CS 420/527

Biologically-Inspired Computation

Bruce MacLennan

Contact Information

• Instructor: Bruce MacLennan maclennan@utk.edu

Min Kao 550

Office Hours: 3:30–5:00 MWF (or make appt.)

• Teaching Assistant:

Zahra Mahoor (zmahoor@utk.edu)

2013/1/10

710

CS 420 vs. CS 527

- CS 420: Undergraduate credit (but graduate students can count one 400-level course)
- CS 527: Graduate credit, additional work

(CS 527 is approved for the Interdisciplinary Graduate Minor in Computational Science)

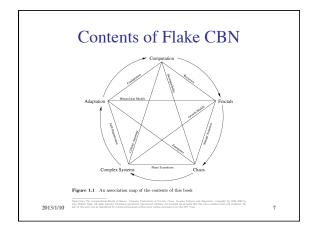
2013/1/10 3

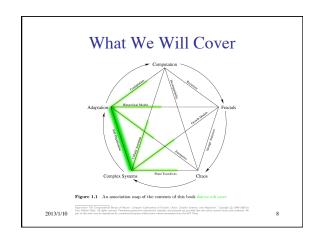
Grading

- You will conduct a series of computer experiments, which you will write up
- Some of these will be run on off-the-shelf simulators
- Others will be run on simulators that you will program
- Graduate students will do additional experiments and mathematical exercises
- No exams

013/1/10 4

Prerequisites


- CS 420 & 527: None per se, but you will be required to write some simulations (in Java, C++, NetLogo, or whatever)
- CS 527: Basic calculus through differential equations, linear algebra, basic probability and statistics


2013/1/10 5

Textbook

Flake, Gary William. *The Computational Beauty of Nature*. MIT Press, 1998

2013/1/10 6

Reading for Next Week

• Flake: Ch. 1 (Introduction)

• Flake: Ch. 15 (Cellular Automata)

013/1/10

Course Web Site

- web.eecs.utk.edu/~mclennan/Classes/420 or 527
- Syllabus
- Link to Flake *CBN* site (with errata, software, etc.)
- Links to other interesting sites
- Handouts:
 - assignments
 - slides in pdf format (revised after class)
- Models (simulation programs)

B. Biologically-Inspired Computation

2013/1/10

What is Biologically-Inspired Computation?

- Computer systems, devices, and algorithms based, more or less closely, on biological systems
- Biomimicry applied to computing
- Approximately synonymous with: natural computation, organic computing

2013/1/10

Two Kinds of Computation Motivated by Biology

- Computation applied to biology
 - bioinformatics
 - computational biology
 - modeling DNA, cells, organs, populations, etc.
- Biology applied to computation
 - biologically-inspired computation
 - neural networks
 - artificial life

- etc

2013/1/10

Natural Computation

- "Computation occurring in nature or inspired by that occurring in nature"
- Information processing occurs in natural systems from the DNA-level up through the brain to the social level
- We can learn from these processes and apply them in CS (bio-inspired computing)
- In practice, can't do one without the other

2013/1/10 14

Biological Computation

- Refers to the use of biological materials for computation
 - e.g. DNA, proteins, viruses, bacteria
- · Sometimes called "biocomputing"
- · Goal: Biocomputers
- Bio-inspired computing need not be done on biocomputers

013/1/10

Why Do Bio-Inspired Computation?

· Biological systems are:

efficient
 robust
 adaptive
 flexible
 parallel
 decentralized
 self-organizing
 self-optimizing
 self-protecting
 self-*

/1/10

Some of the Natural Systems We Will Study

- adaptive path minimization by ants
- wasp and termite nest building
- · army ant raiding
- fish schooling and bird flocking
- pattern formation in animal coats
- coordinated cooperation in slime molds
- synchronized firefly flashing
- soft constraint satisfaction in spin glasses
- evolution by natural selection
- game theory and the evolution of cooperation
- computation at the edge of chaos
- information processing in the brain

013/1/10

Some of the Artificial Systems We Will Study

- · artificial neural networks
- simulated annealing
- · cellular automata
- ant colony optimization
- particle swarm optimization
- · artificial immune systems
- · genetic algorithms
- · other evolutionary computation systems

C. Ants

Think about the value of having computers, networks, and robots that could do these things.

2013/1/10

Why Ants?

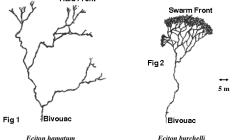
- Ants are successful:
 - 30% of Amazon biomass is ants and termites
 - Dry weight of social insects is four times that of other land animals in Amazon
 - Perhaps 10% of Earth's total biomass
 - Comparable to biomass of humans
- · Good sources:
 - Deborah Gordon: Ants at Work (1999)
 - B. Hölldobler & E. O. Wilson: *The Superorganism* (2009)

/1/10

Intelligent Behavior of Harvester Ants

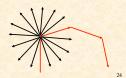
- Find shortest path to food
- Prioritize food sources based on distance & ease of access
- · Adjust number involved in foraging based on:
 - colony size
 - amount of food stored
 - amount of food in area
 - presence of other colonies
 - etc.

2013/1/10


Army Ants

- No permanent nest
- Create temporary "bivouacs" from bodies of workers
- Raiding parties of up to 200 000
- · Act like unified entity

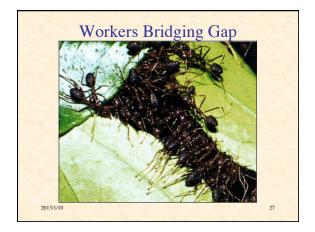
0

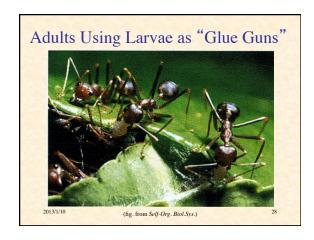

Army Ant Raiding Patterns Raid Front Swarm Front

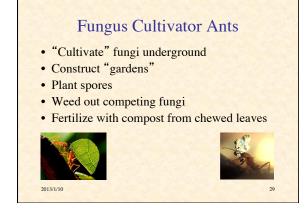
2013/1/10 from Solé & Goodwin, Signs of Life 2

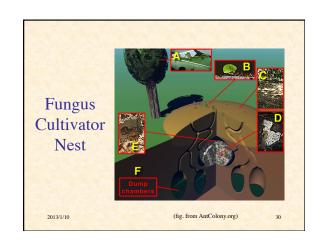
Coordination in Army Ant Colonies

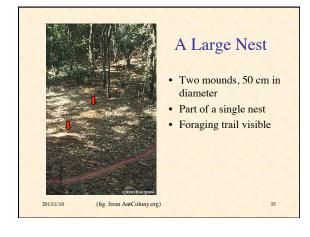

- Timing:
 - nomadic phase (15 days)
 - stationary phase (20 days)
- Navigation in stationary phase
 - 14 raids
 - 123° apart

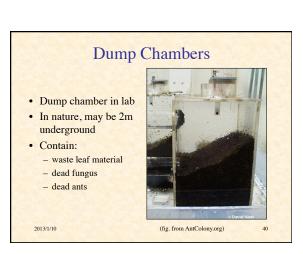



Collective Navigation


- Ants may use polarized sunlight to determine direction
- But army ants have single-facet eyes
 most insects have multiple facet eyes
- Theory: the two facets of individual ants in group function collectively as a multiple facet eye


3/1/10





"White Ants" (Termites)

"What governs here? What is it that issues orders, foresees the future, elaborates plans, and preserves equilibrium, administers, and condemns to death?"

Maeterlinck on

Emergent Aspects Colony size ~ 8×10⁶ but no one is "in charge"! Colony lifetime ~ 15 years Colonies have a "life cycle" – older behave differently from younger But ants live no longer than one year – Males live one day!

How Do They Do It?

- Communication in Red Harvester Ants
- Good source: Deborah Gordon: Ants at Work (1999)

2013/1/10

(video from Stanford Report, April 2003)

How do they do it?

- Semiochemically: deposit pheromones
 - 10-20 signs, many signal tasks
 - ants detect pheromone gradients and frequency of encounter
- Follow trails imperfectly
 - ⇒ exploration
- Feedback reinforces successful trails
 - ⇒ biased randomness

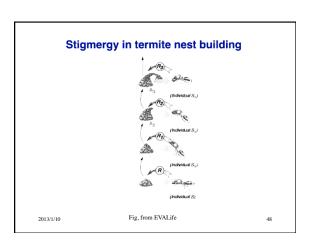
2013/1/10

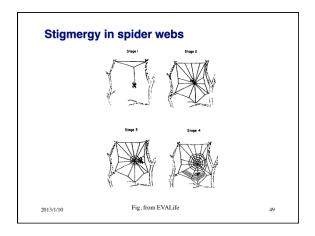
44

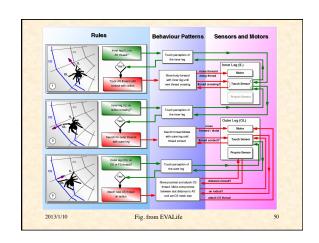
Demonstration: Simulation of Ant Foraging

Run NetLogo Ant-Foraging

2013/1/10


45


Macro-Micro Feedback Global Chemical Field Global pattern emergent from total system Individuals respond to local field Also called circular causality 1 fig. from Solé & Goodwin 1 fig. from Solé & Goodwin


Stigmergy

- From στιγμός = pricking + ἔργον = work
- The project (work) in the environment is an instigation
- Agent interactions may be:
 - direct
- indirect (time-delayed through environment)
- Mediates individual and colony levels

8/1/10

Advantages of Stigmergy

- Permits simpler agents
- Decreases direct communication between agents
- · Incremental improvement
- Flexible, since when environment changes, agents respond appropriately

2013/1/10

Emergence

- The appearance of *macroscopic* patterns, properties, or behaviors
- that are not simply the "sum" of the *microscopic* properties or behaviors of the components
 - non-linear but not chaotic
- Macroscopic order often described by fewer & different variables than microscopic order
 - e.g. ant trails vs. individual ants
 - order parameters

/1/10 52

D. Self-Organization

- Order may be imposed from outside a system
 - to understand, look at the external source of organization
- In *self-organization*, the order emerges from the system itself
 - must look at interactions within system
- In biological systems, the emergent order often has some adaptive purpose
 - e.g., efficient operation of ant colony

013/1/10

Why Self-Organization is Important for CS

- Fundamental to theory & implementation of massively parallel, distributed computation systems
- How can millions of independent computational (or robotic) agents cooperate to process information & achieve goals, in a way that is:
 - efficient
 - self-optimizing
- adaptive
- robust in the face of damage or attack

2013/1/10

Part II

34

Additional Bibliography

- Solé, Ricard, & Goodwin, Brian. Signs of Life: How Complexity Pervades Biology. Basic Books, 2000.
- Bonabeau, Eric, Dorigo, Marco, & Theraulaz, Guy. Swarm Intelligence: From Natural to Artificial Systems. Oxford, 1999.
- 3. Gordon, Deborah. Ants at Work: How an Insect Society Is Organized. Free Press, 1999.
- 4. Hölldobler, B., & Wilson, E. O. *The Superorganism* (2009)
- Johnson, Steven. Emergence: The Connected Lives of Ants, Brains, Cities, and Software. Scribner, 2001. A popular book, but with many good insights.

2013/1/10

55