VII. Cooperation & Competition

The Iterated Prisoner's Dilemma

The Prisoners' Dilemma

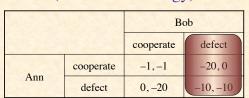
- Devised by Melvin Dresher & Merrill Flood in 1950 at RAND Corporation
- Further developed by mathematician Albert W. Tucker in 1950 presentation to psychologists
- It "has given rise to a vast body of literature in subjects as diverse as philosophy, ethics, biology, sociology, political science, economics, and, of course, game theory." — SJ. Hagenmayer
- "This example, which can be set out in one page, could be the most influential one page in the social sciences in the latter half of the twentieth century." — R.A. McCain

Prisoners' Dilemma: The Story

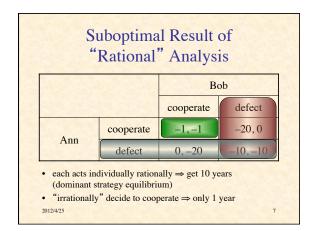
- · Two criminals have been caught
- They cannot communicate with each other
- If both confess, they will each get 10 years
- If one confesses and accuses other:
 - confessor goes free
 - accused gets 20 years
- If neither confesses, they will both get 1 year on a lesser charge

Prisoners' Dilemma Payoff Matrix

		Bob	
		cooperate	defect
	cooperate	-1,-1	-20,0
Ann	defect	0, -20	-10, -10


- defect = confess, cooperate = don't
- payoffs < 0 because punishments (losses)

Ann's "Rational" Analysis (Dominant Strategy)


		Bob	
		cooperate	defect
Ann	cooperate	-1, -1	-20,0
	defect	0, –20	-10, -10

- · if cooperates, may get 20 years
- if defects, may get 10 years
- .:., best to defect

Bob's "Rational" Analysis (Dominant Strategy)

- if he cooperates, may get 20 years
- if he defects, may get 10 years
- :, best to defect

Summary

- Individually rational actions lead to a result that all agree is less desirable
- In such a situation you cannot act unilaterally in your own best interest
- Just one example of a (game-theoretic) dilemma
- Can there be a situation in which it would make sense to cooperate unilaterally?
 - Yes, if the players can expect to interact again in the future

5

The Iterated Prisoners' Dilemma
and Robert Axelrod's Experiments

Assumptions

- No mechanism for enforceable threats or commitments
- No way to foresee a player's move
- No way to eliminate other player or avoid interaction
- No way to change other player's payoffs
- Communication only through direct interaction

25

Axelrod's Experiments

- Intuitively, expectation of future encounters may affect rationality of defection
- Various programs compete for 200 rounds
 encounters each other and self
- Each program can remember:
 - its own past actions
 - its competitors' past actions
- 14 programs submitted for first experiment

2012/4/25

IPD Payoff Matrix

		В		
		cooperate	defect	
	cooperate	3,3	0,5	
A	defect	5,0	1,1	

N.B. Unless DC + CD < 2 CC (i.e. T + S < 2 R), can win by alternating defection/cooperation

Indefinite Number of Future Encounters

- Cooperation depends on expectation of indefinite number of future encounters
- Suppose a known finite number of encounters:
 - No reason to C on last encounter
 - Since expect D on last, no reason to C on next
 - And so forth: there is no reason to C at all

2012/4/25

13

Analysis of Some Simple Strategies

- Three simple strategies:
 - ALL-D: always defect
 - ALL-C: always cooperate
 - RAND: randomly cooperate/defect
- Effectiveness depends on environment
 - ALL-D optimizes local (individual) fitness
 - ALL-C optimizes global (population) fitness
 - RAND compromises

4/25

Expected Scores

↓ playing ⇒	ALL-C	RAND	ALL-D	Average
ALL-C	3.0	1.5	0.0	1.5
RAND	4.0	2.25	0.5	2.25
ALL-D	5.0	3.0	1.0	3.0

2012/4/25

Result of Axelrod's Experiments

- Winner is Rapoport's TFT (Tit-for-Tat)
 - cooperate on first encounter
 - reply in kind on succeeding encounters
- Second experiment:
 - 62 programs
 - all know TFT was previous winner
 - TFT wins again

1/25

	Expected Scores						
	↓ playing ⇒	ALL-C	RAND	ALL-D	TFT	Avg	
	ALL-C	3.0	1.5	0.0	3.0	1.875	
	RAND	4.0	2.25	0.5	2.25	2.25	
	ALL-D	5.0	3.0	1.0	1+4/N	2.5+	
	TFT	3.0	2.25	1–1/ <i>N</i>	3.0	2.3125-	
N = #encounters 17							

Demonstration of Iterated Prisoners' Dilemma

Run NetLogo demonstration
PD N-Person Iterated.nlogo

1012/4/25

Characteristics of Successful Strategies

- Don't be envious
 - at best TFT ties other strategies
- Be nice
 - i.e. don't be first to defect
- Reciprocate
 - reward cooperation, punish defection
- · Don't be too clever
 - sophisticated strategies may be unpredictable & look random; be clear

4/25

Tit-for-Two-Tats

- More forgiving than TFT
- Wait for two successive defections before punishing
- Beats TFT in a noisy environment
- E.g., an unintentional defection will lead TFTs into endless cycle of retaliation
- May be exploited by feigning accidental defection

012/4/25 20

Effects of Many Kinds of Noise Have Been Studied

- Misimplementation noise
- Misperception noise
 - noisy channels
- Stochastic effects on payoffs
- General conclusions:
 - sufficiently little noise ⇒ generosity is best
 - greater noise ⇒ generosity avoids unnecessary conflict but invites exploitation

2012/4/25 21

More Characteristics of Successful Strategies

- Should be a generalist (robust)
 - i.e. do sufficiently well in wide variety of environments
- Should do well with its own kind
 - since successful strategies will propagate
- Should be cognitively simple
- Should be evolutionary stable strategy
 - i.e. resistant to invasion by other strategies

4/25

Kant's Categorical Imperative

"Act on maxims that can at the same time have for their object themselves as universal laws of nature."

2012/4/25 23

Ecological & Spatial Models

112/4/25 24

Ecological Model

- What if more successful strategies spread in population at expense of less successful?
- Models success of programs as fraction of total population
- Fraction of strategy = probability random program obeys this strategy

2012/4/25

Variables

- P_i(t) = probability = proportional population of strategy i at time t
- $S_i(t)$ = score achieved by strategy i
- R_{ij}(t) = relative score achieved by strategy i playing against strategy j over many rounds
 fixed (not time-varying) for now

2/4/25 26

Computing Score of a Strategy

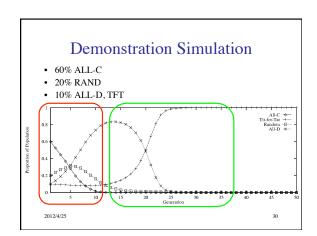
- Let n = number of strategies in ecosystem
- Compute score achieved by strategy *i*:

$$S_i(t) = \sum_{k=1}^n R_{ik}(t) P_k(t)$$

$$\mathbf{S}(t) = \mathbf{R}(t)\mathbf{P}(t)$$

2012/4/25

Updating Proportional Population


$$P_{i}(t+1) = \frac{P_{i}(t)S_{i}(t)}{\sum_{j=1}^{n} P_{j}(t)S_{j}(t)}$$

4/25 28

Some Simulations

- Usual Axelrod payoff matrix
- 200 rounds per step

2012/4/25

NetLogo Demonstration of Ecological IPD

Run EIPD.nlogo

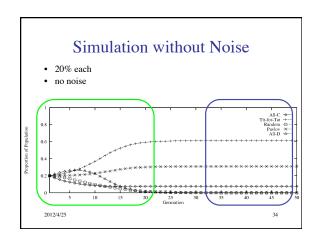
2012/4/25

31

Collectively Stable Strategy

- Let w = probability of future interactions
- Suppose cooperation based on reciprocity has been established
- Then no one can do better than TFT provided:

$$w \ge \max\left(\frac{T-R}{R-S}, \frac{T-R}{T-P}\right)$$


• The TFT users are in a Nash equilibrium

2012/4/25

"Win-Stay, Lose-Shift" Strategy

- Win-stay, lose-shift strategy:
 - begin cooperating
 - if other cooperates, continue current behavior
 - if other defects, switch to opposite behavior
- Called **PAV** (because suggests Pavlovian learning)

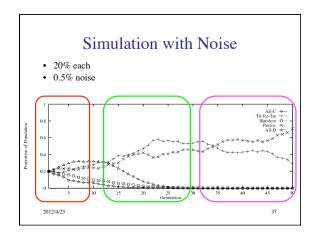
4/25

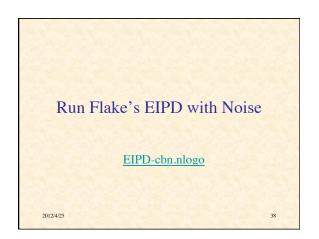
Effects of Noise

- Consider effects of noise or other sources of error in response
- TFT:
 - cycle of alternating defections (CD, DC)
 - broken only by another error
- · PAV
 - eventually self-corrects (CD, DC, DD, CC)
- can exploit ALL-C in noisy environment
- Noise added into computation of $R_{ij}(t)$

2012/4/25

W25 35


Flake's Simulation with Noise


- R(t) is computed over r rounds
- $A_{ik}(j)$ = action of strategy i playing against strategy k in round j
 - Normal strategy i action with probability $1 p_n$
 - Random C/D with probability p_n
- Note that this overestimates effects of noise

$$R_{ik}(t) = \sum_{j=1}^{r} \text{payoff} \left[A_{ik}(j) A_{ki}(j) \right]$$

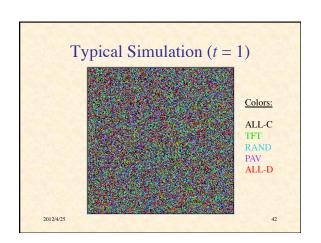
2012/4/25

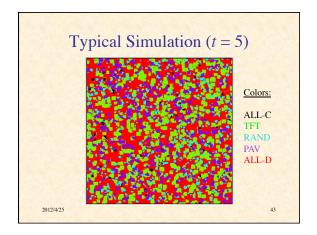
36

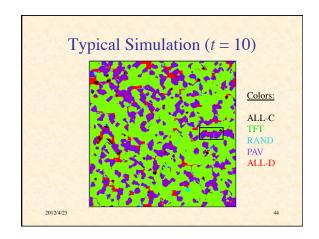
Spatial Effects

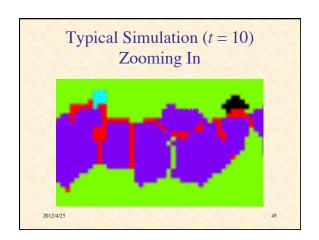
- Previous simulation assumes that each agent is equally likely to interact with each other
- So strategy interactions are proportional to fractions in population
- More realistically, interactions with "neighbors" are more likely
 - "Neighbor" can be defined in many ways
- Neighbors are more likely to use the same strategy

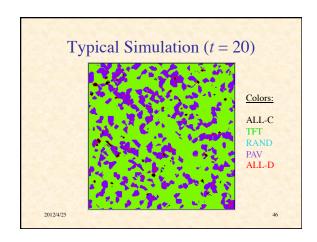
2012/4/25

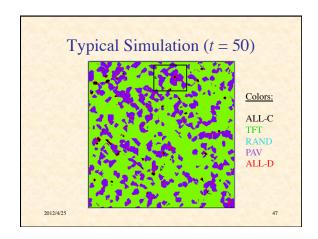

Spatial Simulation

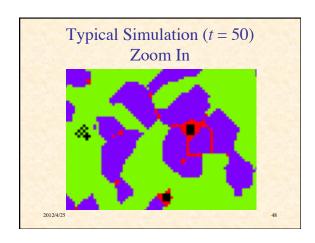

- Toroidal grid
- Agent interacts only with eight neighbors
- Agent adopts strategy of most successful neighbor
- · Ties favor current strategy

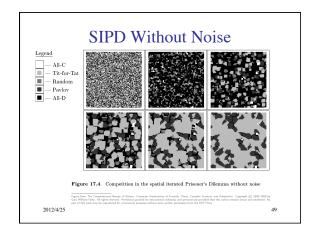

2/4/25 40


NetLogo Simulation of Spatial IPD


Run SIPD-async-alter.nlogo







Conclusions: Spatial IPD

- Small clusters of cooperators can exist in hostile environment
- Parasitic agents can exist only in limited numbers
- Stability of cooperation depends on expectation of future interaction
- Adaptive cooperation/defection beats unilateral cooperation or defection

2012/4/25

50

NetLogo Simulation of Spatial IPD

Run SIPD-async-alter.nlogo

2012/425 51

Additional Bibliography

- von Neumann, J., & Morgenstern, O. Theory of Games and Economic Behavior, Princeton, 1944.
- Morgenstern, O. "Game Theory," in *Dictionary of the History of Ideas*, Charles Scribners, 1973, vol. 2, pp. 263-75.
- 3. Axelrod, R. The Evolution of Cooperation. Basic Books, 1984.
- Axelrod, R., & Dion, D. "The Further Evolution of Cooperation," Science 242 (1988): 1385-90.
- 5. Poundstone, W. Prisoner's Dilemma. Doubleday, 1992.

2012/4/25

Part VIIB

52