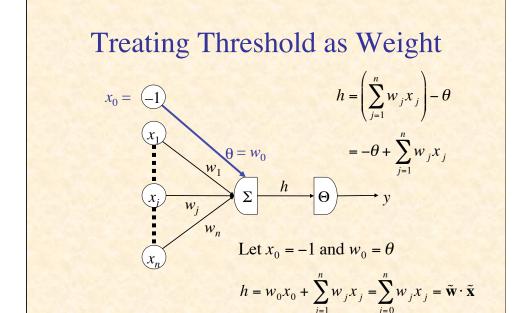
- Suppose we have training patterns x¹, x²,
 ..., x^P with corresponding desired outputs
 y¹, y², ..., y^P
- where $\mathbf{x}^p \in \{0, 1\}^n, y^p \in \{0, 1\}$
- We want to find \mathbf{w} , θ such that $y^p = \Theta(\mathbf{w} \cdot \mathbf{x}^p \theta)$ for p = 1, ..., P

2/23/12

Treating Threshold as Weight



2/23/12



Augmented Vectors

$$\tilde{\mathbf{w}} = \begin{pmatrix} \theta \\ w_1 \\ \vdots \\ w_n \end{pmatrix} \qquad \tilde{\mathbf{x}}^p = \begin{pmatrix} -1 \\ x_1^p \\ \vdots \\ x_n^p \end{pmatrix}$$

We want $y^p = \Theta(\tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}}^p), p = 1,...,P$

Reformulation as Positive Examples

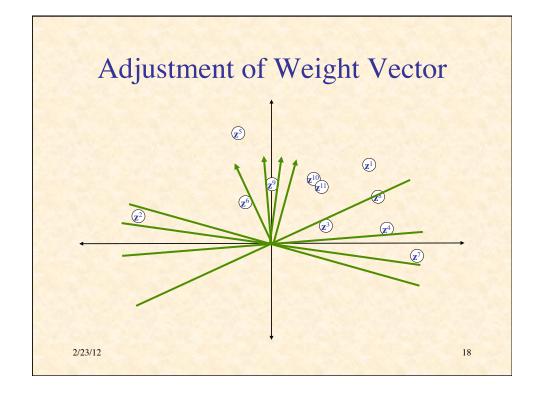
We have positive $(y^p = 1)$ and negative $(y^p = 0)$ examples

Want $\tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}}^p > 0$ for positive, $\tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}}^p \le 0$ for negative

Let $\mathbf{z}^p = \tilde{\mathbf{x}}^p$ for positive, $\mathbf{z}^p = -\tilde{\mathbf{x}}^p$ for negative

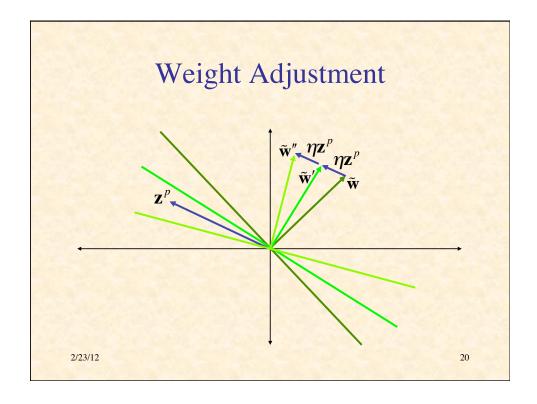
Want $\tilde{\mathbf{w}} \cdot \mathbf{z}^p \ge 0$, for p = 1, ..., P

Hyperplane through origin with all \mathbf{z}^p on one side



Outline of Perceptron Learning Algorithm

- 1. initialize weight vector randomly
- 2. until all patterns classified correctly, do:
 - a) for p = 1, ..., P do:
 - 1) if \mathbf{z}^p classified correctly, do nothing
 - 2) else adjust weight vector to be closer to correct classification



Improvement in Performance

If
$$\tilde{\mathbf{w}} \cdot \mathbf{z}^p < 0$$
,

$$\tilde{\mathbf{w}}' \cdot \mathbf{z}^p = (\tilde{\mathbf{w}} + \eta \mathbf{z}^p) \cdot \mathbf{z}^p$$

$$= \tilde{\mathbf{w}} \cdot \mathbf{z}^p + \eta \mathbf{z}^p \cdot \mathbf{z}^p$$

$$= \tilde{\mathbf{w}} \cdot \mathbf{z}^p + \eta \|\mathbf{z}^p\|^2$$

$$> \tilde{\mathbf{w}} \cdot \mathbf{z}^p$$

2/23/12

Perceptron Learning Theorem

- If there is a set of weights that will solve the problem,
- then the PLA will eventually find it
- (for a sufficiently small learning rate)
- Note: only applies if positive & negative examples are linearly separable

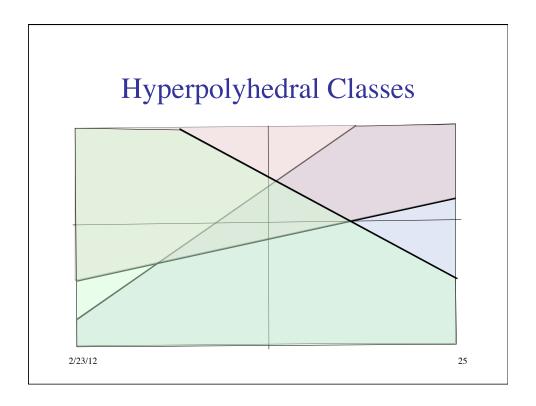
NetLogo Simulation of Perceptron Learning

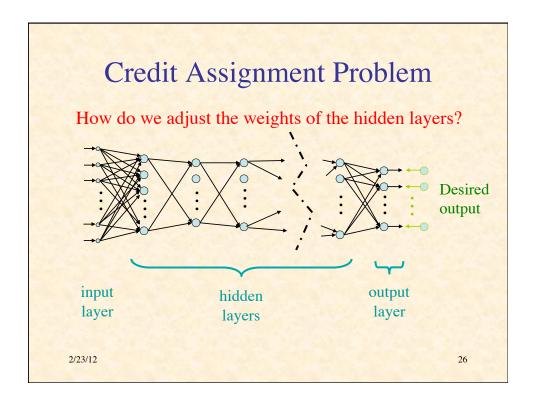
Run Perceptron-Geometry.nlogo

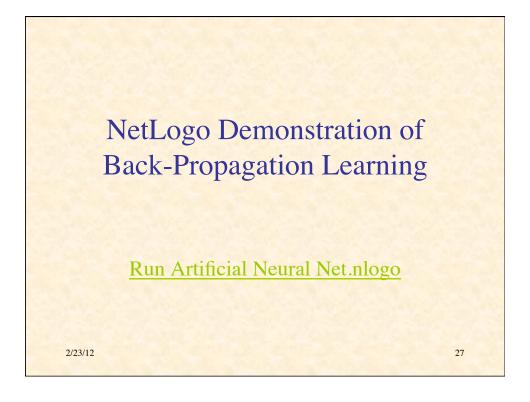
2/23/12

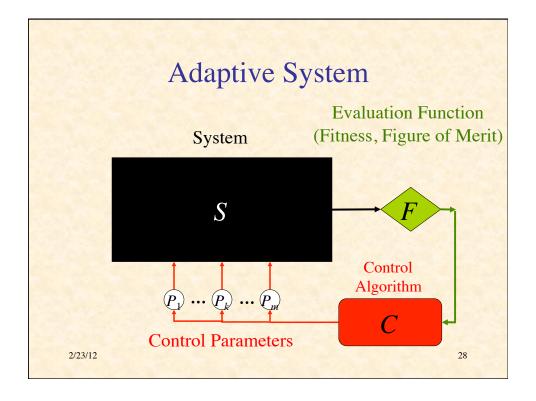
Classification Power of Multilayer Perceptrons

- Perceptrons can function as logic gates
- Therefore MLP can form intersections, unions, differences of linearly-separable regions
- Classes can be arbitrary hyperpolyhedra
- Minsky & Papert criticism of perceptrons
- No one succeeded in developing a MLP learning algorithm







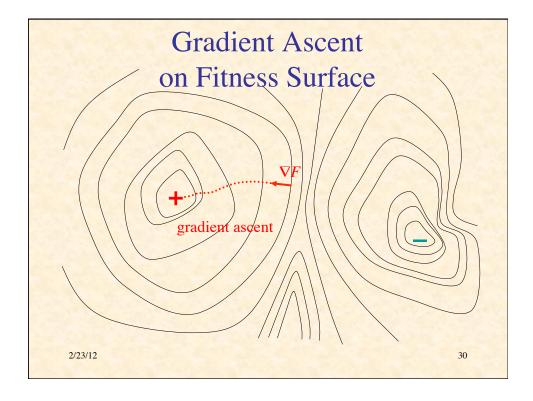


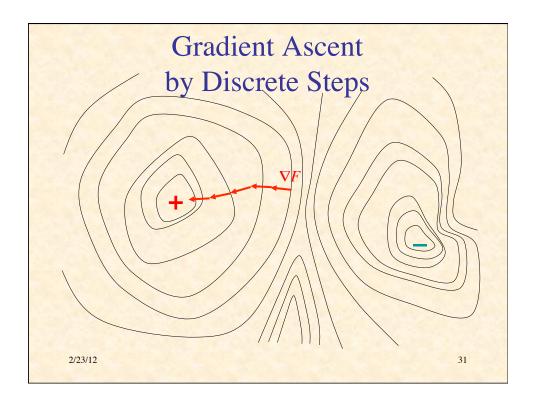
Gradient

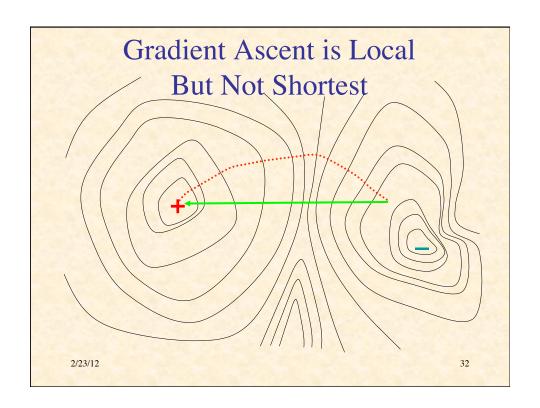
 $\frac{\partial F}{\partial P_k}$ measures how F is altered by variation of P_k

$$\nabla F = \begin{pmatrix} \frac{\partial F}{\partial P_1} \\ \vdots \\ \frac{\partial F}{\partial P_k} \\ \vdots \\ \frac{\partial F}{\partial P_m} \end{pmatrix}$$

 ∇F points in direction of maximum local increase in F







Gradient Ascent Process

$$\dot{\mathbf{P}} = \eta \nabla F(\mathbf{P})$$

Change in fitness:

$$\dot{F} = \frac{\mathrm{d}F}{\mathrm{d}t} = \sum_{k=1}^{m} \frac{\partial F}{\partial P_k} \frac{\mathrm{d}P_k}{\mathrm{d}t} = \sum_{k=1}^{m} (\nabla F)_k \dot{P}_k$$

$$\dot{F} = \nabla F \cdot \dot{\mathbf{P}}$$

$$\dot{F} = \nabla F \cdot \eta \nabla F = \eta \|\nabla F\|^2 \ge 0$$

Therefore gradient ascent increases fitness (until reaches 0 gradient)

2/23/12

33

General Ascent in Fitness

Note that any adaptive process P(t) will increase fitness provided:

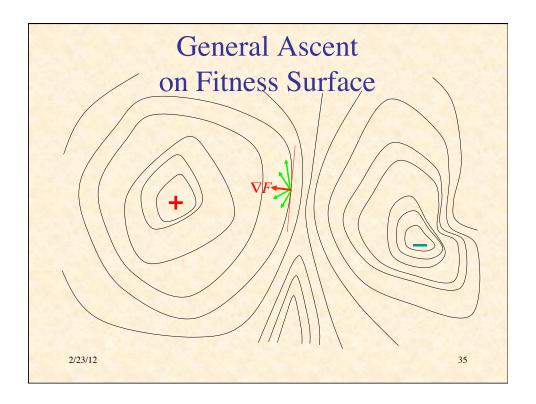
$$0 < \dot{F} = \nabla F \cdot \dot{\mathbf{P}} = \|\nabla F\| \|\dot{\mathbf{P}}\| \cos \varphi$$

where φ is angle between ∇F and $\dot{\mathbf{P}}$

Hence we need $\cos \varphi > 0$

or
$$|\varphi| < 90^{\circ}$$

2/23/12



Fitness as Minimum Error

Suppose for Q different inputs we have target outputs $\mathbf{t}^1,...,\mathbf{t}^Q$

Suppose for parameters P the corresponding actual outputs are $y^1, \ldots, y^{\mathcal{Q}}$

Suppose $D(\mathbf{t}, \mathbf{y}) \in [0, \infty)$ measures difference between target & actual outputs

Let $E^q = D(\mathbf{t}^q, \mathbf{y}^q)$ be error on qth sample

Let
$$F(\mathbf{P}) = -\sum_{q=1}^{Q} E^{q}(\mathbf{P}) = -\sum_{q=1}^{Q} D[\mathbf{t}^{q}, \mathbf{y}^{q}(\mathbf{P})]$$

2/23/12

Gradient of Fitness

$$\nabla F = \nabla \left(-\sum_{q} E^{q} \right) = -\sum_{q} \nabla E^{q}$$

$$\frac{\partial E^{q}}{\partial P_{k}} = \frac{\partial}{\partial P_{k}} D(\mathbf{t}^{q}, \mathbf{y}^{q}) = \sum_{j} \frac{\partial D(\mathbf{t}^{q}, \mathbf{y}^{q})}{\partial y_{j}^{q}} \frac{\partial y_{j}^{q}}{\partial P_{k}}$$

$$= \frac{\mathrm{d}D(\mathbf{t}^{q}, \mathbf{y}^{q})}{\mathrm{d}\mathbf{y}^{q}} \cdot \frac{\partial \mathbf{y}^{q}}{\partial P_{k}}$$

$$= \nabla_{\mathbf{y}^{q}} D(\mathbf{t}^{q}, \mathbf{y}^{q}) \cdot \frac{\partial \mathbf{y}^{q}}{\partial P_{k}}$$

2/23/12

37

Jacobian Matrix

Define Jacobian matrix
$$\mathbf{J}^{q} = \begin{pmatrix} \partial y_{1}^{q} / & \dots & \partial y_{1}^{q} / \partial P_{m} \\ \partial P_{1} & \dots & \partial P_{m} \\ \vdots & \ddots & \vdots \\ \partial y_{n}^{q} / \partial P_{1} & \dots & \partial y_{n}^{q} / \partial P_{m} \end{pmatrix}$$

Note $\mathbf{J}^q \in \Re^{n \times m}$ and $\nabla D(\mathbf{t}^q, \mathbf{y}^q) \in \Re^{n \times 1}$

Since
$$(\nabla E^q)_k = \frac{\partial E^q}{\partial P_k} = \sum_j \frac{\partial y_j^q}{\partial P_k} \frac{\partial D(\mathbf{t}^q, \mathbf{y}^q)}{\partial y_j^q}$$
,

$$\therefore \nabla E^q = \left(\mathbf{J}^q\right)^{\mathrm{T}} \nabla D\left(\mathbf{t}^q, \mathbf{y}^q\right)$$

2/23/12

Derivative of Squared Euclidean Distance

Suppose
$$D(\mathbf{t}, \mathbf{y}) = ||\mathbf{t} - \mathbf{y}||^2 = \sum_{i} (t_i - y_i)^2$$

$$\frac{\partial D(\mathbf{t} - \mathbf{y})}{\partial y_j} = \frac{\partial}{\partial y_j} \sum_i (t_i - y_i)^2 = \sum_i \frac{\partial (t_i - y_i)^2}{\partial y_j}$$
$$= \frac{d(t_j - y_j)^2}{dy_j} = -2(t_j - y_j)$$

$$\therefore \frac{\mathrm{d}D(\mathbf{t},\mathbf{y})}{\mathrm{d}\mathbf{y}} = 2(\mathbf{y} - \mathbf{t})$$

2/23/12

39

Gradient of Error on qth Input

$$\frac{\partial E^{q}}{\partial P_{k}} = \frac{\mathrm{d}D(\mathbf{t}^{q}, \mathbf{y}^{q})}{\mathrm{d}\mathbf{y}^{q}} \cdot \frac{\partial \mathbf{y}^{q}}{\partial P_{k}}$$

$$= 2(\mathbf{y}^{q} - \mathbf{t}^{q}) \cdot \frac{\partial \mathbf{y}^{q}}{\partial P_{k}}$$

$$= 2\sum_{j} (y_{j}^{q} - t_{j}^{q}) \frac{\partial y_{j}^{q}}{\partial P_{k}}$$

$$\nabla E^{q} = 2(\mathbf{J}^{q})^{\mathrm{T}} (\mathbf{y}^{q} - \mathbf{t}^{q})$$

2/23/12

Recap

$$\dot{\mathbf{P}} = \eta \sum_{q} (\mathbf{J}^{q})^{\mathrm{T}} (\mathbf{t}^{q} - \mathbf{y}^{q})$$

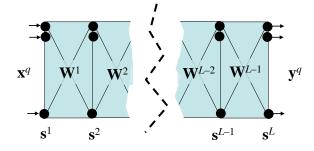
To know how to decrease the differences between actual & desired outputs,

we need to know elements of Jacobian, $\frac{\partial y_j^q}{\partial P_k}$, which says how *j*th output varies with *k*th parameter (given the *q*th input)

The Jacobian depends on the specific form of the system, in this case, a feedforward neural network

2/23/12

Multilayer Notation



Notation

- L layers of neurons labeled 1, ..., L
- N_l neurons in layer l
- s^l = vector of outputs from neurons in layer l
- input layer $s^1 = x^q$ (the input pattern)
- output layer $s^L = y^q$ (the actual output)
- \mathbf{W}^l = weights between layers l and l+1
- Problem: find out how outputs y_i^q vary with weights W_{jk}^l (l = 1, ..., L-1)

2/23/12

Typical Neuron $\begin{array}{c} s_1^{l-1} \\ \downarrow \\ s_N^{l-1} \end{array}$ $\begin{array}{c} W_{ij}^{l-1} \\ \downarrow \\ W_{iN}^{l-1} \end{array}$ $\begin{array}{c} h_i^l \\ \sigma \end{array}$ $\begin{array}{c} s_i^l \end{array}$ $\begin{array}{c} 2/23/12 \end{array}$ 44

Error Back-Propagation

We will compute $\frac{\partial E^q}{\partial W_{ij}^l}$ starting with last layer (l = L - 1) and working back to earlier layers (l = L - 2, ..., 1)

2/23/12 45

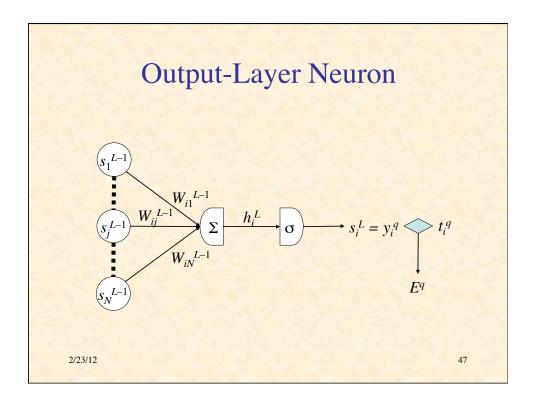
Delta Values

Convenient to break derivatives by chain rule:

$$\frac{\partial E^{q}}{\partial W_{ij}^{l-1}} = \frac{\partial E^{q}}{\partial h_{i}^{l}} \frac{\partial h_{i}^{l}}{\partial W_{ij}^{l-1}}$$

$$\text{Let } \delta_{i}^{l} = \frac{\partial E^{q}}{\partial h_{i}^{l}}$$

$$\text{So } \frac{\partial E^{q}}{\partial W_{ij}^{l-1}} = \delta_{i}^{l} \frac{\partial h_{i}^{l}}{\partial W_{ij}^{l-1}}$$



Output-Layer Derivatives (1)

$$\delta_i^L = \frac{\partial E^q}{\partial h_i^L} = \frac{\partial}{\partial h_i^L} \sum_k \left(s_k^L - t_k^q \right)^2$$

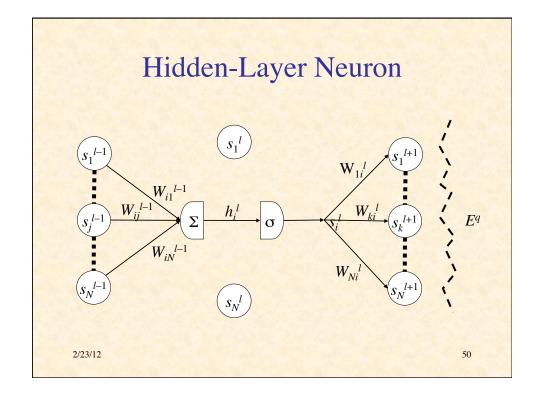
$$= \frac{\mathrm{d} \left(s_i^L - t_i^q \right)^2}{\mathrm{d} h_i^L} = 2 \left(s_i^L - t_i^q \right) \frac{\mathrm{d} s_i^L}{\mathrm{d} h_i^L}$$

$$= 2 \left(s_i^L - t_i^q \right) \sigma' \left(h_i^L \right)$$

Output-Layer Derivatives (2)

$$\frac{\partial h_{i}^{L}}{\partial W_{ij}^{L-1}} = \frac{\partial}{\partial W_{ij}^{L-1}} \sum_{k} W_{ik}^{L-1} S_{k}^{L-1} = S_{j}^{L-1}$$

$$\therefore \frac{\partial E^q}{\partial W_{ij}^{L-1}} = \delta_i^L s_j^{L-1}$$
where $\delta_i^L = 2(s_i^L - t_i^q)\sigma'(h_i^L)$



Hidden-Layer Derivatives (1)

Recall
$$\frac{\partial E^{q}}{\partial W_{ij}^{l-1}} = \delta_{i}^{l} \frac{\partial h_{i}^{l}}{\partial W_{ij}^{l-1}}$$

$$\delta_{i}^{l} = \frac{\partial E^{q}}{\partial h_{i}^{l}} = \sum_{k} \frac{\partial E^{q}}{\partial h_{k}^{l+1}} \frac{\partial h_{k}^{l+1}}{\partial h_{i}^{l}} = \sum_{k} \delta_{k}^{l+1} \frac{\partial h_{k}^{l+1}}{\partial h_{i}^{l}}$$

$$\frac{\partial h_{k}^{l+1}}{\partial h_{i}^{l}} = \frac{\partial \sum_{m} W_{km}^{l} s_{m}^{l}}{\partial h_{i}^{l}} = \frac{\partial W_{ki}^{l} s_{i}^{l}}{\partial h_{i}^{l}} = W_{ki}^{l} \frac{\mathrm{d}\sigma(h_{i}^{l})}{\mathrm{d}h_{i}^{l}} = W_{ki}^{l} \sigma'(h_{i}^{l})$$

$$\therefore \delta_{i}^{l} = \sum_{k} \delta_{k}^{l+1} W_{ki}^{l} \sigma'(h_{i}^{l}) = \sigma'(h_{i}^{l}) \sum_{k} \delta_{k}^{l+1} W_{ki}^{l}$$

2/23/12

Hidden-Layer Derivatives (2)

$$\frac{\partial h_i^l}{\partial W_{ij}^{l-1}} = \frac{\partial}{\partial W_{ij}^{l-1}} \sum_k W_{ik}^{l-1} S_k^{l-1} = \frac{\mathrm{d} W_{ij}^{l-1} S_j^{l-1}}{\mathrm{d} W_{ij}^{l-1}} = S_j^{l-1}$$

$$\therefore \frac{\partial E^{q}}{\partial W_{ij}^{l-1}} = \delta_{i}^{l} s_{j}^{l-1}$$
where $\delta_{i}^{l} = \sigma'(h_{i}^{l}) \sum_{k} \delta_{k}^{l+1} W_{ki}^{l}$

Derivative of Sigmoid

Suppose
$$s = \sigma(h) = \frac{1}{1 + \exp(-\alpha h)}$$
 (logistic sigmoid)

$$D_{h} s = D_{h} \left[1 + \exp(-\alpha h) \right]^{-1} = -\left[1 + \exp(-\alpha h) \right]^{-2} D_{h} \left(1 + e^{-\alpha h} \right)$$

$$= -\left(1 + e^{-\alpha h} \right)^{-2} \left(-\alpha e^{-\alpha h} \right) = \alpha \frac{e^{-\alpha h}}{\left(1 + e^{-\alpha h} \right)^{2}}$$

$$= \alpha \frac{1}{1 + e^{-\alpha h}} \frac{e^{-\alpha h}}{1 + e^{-\alpha h}} = \alpha s \left(\frac{1 + e^{-\alpha h}}{1 + e^{-\alpha h}} - \frac{1}{1 + e^{-\alpha h}} \right)$$

$$= \alpha s (1 - s)$$

2/23/12 5

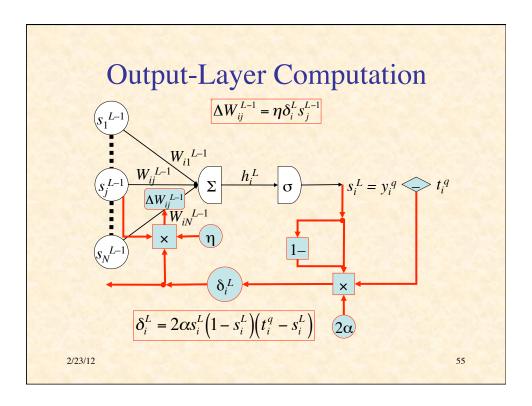
Summary of Back-Propagation Algorithm

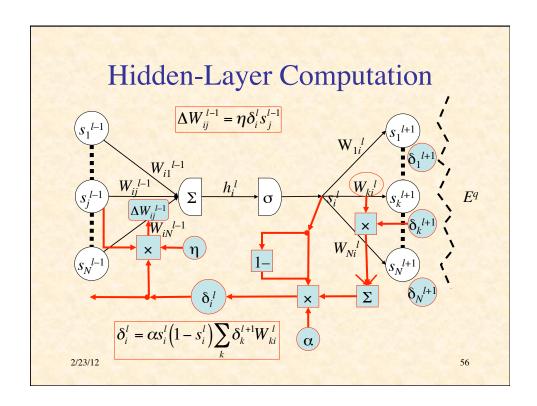
Output layer:
$$\delta_i^L = 2\alpha s_i^L (1 - s_i^L)(s_i^L - t_i^q)$$

$$\frac{\partial E^q}{\partial W_{ii}^{L-1}} = \delta_i^L s_j^{L-1}$$

Hidden layers:
$$\delta_i^l = \alpha s_i^l (1 - s_i^l) \sum_k \delta_k^{l+1} W_{ki}^l$$

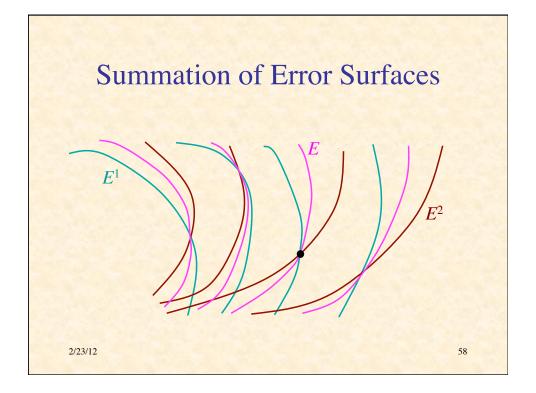
$$\frac{\partial E^q}{\partial W_{ij}^{l-1}} = \delta_i^l s_j^{l-1}$$

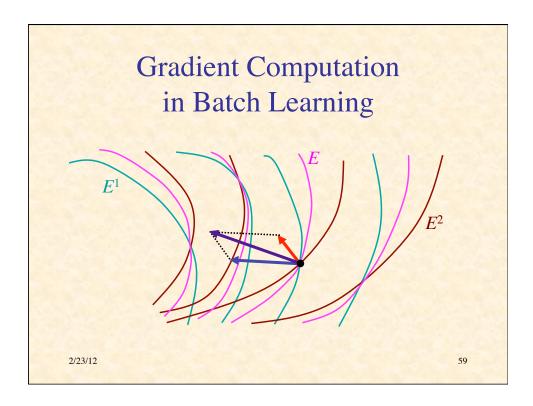


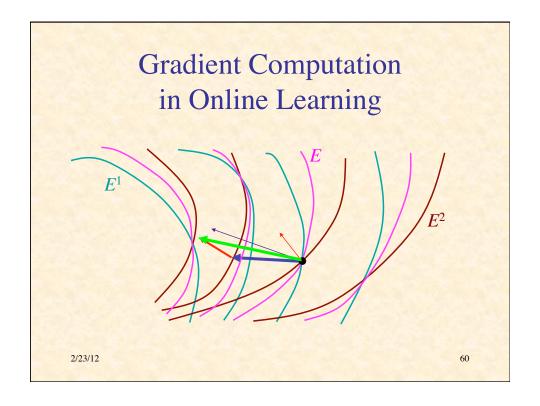


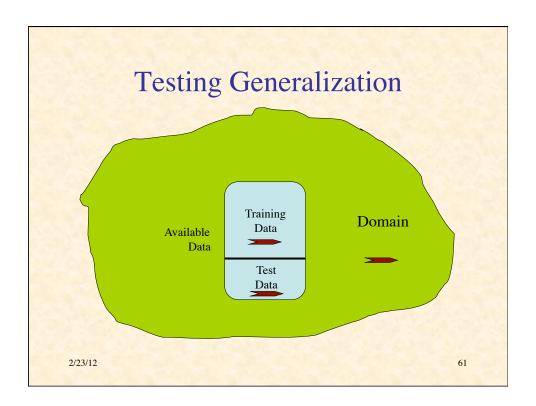
Training Procedures

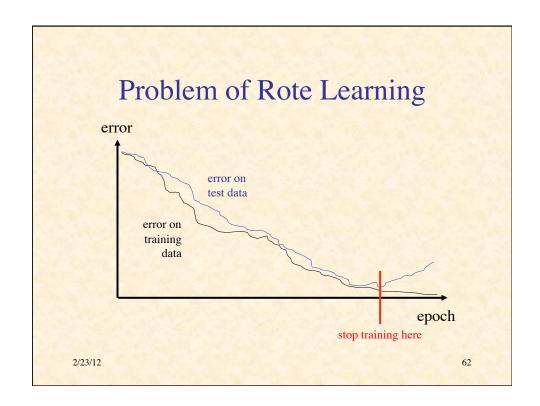
- Batch Learning
 - on each *epoch* (pass through all the training pairs),
 - weight changes for all patterns accumulated
 - weight matrices updated at end of epoch
 - accurate computation of gradient
- Online Learning
 - weight are updated after back-prop of each training pair
 - usually randomize order for each epoch
 - approximation of gradient
- Doesn't make much difference

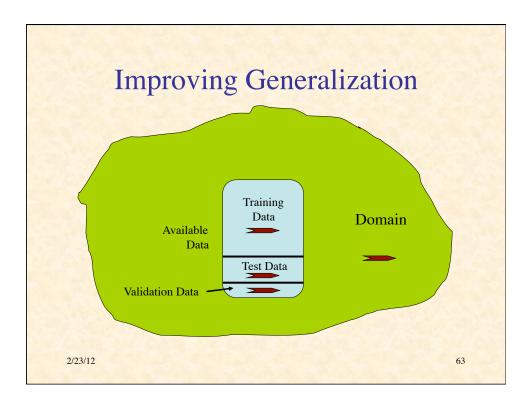












A Few Random Tips

- Too few neurons and the ANN may not be able to decrease the error enough
- Too many neurons can lead to rote learning
- Preprocess data to:
 - standardize
 - eliminate irrelevant information
 - capture invariances
 - keep relevant information
- If stuck in local min., restart with different random weights

Run Example BP Learning

2/23/12

Beyond Back-Propagation

- Adaptive Learning Rate
- Adaptive Architecture
 - Add/delete hidden neurons
 - Add/delete hidden layers
- Radial Basis Function Networks
- Recurrent BP
- Etc., etc., etc....

What is the Power of Artificial Neural Networks?

- With respect to Turing machines?
- As function approximators?

2/23/12 67

Can ANNs Exceed the "Turing Limit"?

- There are many results, which depend sensitively on assumptions; for example:
- Finite NNs with real-valued weights have super-Turing power (Siegelmann & Sontag '94)
- Recurrent nets with Gaussian noise have sub-Turing power (Maass & Sontag '99)
- Finite recurrent nets with real weights can recognize <u>all</u> languages, and thus are super-Turing (Siegelmann '99)
- Stochastic nets with rational weights have super-Turing power (but only P/POLY, BPP/log*) (Siegelmann '99)
- But computing classes of functions is not a very relevant way to evaluate the capabilities of neural computation

A Universal Approximation Theorem

Suppose f is a continuous function on $[0,1]^n$ Suppose σ is a nonconstant, bounded,

monotone increasing real function on \Re .

For any $\varepsilon > 0$, there is an m such that

 $\exists \mathbf{a} \in \mathbb{R}^m, \mathbf{b} \in \mathbb{R}^n, \mathbf{W} \in \mathbb{R}^{m \times n}$ such that if

$$F(x_1,\ldots,x_n) = \sum_{i=1}^m a_i \sigma \left(\sum_{j=1}^n W_{ij} x_j + b_j \right)$$

[i.e.,
$$F(\mathbf{x}) = \mathbf{a} \cdot \sigma(\mathbf{W}\mathbf{x} + \mathbf{b})$$
]

then
$$|F(\mathbf{x}) - f(\mathbf{x})| < \varepsilon$$
 for all $\mathbf{x} \in [0,1]^n$

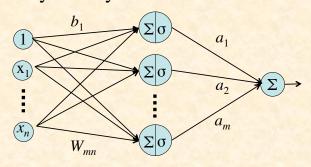
2/23/12

(see, e.g., Haykin, N.Nets 2/e, 208-9)

69

One Hidden Layer is Sufficient

• <u>Conclusion</u>: One hidden layer is sufficient to approximate any continuous function arbitrarily closely



2/23/12

The Golden Rule of Neural Nets

Neural Networks are the second-best way to do everything!

2/23/12

IVB