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Fig. 1 (A) Spatial pattern of FCs. (B) Geographical distribution of FCs (black dots) and
of FC at wider scale (yellow cli
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Structure of Mound

2013/4/12 figs. from Liischer (1961) g
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Construction
of Mound

(1) First chamber made
by royal couple

(2, 3) Intermediate
stages of
development

(4) Fully developed
nest

2013/4/12 Fig. from Wilson (1971) 8

Termite Nests

Alternatives to Self-Organization

¢ Leader
— directs building activity of group
¢ Blueprint (image of completion)

— compact representation of spatial/temporal relationships
of parts

¢ Recipe (program)

— sequential instructions specify spatial/temporal actions
of individual

¢ Template
— full-sized guide or mold that specifies final pattern
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H 2 Basic Mechanism of
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2013/4/12 Fig. from Solé & Goodwin 11

Construction of Royal Chamber
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Construction of Arch (1)

2013/4/12 Fig. from Bonabeau, Dorigo & Theraulaz 13

Construction of Arch (2)

77

2013/4/12 Fig. from Bonabeau, Dorigo & Theraulaz 14

Construction of Arch (3)

2013/4/12 Fig. from Bonabeau, Dorigo & Theraulaz

Basic Principles

 Continuous (quantitative) stigmergy
* Positive feedback:

— via pheromone deposition
* Negative feedback:

— depletion of soil granules & competition
between pillars

— pheromone decay
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Deneubourg Model

e H (r,t) = concentration of cement
pheromone in air at location r & time ¢

e P (r,t) = amount of deposited cement with
still active pheromone at r, ¢

e C (r, 1) = density of laden termites at r, ¢

o @ = constant flow of laden termites into
system
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Equation for P
(Deposited Cement with Pheromone)

d, P (rate of change of active cement) =
k, C (rate of cement deposition by termites)
— k, P (rate of pheromone loss to air)

9P =kC-k,P
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Equation for H
(Concentration of Pheromone)

d, H (rate of change of concentration) =
k, P (pheromone from deposited material)
— k4 H (pheromone decay)

+ Dy, V2H (pheromone diffusion)

d.H =k,P-k,H+D,V’H
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Equation for C
(Density of Laden Termites)

9,C (rate of change of concentration) =
® (flux of laden termites)

— k, C (unloading of termites)

+ DV2C (random walk)

—vyV:(CVH) (chemotaxis: response to
pheromone gradient)

9,C=®-kC+D.V’C-yV-(CVH)
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Explanation e« velocity field = V(x,y)
o =iV, (x) +jV,@x)

Divergence * C(x,y) = density
¢ outflow rate =

VA A(CV,) Ay + A(CV,) Ax
outflow rate / unit area
Alcv)  A(CY)

=Xy 2

Ax Ay
acv,) IV,

= +
X ax dy
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CV,Ay C'V/Ay

CV,Ax

y

-v-cv

Explanation of Chemotaxis Term

¢ The termite flow into a region is the negative
divergence of the flux through it
~V-J = —(3J,/ ax+al,/ ay)
* The flux velocity is proportional to the pheromone
gradient
J < VH
* The flux density is proportional to the number of
moving termites
JxC
¢ Hence,-yV-J =-yV-:(CVH)
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Simulation (7" = 0)

2013/4/12 3
fig. from Solé & Goodwin

Simulation (7" = 100)
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fig. from Solé & Goodwin
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Simulation (7" = 1000)

2013/4/12 25
fig. from Solé & Goodwin

Conditions for Self-Organized
Pillars

» Will not produce regularly spaced pillars if:
— density of termites is too low
— rate of deposition is too low

* A homogeneous stable state results
o H o=

2013/4/12 26

NetLogo Simulation of
Deneubourg Model

Run Pillars3D.nlogo
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Interaction of Three Pheromones

* Queen pheromone governs size and shape
of queen chamber (template)
* Cement pheromone governs construction
and spacing of pillars & arches (stigmergy)
¢ Trail pheromone:
— attracts workers to construction sites
(stigmergy)
— encourages soil pickup (stigmergy)
— governs sizes of galleries (template)
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Wasp Nest
Building
and
Discrete
Stigmergy

2013/4/12 Fig. from Solé & Goodwin 29

Structure of
Some Wasp
Nests

2013412 Fig. from Self-Org. Biol. Sys. 30
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Adaptive Function of Nests
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How Do They Do It?
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Lattice Swarms

(developed by Theraulaz & Bonabeau)
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Discrete vs. Continuous
Stigmergy

* Recall: stigmergy is the coordination of
activities through the environment
» Continuous or quantitative stigmergy

— quantitatively different stimuli trigger
quantitatively different behaviors

* Discrete or qualitative stigmergy
— stimuli are classified into distinct classes, which
trigger distinct behaviors
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2013/4/12  Fig. from Self-Org. Biol. Sys.

Numbers and Kinds
of Building Sites
S, /i -
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2013/4/12 Fig. from Self-Org. Biol. Sys. 36
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Lattice Swarm Model

* Random movement by wasps in a 3D lattice
— cubic or hexagonal

* Wasps obey a 3D CA-like rule set

* Depending on configuration, wasp deposits
one of several types of “bricks”

* Once deposited, it cannot be removed
* May be deterministic or probabilistic
e Start with a single brick
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Cubic Neighborhood

* Deposited brick depends
on states of 26 surrounding
cells

» Configuration of sur-

rounding cells may be
represented by matrices:

o 5 0 0 o0]fo o o]fo 0o o

7| z1 1 0 Ofx[l <« Ofx|l 0 0

; [ 0 0 0o o oo o o
I, J

2013/4/12 Fig. from Solé & Goodwin 38

Hexagonal Neighborhood
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2013/4/12 Fig. from Bonabeau, Dorigo & Theraulaz 39

Example Construction

= -0

2013/4/12 Fig. from IASC Dept., ENST de Bretagne. 40

Another Example

=i [

2013/4/12 fig. from IASC Dept., ENST de Bretagne. 41

A Simple Pair of Rules

@3 Rue 1 @ Rule 2
ok S o
B B

2
2013412 Fig. from Self-Org. in Biol. Sys 2
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deposit a type-2

configurations,
brick

T R R R B e R e R i

Part 6C: Nest Building

Result from Probabilistic Rules

Fig. from Self-Org. in Biol. Sys.

© 223223 223722

i
)
]
gl
il
il
i
N
Architectures Generated from
Other Rule Sets

Fig. from Bonabeau & al., Swarm Intell.
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More Cubic Examples

2013/4/12 Fig. from Bonabeau & al., Swarm Intell.
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Cubic Examples (1)

step 45000

Complexity: 66 Growth Complexity: 78

2013/4/12 Figs. from IASC Dept., ENST de Bretagne. 50

Cubic Examples (2)

step 128000

Growth Complexity: 132

2013/4/12 Figs. from IASC Dept., ENST de Bretagne.

Cubic Examples (3)

step 285000

Complexity: 141 Growth Comple:

2013/4/12 Figs. from IASC Dept., ENST de Bretagne. 52

Cubic Examples (4)

2013/4/12 Figs. from IASC Dept., ENST de Bretagne.

Cubic Examples (5)

2013/4/12 Figs. from IASC Dept., ENST de Bretagne. 54
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An Interesting Example

Includes

— central axis

— external envelope

— long-range helical ramp
Similar to Apicotermes
termite nest

2013/4/12 Fig. from Theraulaz & Bonabeau (1995) 55

Similar Results
with Hexagonal Lattice

(b) 1]

e 20x20x20 lattice

e 10 wasps

e All resemble nests of
wasp species

e (d)is (c) with
envelope cut away

* (e) has envelope cut
away

2013/4/12 Fig. from Bonabeau & al., Swarm Intell. 56

More Hexagonal Examples

2013/4/12 Figs. from IASC Dept., ENST de Bretagne. 57

Effects of Randomness
(Co

* Specifically different (i.e., different in details)
¢ Generically the same (qualitatively identical)
¢ Sometimes results are fully constrained

2013/4/12 Fig. from Bonabeau & al., Swarm Intell. 58

Effects of Randomness
(Non-coordinated Algorithm)

2013/4/12 Fig. from Bonabeau & al., Swarm Intell. 59

Non-coordinated Algorithms

* Stimulating configurations are not ordered
in time and space

* Many of them overlap
 Architecture grows without any coherence

* May be convergent, but are still
unstructured

2013/4/12 60
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Coordinated Algorithm

* Non-conflicting rules

— can’ t prescribe two different actions for the
same configuration

¢ Stimulating configurations for different
building stages cannot overlap

* At each stage, “handshakes” and
“interlocks” are required to prevent
conflicts in parallel assembly
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More Formally...

e Let C={c, ¢y, ..., c,} be the set of local
stimulating configurations

e Let (S;,S,, ..., S,) be a sequence of
assembly stages

* These stages partition C into mutually
disjoint subsets ces,)

¢ Completion of S, signaled by appearance of
a configuration in C(S,,,,)
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Step | - Step2 - Step3 —

> B @

Step 4 - Steps - Step6 —

Example

2013/4/12 Fig. from Camazine &al., Self-Org. Biol. Sys. 63

Example

(6es (Ge=1s0) (Ge=1s7)
2013/4/12 fig. from TASC Dept., ENST de Bretagne.

Modular Structure

@ ¢ Recurrent states

o g induce cycles in group
behavior

¢ These cycles induce
modular structure

’ ¢ Each module is built
‘ during a cycle
e o Modules are

qualitatively similar

2013/4/12 Fig. from Camazine &al., Self-Org. Biol. Sys. 65

Possible Termination
Mechanisms

¢ Qualitative
— the assembly process leads to a configuration that is not
stimulating
¢ Quantitative
— a separate rule inhibiting building when nest a certain
size relative to population
— “empty cells rule”: make new cells only when no
empties available

— growing nest may inhibit positive feedback
mechanisms

2013/4/12 66
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Observations

* Random algorithms tend to lead to

uninteresting structures

— random or space-filling shapes

Similar structured architectures tend to be

generated by similar coordinated algorithms

* Algorithms that generate structured
architectures seem to be confined to a small
region of rule-space

2013/4/12 67
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Analysis

* Define matrix M:
= 12 columns for 12 sample structured architectures
= 211 rows for stimulating configurations
* M =1 if architecture j requires configuration i

(n) (k) U] (m) (i) (b)

(a) ()

Al

2013/4/12 Fig. from Bonabeau & al., Swarm Intell. 68

Factorial Correspondence Analysis

2013/4/12 Fig. from Bonabeau & al., Swarm Intell. 69

Conclusions

» Simple rules that exploit discrete
(qualitative) stigmergy can be used by
autonomous agents to assemble complex,
3D structures

* The rules must be non-conflicting and
coordinated according to stage of assembly

* The rules corresponding to interesting
structures occupy a comparatively small
region in rule-space

2013/4/12 Part 7 70

The Termes Project

Wyss Institute for Biologically
Inspired Engineering
Harvard

2013/4/12 71

Introduction

TERMES:
Simple Climbing Robots
Building 3D Structures

<
wyss S
o
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Algorithmic Assembly The Robot

Distributed Multi-Robot Algorithms for the
TERMES 3D Collective Construction System

Self-Organizing Systems Resear

103, 100 (S

Justin Werfel, Kirstin Petersen, Radhika Nagpal

IROS 2011
Workshop on Reconfigurable Modular Robotics

for Biologically
Inspired Engincering
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