COSC 420/527

Biologically-Inspired Computation

Bruce MacLennan

Contact Information

- Instructor: Bruce MacLennan <u>maclennan@utk.edu</u> Min Kao 550
 Office Hours: 1:30–2:30 MWF (or make appt.)
- Teaching Assistant: Zahra Mahoor (<u>zmahoor@utk.edu</u>)

COSC 420 vs. COSC 527

- COSC 420: Undergraduate credit (but graduate students can count one 400-level course)
- COSC 527: Graduate credit, additional work
 - Approved for the Interdisciplinary Graduate Minor in Computational Science
 - You cannot take 527 if you have already taken 420

Grading

- You will conduct a series of computer experiments, which you will write up
- Some of these will be run on off-the-shelf simulators
- Others will be run on simulators that you will program
- Graduate students will do additional experiments and mathematical exercises
- No exams

The Great Mind Challenge: Watson Edition

- Alternate to Projects 1 and 2
- An opportunity to apply machine learning ideas to real-world data in a competitive environment
- Teams of 1 to 4
- You will be largely on your own (but I will help)
- Competition runs Feb. 3–28
- Search "knowledge exchange TMGC Watson"

Prerequisites

 COSC 420 & 527: None per se, but you will be required to write some simulations (in Java, C++, NetLogo, or whatever)

• COSC 527: Basic calculus through differential equations, linear algebra, basic probability and statistics

Textbook

Flake, Gary William. *The Computational Beauty of Nature*. MIT Press, 1998

Contents of Flake CBN

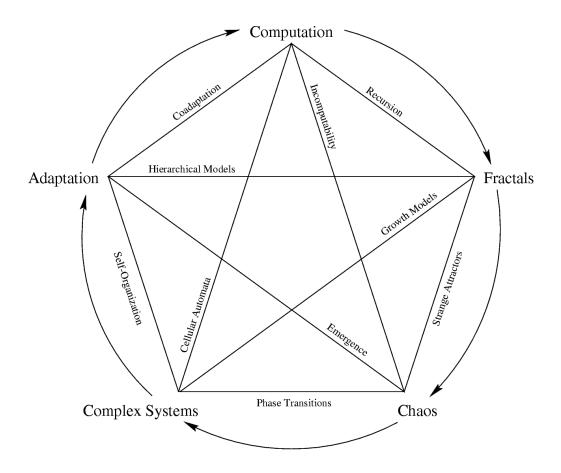


Figure 1.1 An association map of the contents of this book

Figure from *The Computational Beauty of Nature: Computer Explorations of Fractals, Chaos, Complex Systems, and Adaptation.* Copyright © 1998–2000 by Gary William Flake. All rights reserved. Permission granted for educational, scholarly, and personal use provided that this notice remains intact and unaltered. No part of this work may be reproduced for commercial purposes without prior written permission from the MIT Press.

8

What We Will Cover

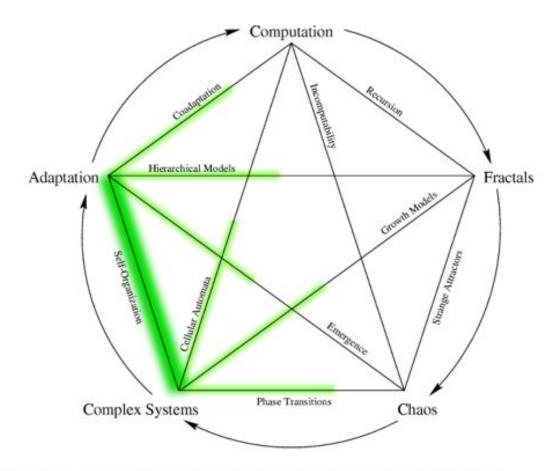


Figure 1.1 An association map of the contents of this book that we will cover

Figure from The Computational Beauty of Nature: Computer Explorations of Fractals, Chaos, Complex Systems, and Adaptation. Copyright (© 1998-2000 by Gary William Flaks. All rights reserved. Permission granted for educational, scholarly, and personal use provided that this notice remains intact and unaltered. No part of this work may be reproduced for commercial purposes without prior written permission from the MIT Press.

Reading for Next Week

- Flake: Ch. 1 (Introduction)
- Flake: Ch. 22 (Neural Networks)

Course Web Site

- web.eecs.utk.edu/~mclennan/Classes/420 or 527
- Syllabus
- Link to Flake CBN site (with errata, software, etc.)
- Links to other interesting sites
- Handouts:
 - assignments
 - slides in pdf format (revised after class)
- Models (simulation programs)
- Piazza for questions, answers, discussions,...

B. Biologically-Inspired Computation

What is Biologically-Inspired Computation?

- Computer systems, devices, and algorithms based, more or less closely, on biological systems
- Biomimicry applied to computing
- Approximately synonymous with: natural computation, organic computing

Two Kinds of Computation Motivated by Biology

- Computation applied to biology
 - bioinformatics
 - computational biology
 - modeling DNA, cells, organs, populations, etc.
- Biology applied to computation
 - biologically-inspired computation
 - neural networks
 - artificial life
 - etc.

Natural Computation

- "Computation occurring in nature or inspired by that occurring in nature"
- Information processing occurs in natural systems from the DNA-level up through the brain to the social level
- We can learn from these processes and apply them in CS (bio-inspired computing)
- In practice, can't do one without the other

Biological Computation

- Refers to the use of biological materials for computation
 - e.g. DNA, proteins, viruses, bacteria
- Sometimes called "biocomputing"
- Goal: Biocomputers
- Bio-inspired computing need not be done on biocomputers

Why Do Bio-Inspired Computation?

• Biological systems are:

- efficient
- robust
- adaptive
- flexible
- parallel
- decentralized

- self-organizing
- self-repairing
- self-optimizing
- self-protecting
- self-*
- etc.

Some of the Natural Systems We Will Study

- adaptive path minimization by ants
- wasp and termite nest building
- army ant raiding
- fish schooling and bird flocking
- pattern formation in animal coats
- coordinated cooperation in slime molds

- synchronized firefly flashing
- soft constraint satisfaction in spin glasses
- evolution by natural selection
- game theory and the evolution of cooperation
- computation at the edge of chaos
- information processing in the brain

Some of the Artificial Systems We Will Study

- artificial neural networks
- simulated annealing
- cellular automata
- ant colony optimization
- particle swarm optimization
- artificial immune systems
- genetic algorithms
- other evolutionary computation systems

C. Ants

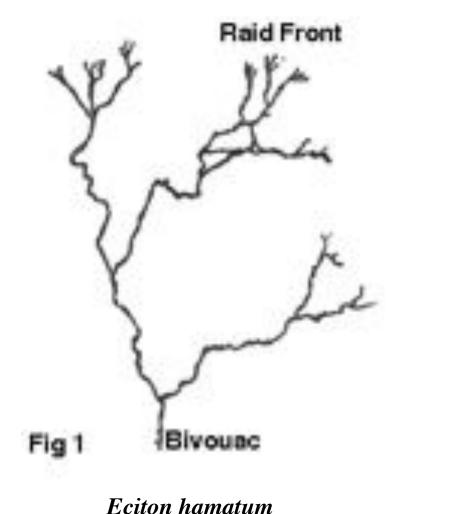
Think about the value of having computers, networks, and robots that could do these things.

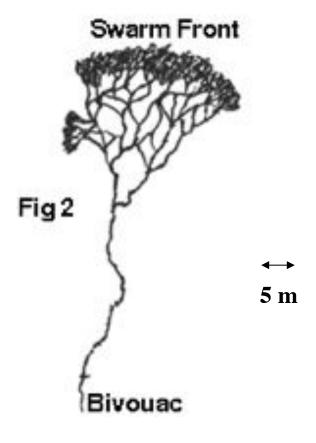
Why Ants?

- Ants are successful:
 - 30% of Amazon biomass is ants and termites
 - Dry weight of social insects is four times that of other land animals in Amazon
 - Perhaps 10% of Earth's total biomass
 - Comparable to biomass of humans
- Good sources:
 - Deborah Gordon: Ants at Work (1999)
 - B. Hölldobler & E. O. Wilson: *The Superorganism* (2009)

Intelligent Behavior of Harvester Ants

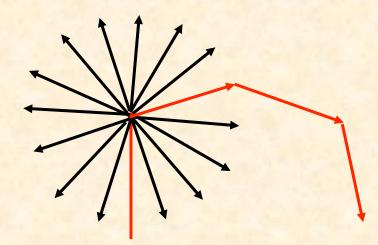
- Find shortest path to food
- Prioritize food sources based on distance & ease of access
- Adjust number involved in foraging based on:
 - colony size
 - amount of food stored
 - amount of food in area
 - presence of other colonies
 - etc.


Army Ants



- No permanent nest
- Create temporary "bivouacs" from bodies of workers
- Raiding parties of up to 200 000
- Act like unified entity

Army Ant Raiding Patterns



Eciton burchelli

from Solé & Goodwin, Signs of Life

Coordination in Army Ant Colonies

- Timing:
 - nomadic phase (15 days)
 - stationary phase (20 days)
- Navigation in stationary phase
 - 14 raids
 - 123° apart

Collective Navigation

- Ants may use polarized sunlight to determine direction
- But army ants have single-facet eyes
 most insects have multiple facet eyes
- Theory: the two facets of individual ants in group function collectively as a multiple facet eye

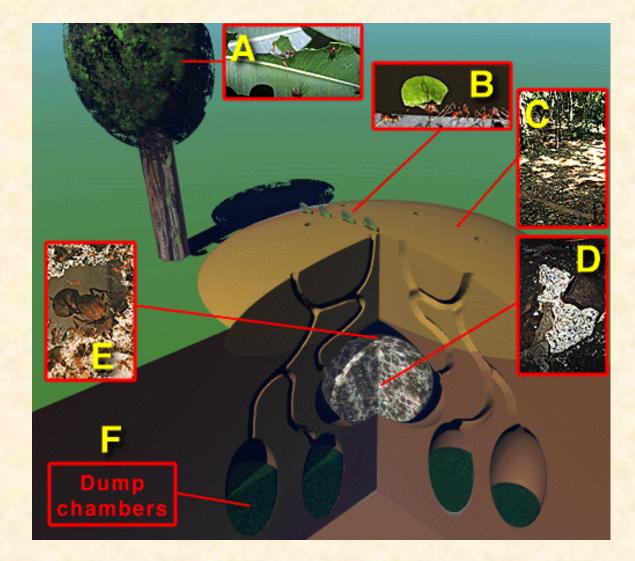
Weaver Ants

- Form chains of bodies to bridge gaps
- Others may cross these bridges
- Use chains to pull leaf edges together
- Connect edges with silk from larvae held by workers

Workers Bridging Gap

Adults Using Larvae as "Glue Guns"

Fungus Cultivator Ants


- "Cultivate" fungi underground
- Construct "gardens"
- Plant spores
- Weed out competing fungi
- Fertilize with compost from chewed leaves

2014/1/13

Fungus Cultivator Nest

Leaf Cutting

• Leaves being cut by workers

2014/1/13

(fig. from AntColony.org)

Transport of Cut Leaves

- Cut leaves are transported from source to nest along trails
- Some temporarily held in caches near the tree

(fig. from AntColony.org)

Transporting Cut Leaves to Nest

The Lurker's Guide to Leafcutters www.blueboard.com/leafcutters

(c) 2003 A. San Juan/ Li Hongmei

2014/1/13

(vid. from www.blueboard.com/leafcutters)

Protection by Minims

- Small workers (minims) ride piggy-back
- Protect large workers from parasitic fly trying to lay eggs on head

2014/1/13

A Large Nest

- Two mounds, 50 cm in diameter
- Part of a single nest
- Foraging trail visible

2014/1/13

Nest Construction

• Several tons of earth may be removed by large colony

2014/1/13

(vid. from www.blueboard.com/leafcutters)

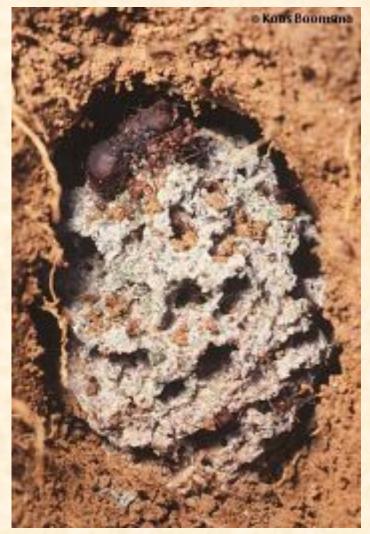
Leaf Brought to Fungus Garden

- Leaf being brought to fungus garden in nest
- Leaf mulch is fed to fungus

2014/1/13

(fig. from AntColony.org)

The Fungus Garden

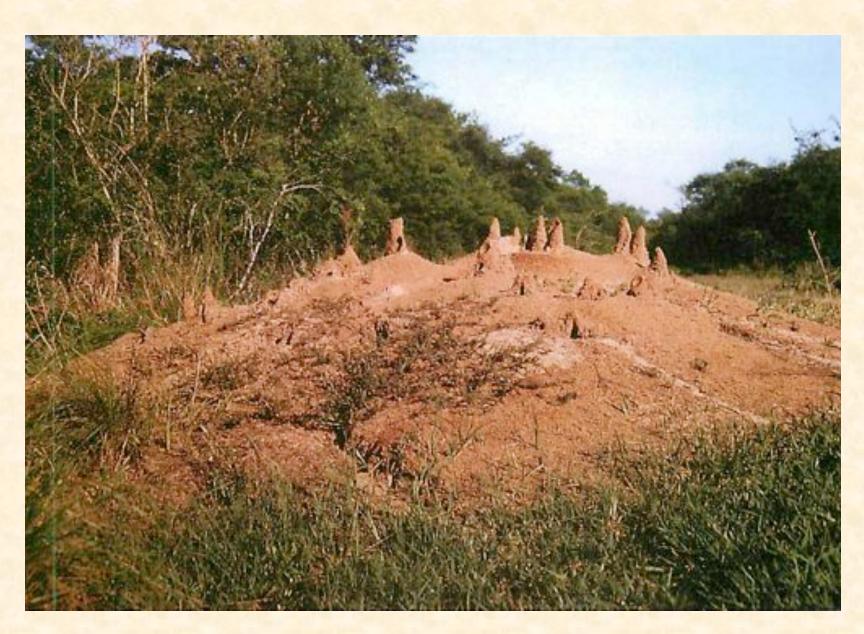


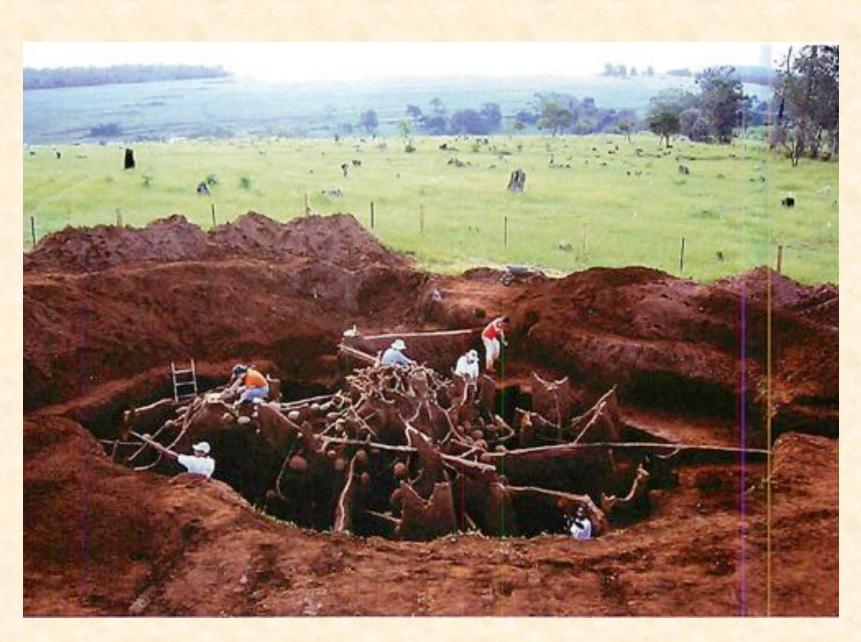
- Fungus grows special nutritional structures
- Ant larvae and adults can eat these

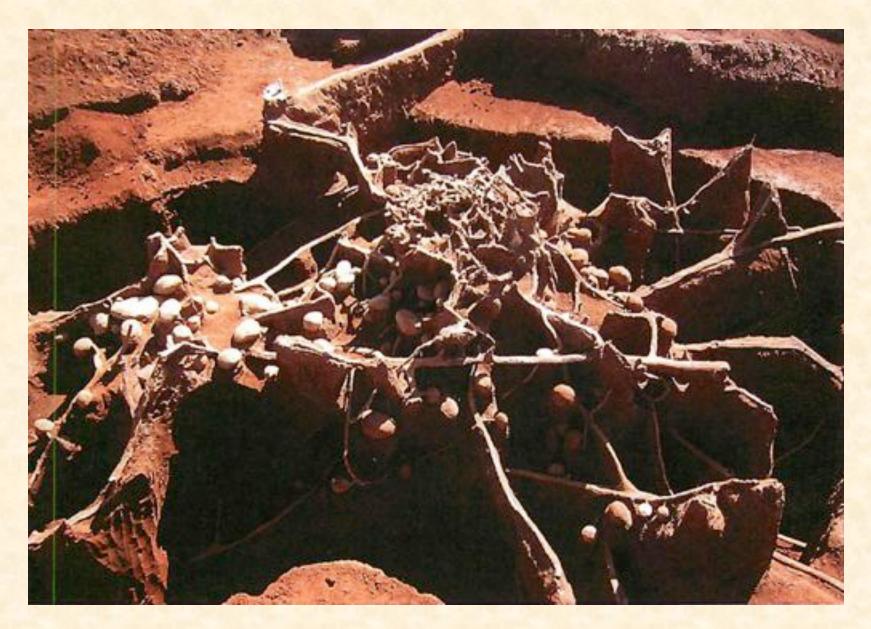
2014/1/13

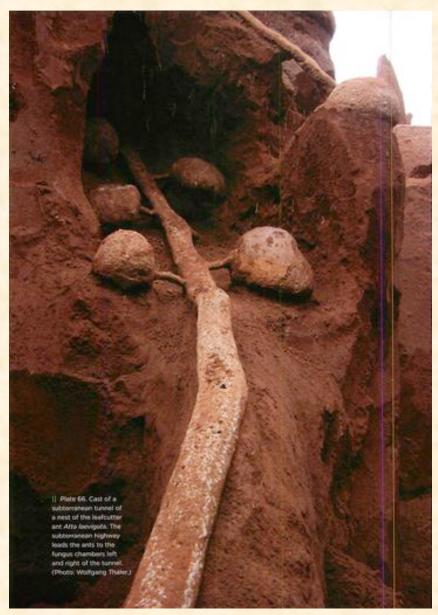
(fig. from AntColony.org)

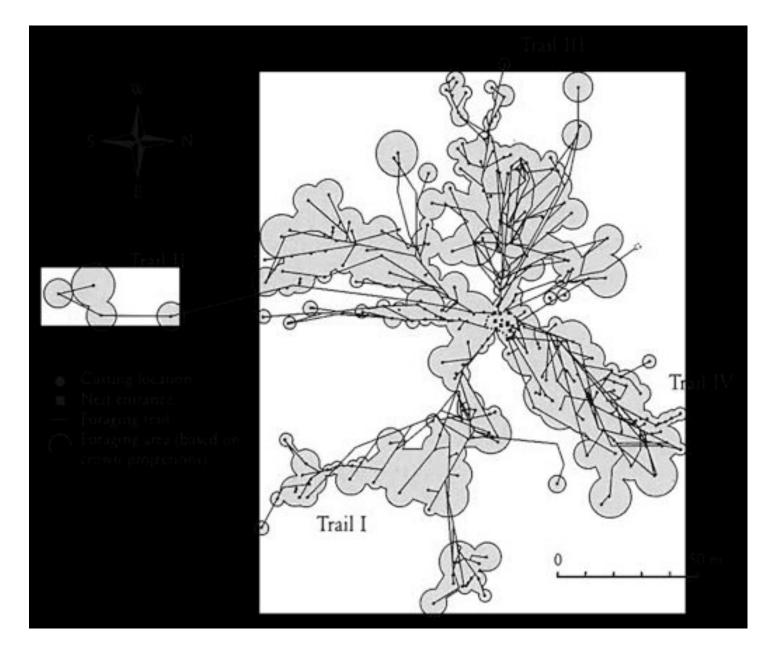
Queen in Fungus Garden

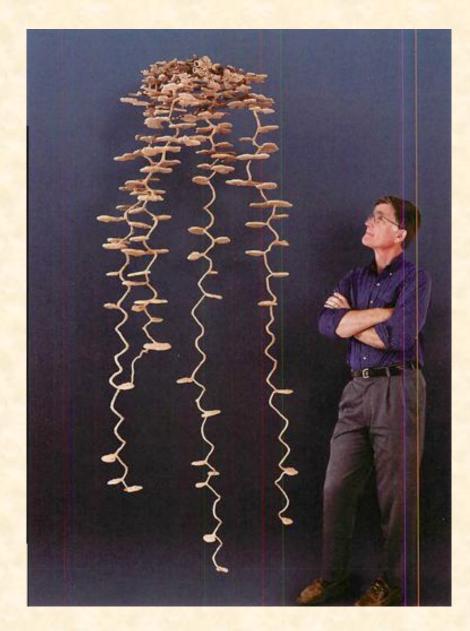



- Queen stays in fungus garden
- Lays eggs
- Hatched larvae eat fungus
- Larvae cared for by nurse workers


Dump Chambers


- Dump chamber in lab
- In nature, may be 2m underground
- Contain:
 - waste leaf material
 - dead fungus
 - dead ants





Maeterlinck on "White Ants" (Termites)

"What governs here? What is it that issues orders, foresees the future, elaborates plans, and preserves equilibrium, administers, and condemns to death?"

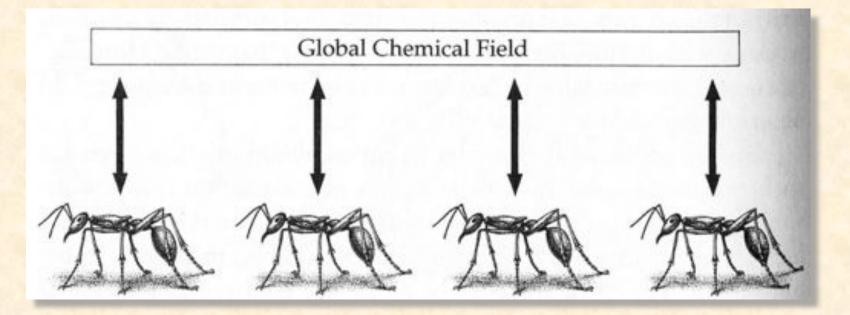
Emergent Aspects

- Colony size ~ 8×10⁶
 but no one is "in charge"!
- Colony lifetime ~ 15 years
- Colonies have a "life cycle"
 - older behave differently from younger
- But ants live no longer than one year
 Males live one day!

How Do They Do It?

- Communication in Red Harvester Ants
- Good source: Deborah Gordon: Ants at Work (1999)

How do they do it?

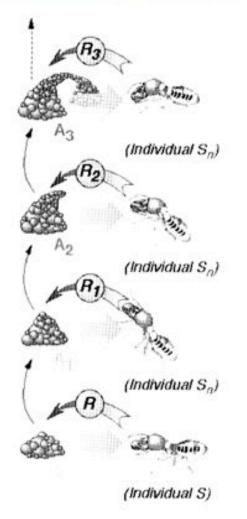

- Semiochemically: deposit pheromones
 10–20 signs, many signal tasks
 - ants detect pheromone gradients and frequency of encounter
- Follow trails imperfectly
 - \Rightarrow exploration
- Feedback reinforces successful trails
 ⇒ biased randomness

Demonstration: Simulation of Ant Foraging

Run NetLogo Ant-Foraging

2014/1/13

Macro-Micro Feedback

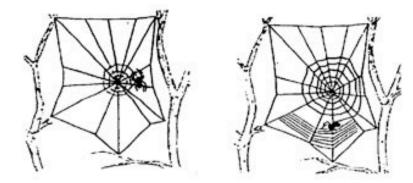


- Global pattern emergent from total system
- Individuals respond to local field
- Also called <u>circular causality</u>

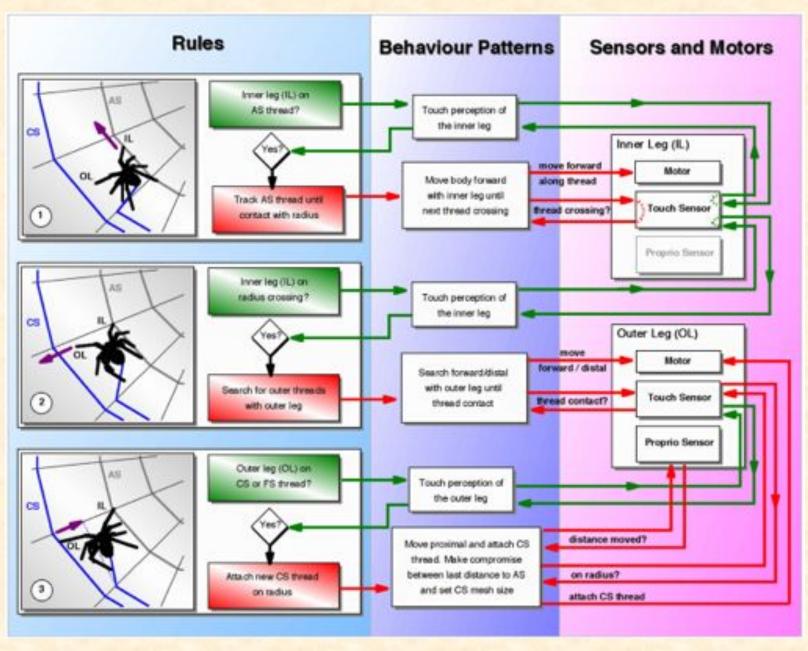
Stigmergy

- From $\sigma \tau_1 \gamma_1 \mu \circ \varsigma = \text{pricking} + \tilde{\epsilon} \rho \gamma \circ \nu = \text{work}$
- The project (work) in the environment is an instigation
- Agent interactions may be:
 - direct
 - indirect (time-delayed through environment)
- Mediates individual and colony levels

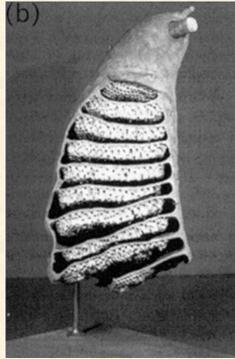
Stigmergy in termite nest building



Stigmergy in spider webs


Stage 1 Stage 2

Stage 3



Fig, from EVALife

Advantages of Stigmergy

- Permits simpler agents
- Decreases direct communication between agents
- Incremental improvement
- Flexible, since when environment changes, agents respond appropriately

Emergence

- The appearance of *macroscopic* patterns, properties, or behaviors
- that are not simply the "sum" of the *microscopic* properties or behaviors of the components
 - non-linear but not chaotic
- Macroscopic order often described by fewer & different variables than microscopic order
 - e.g. ant trails vs. individual ants
 - order parameters

D. Self-Organization

- Order may be imposed from outside a system
 - to understand, look at the external source of organization
- In *self-organization*, the order emerges from the system itself
 - must look at interactions within system
- In biological systems, the emergent order often has some adaptive purpose
 – e.g., efficient operation of ant colony

Why Self-Organization is Important for CS

- Fundamental to theory & implementation of massively parallel, distributed computation systems
- How can millions of independent computational (or robotic) agents cooperate to process information & achieve goals, in a way that is:
 - efficient
 - self-optimizing
 - adaptive
 - robust in the face of damage or attack

Additional Bibliography

- 1. Solé, Ricard, & Goodwin, Brian. Signs of Life: How Complexity Pervades Biology. Basic Books, 2000.
- Bonabeau, Eric, Dorigo, Marco, & Theraulaz, Guy. Swarm Intelligence: From Natural to Artificial Systems. Oxford, 1999.
- 3. Gordon, Deborah. Ants at Work: How an Insect Society Is Organized. Free Press, 1999.
- Hölldobler, B., & Wilson, E. O. *The Superorganism* (2009)
- 5. Johnson, Steven. *Emergence: The Connected Lives of Ants, Brains, Cities, and Software.* Scribner, 2001. A popular book, but with many good insights.

