Fairy Circles

Fairy Circles

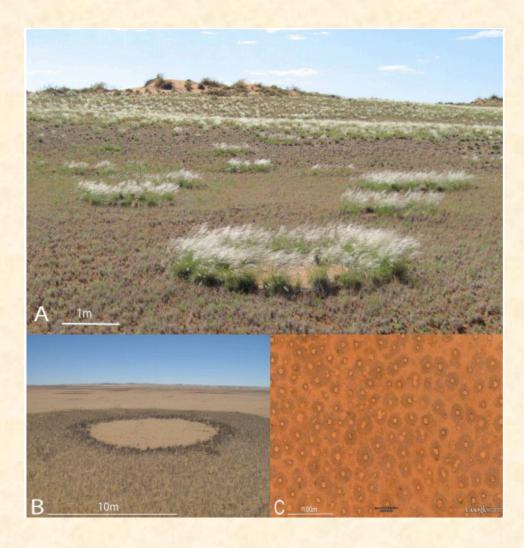
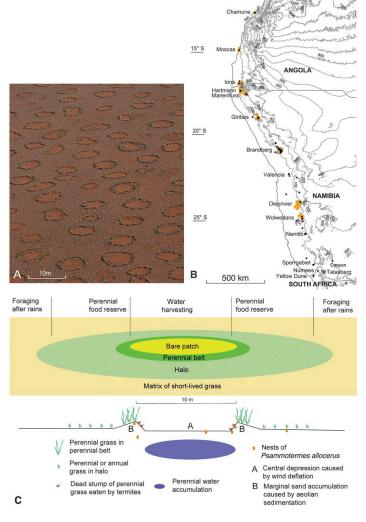


Fig. 1 (A) Spatial pattern of FCs. (B) Geographical distribution of FCs (black dots) and hotspots of FC occurrences at wider landscape scale (yellow clusters).



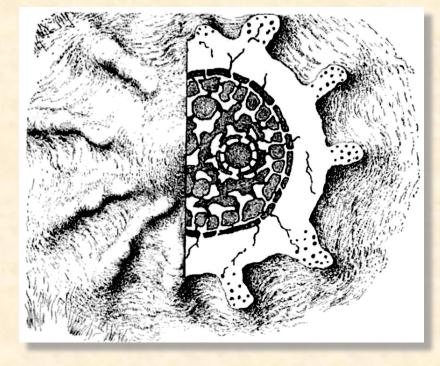
N Juergens Science 2013;339:1618-1621

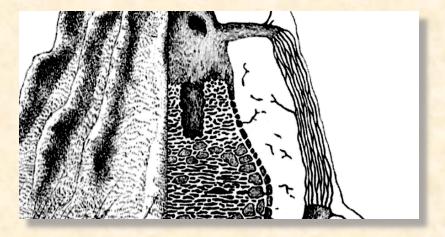
Nest Building

Nest Building by Termites (Natural and Artificial)

Mound Building by *Macrotermes* Termites

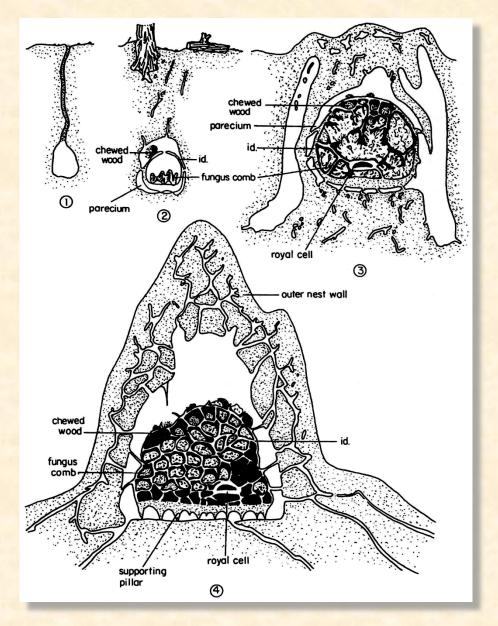
Structure of Mound





2014/4/21

figs. from Lüscher (1961)



Construction of Mound

(1) First chamber made by royal couple (2, 3) Intermediate stages of development (4) Fully developed nest

2014/4/21

Fig. from Wilson (1971)

Termite Nests

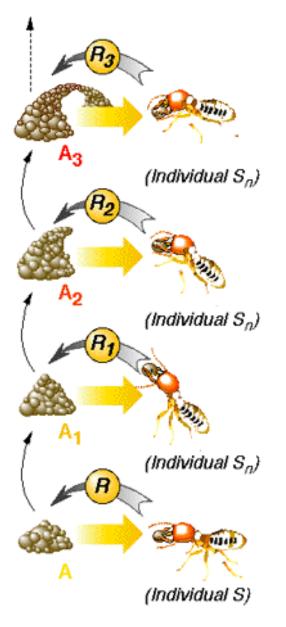


2014/4/21

Alternatives to Self-Organization

- Leader
 - directs building activity of group
- Blueprint (image of completion)
 - compact representation of spatial/temporal relationships of parts
- Recipe (program)
 - sequential instructions specify spatial/temporal actions of individual
- Template
 - full-sized guide or mold that specifies final pattern

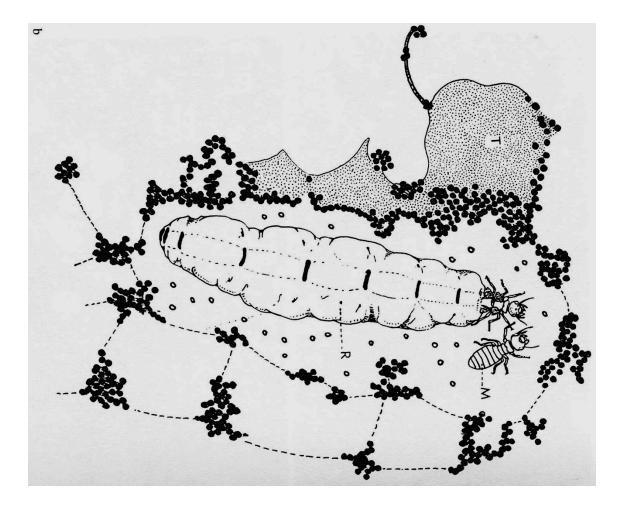
2014/4/21



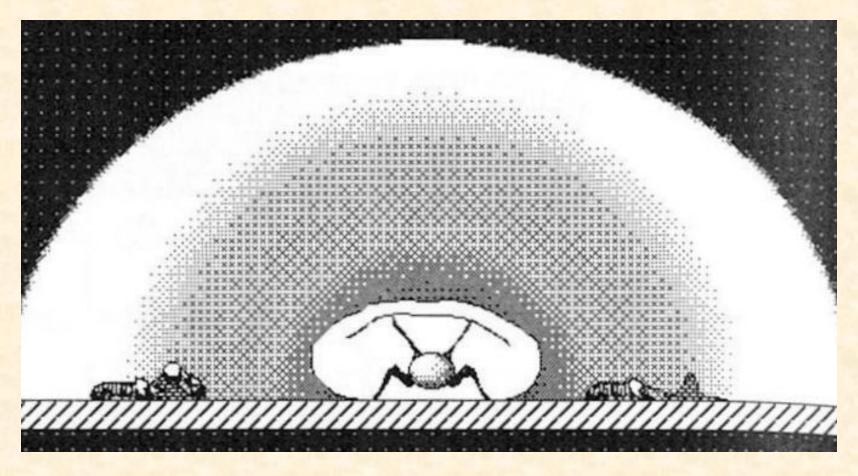
Basic Mechanism of Construction (Stigmergy)

- Worker picks up soil granule
- Mixes saliva to make cement
- Cement contains pheromone
 - Other workers attracted by pheromone to bring more granules
 - There are also trail and queen pheromones

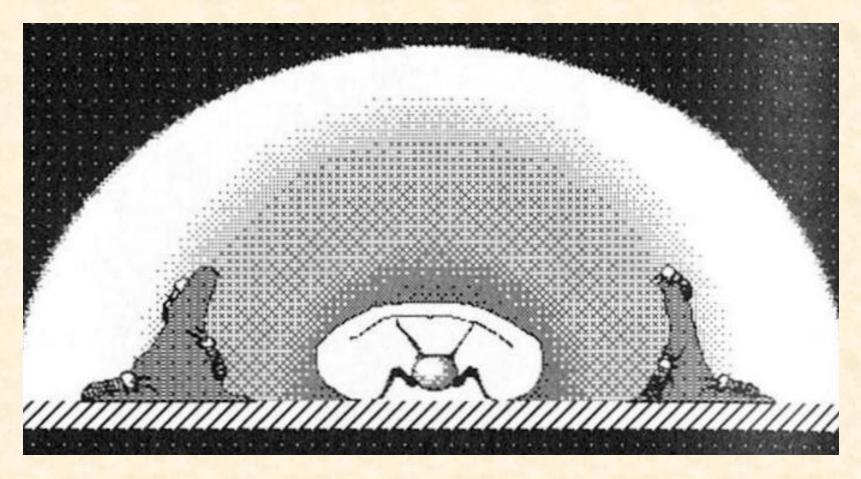
Construction of Royal Chamber



Construction of Arch (1)



Construction of Arch (2)



Construction of Arch (3)

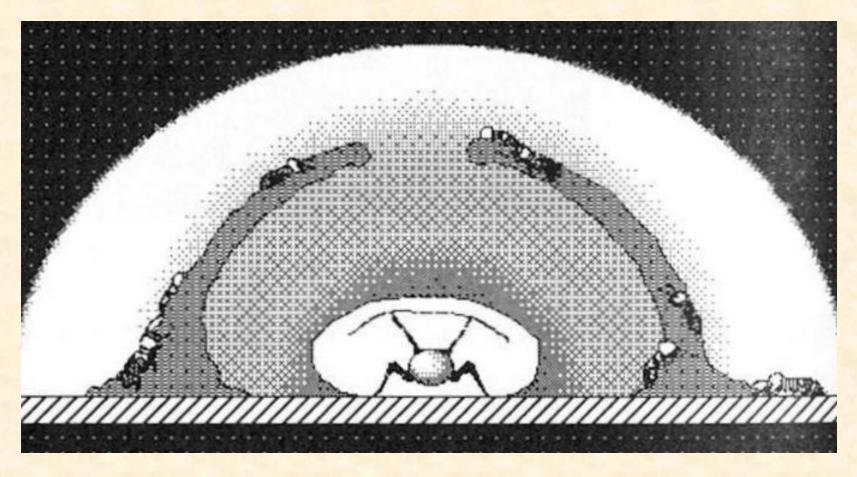


Fig. from Bonabeau, Dorigo & Theraulaz

Basic Principles

- Continuous (quantitative) stigmergy
- Positive feedback:
 - via pheromone deposition
- Negative feedback:
 - depletion of soil granules & competition between pillars
 - pheromone decay

Deneubourg Model

- *H*(*r*, *t*) = concentration of cement
 pheromone in air at location *r* & time *t*
- *P*(*r*, *t*) = amount of deposited cement with still active pheromone at *r*, *t*
- C(r, t) = density of laden termites at r, t
- $\Phi = \text{constant flow of laden termites into}$ system

Equation for *P* (Deposited Cement with Pheromone)

 $\partial_t P$ (rate of change of active cement) = $k_1 C$ (rate of cement deposition by termites) $-k_2 P$ (rate of pheromone loss to air)

$$\partial_t P = k_1 C - k_2 P$$

Equation for *H* (Concentration of Pheromone)

 $\partial_t H$ (rate of change of concentration) = $k_2 P$ (pheromone from deposited material) $- k_4 H$ (pheromone decay) $+ D_H \nabla^2 H$ (pheromone diffusion)

 $\partial_t H = k_2 P - k_4 H + D_H \nabla^2 H$

Equation for *C* (Density of Laden Termites)

- $\partial_t C$ (rate of change of concentration) = Φ (flux of laden termites)
- $-k_1 C$ (unloading of termites)
- + $D_C \nabla^2 C$ (random walk)
- $-\gamma \nabla \cdot (C \nabla H)$ (chemotaxis: response to pheromone gradient)

$$\partial_t C = \Phi - k_1 C + D_C \nabla^2 C - \gamma \nabla \cdot (C \nabla H)$$

Explanation of Divergence y $C''V'_{v}\Delta x$ $C'V'_{x}\Delta y$ $CV_x\Delta y$ $CV_{v}\Delta x$ X

- velocity field = V(x,y) = iV_x(x,y) + jV_y(x,y)
 C(x,y) = density
- outflow rate = $\Delta_x(CV_x) \Delta y + \Delta_y(CV_y) \Delta x$
- outflow rate / unit area

 $= \frac{\Delta_x (CV_x)}{\Delta x} + \frac{\Delta_y (CV_y)}{\Delta y}$ $\rightarrow \frac{\partial (CV_x)}{\partial x} + \frac{\partial (CV_y)}{\partial y} = \nabla \cdot C\mathbf{V}$

Explanation of Chemotaxis Term

• The termite flow *into* a region is the *negative* divergence of the flux through it

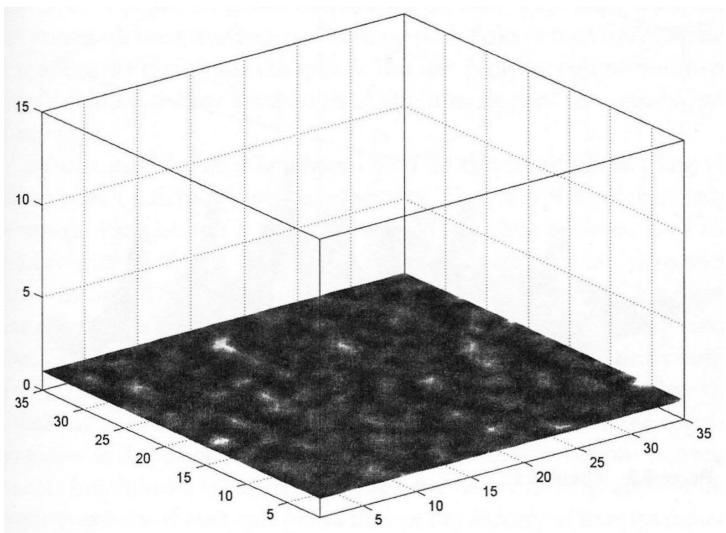
 $-\nabla \cdot \mathbf{J} = -\left(\frac{\partial J_x}{\partial x} + \frac{\partial J_y}{\partial y}\right)$

- The flux velocity is proportional to the pheromone gradient
 - $\mathbf{J} \propto \nabla H$
- The flux density is proportional to the number of moving termites

 $\mathbf{J} \propto C$

• Hence, $-\gamma \nabla \cdot \mathbf{J} = -\gamma \nabla \cdot (C \nabla H)$

Simulation (T = 0)



Simulation (T = 100)

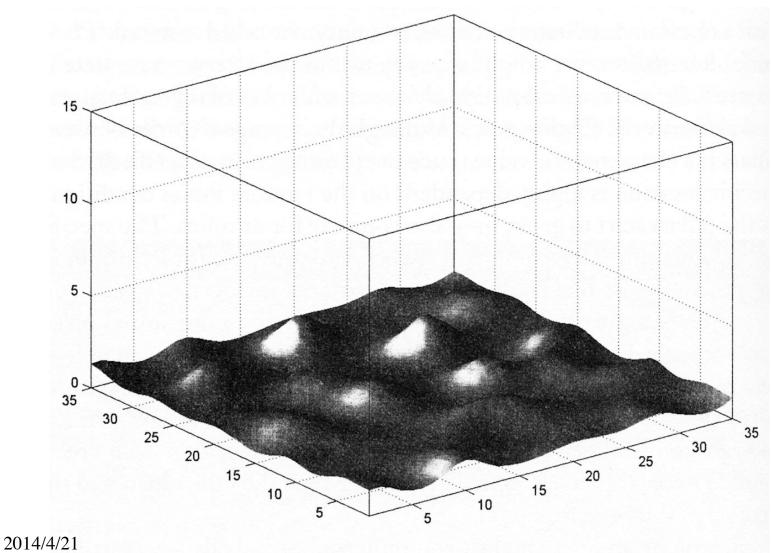


fig. from Solé & Goodwin

Simulation (T = 1000)

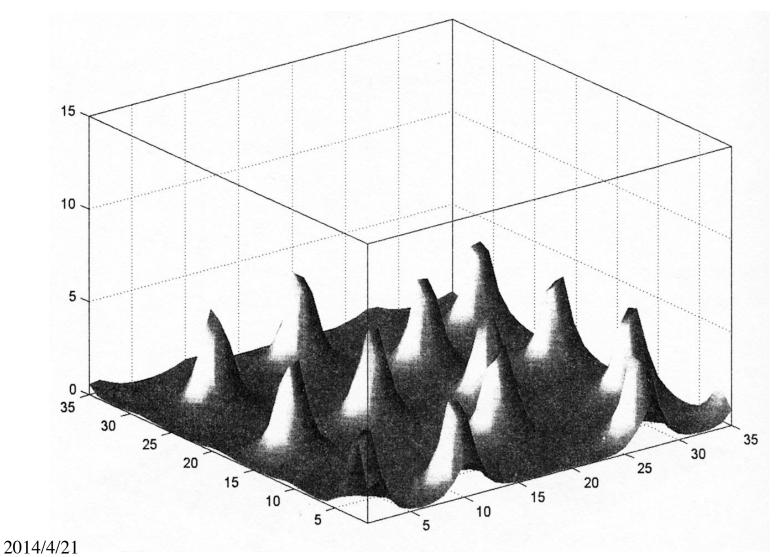


fig. from Solé & Goodwin

Conditions for Self-Organized Pillars

- Will not produce regularly spaced pillars if:
 density of termites is too low
 rate of deposition is too low
- A homogeneous stable state results

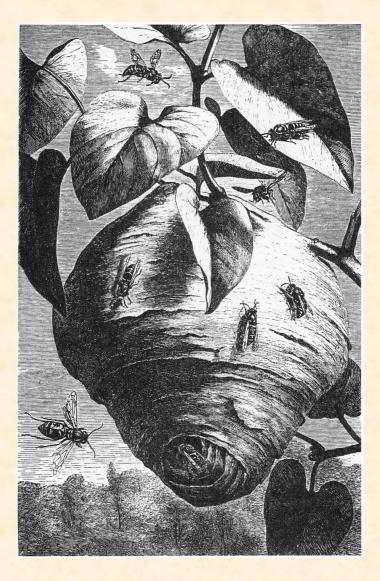
$$C_0 = \frac{\Phi}{k_1}, \qquad H_0 = \frac{\Phi}{k_4}, \qquad P_0 = \frac{\Phi}{k_2}$$

NetLogo Simulation of Deneubourg Model

Run Pillars3D.nlogo

Interaction of Three Pheromones

- Queen pheromone governs size and shape of queen chamber (template)
- Cement pheromone governs construction and spacing of pillars & arches (stigmergy)
- Trail pheromone:
 - attracts workers to construction sites (stigmergy)
 - encourages soil pickup (stigmergy)
 - governs sizes of galleries (template)



Wasp Nest Building and Discrete Stigmergy

2014/4/21

Fig. from Solé & Goodwin

Structure of Some Wasp Nests

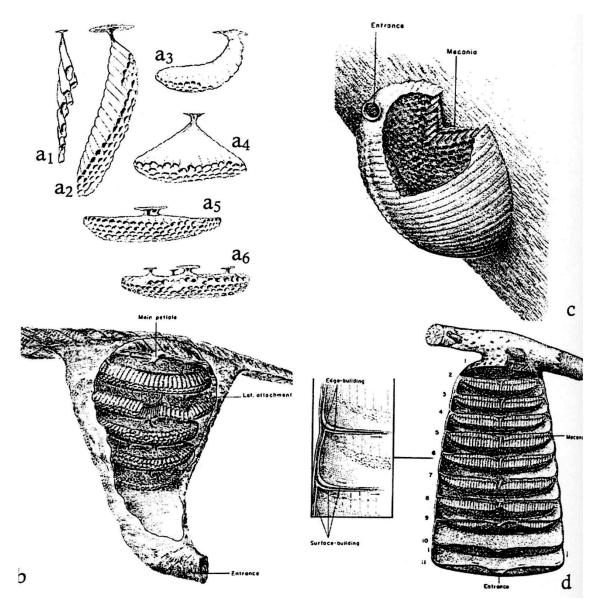
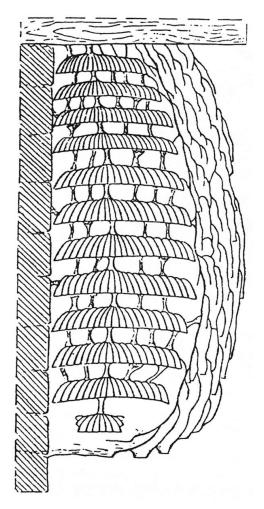


Fig. from Self-Org. Biol. Sys.

Adaptive Function of Nests



Figs. from Self-Org. Biol. Sys,

How Do They Do It?

Lattice Swarms

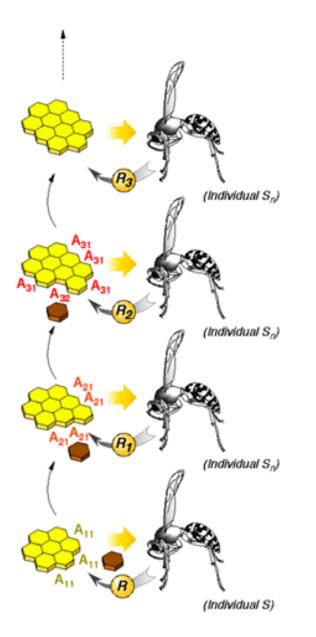
(developed by Theraulaz & Bonabeau)

Discrete vs. Continuous Stigmergy

- Recall: *stigmergy* is the coordination of activities through the environment
- Continuous or quantitative stigmergy

 quantitatively different stimuli trigger
 quantitatively different behaviors
- Discrete or qualitative stigmergy

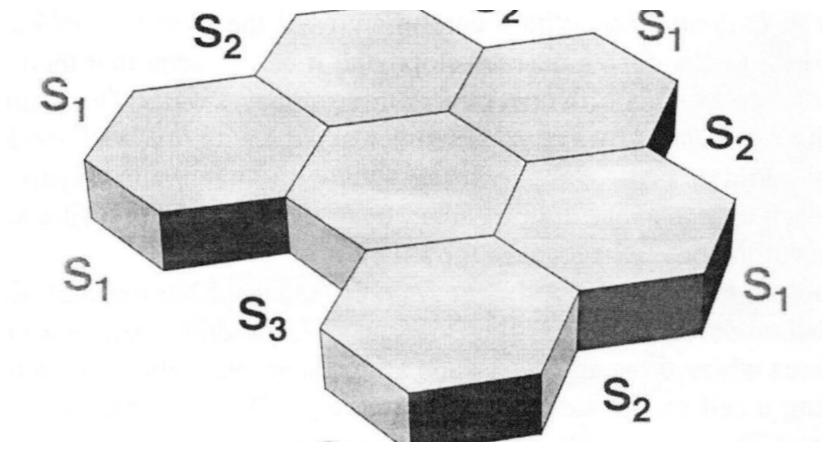
 stimuli are classified into distinct classes, which trigger distinct behaviors



Discrete Stigmergy in Comb Construction

- Initially all sites are equivalent
- After addition of cell, qualitatively different sites created

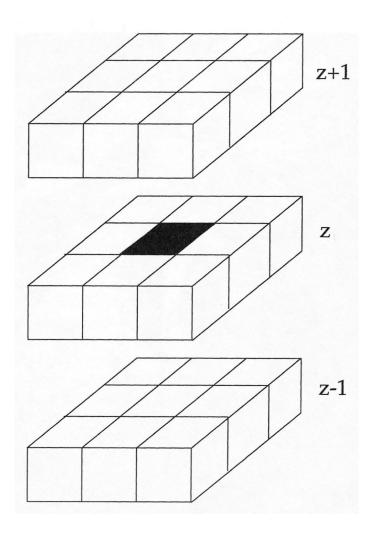
Numbers and Kinds of Building Sites



Lattice Swarm Model

- Random movement by wasps in a 3D lattice
 - cubic or hexagonal
- Wasps obey a 3D CA-like rule set
- Depending on configuration, wasp deposits one of several types of "bricks"
- Once deposited, it cannot be removed
- May be deterministic or probabilistic
- Start with a single brick

Cubic Neighborhood



- Deposited brick depends on states of 26 surrounding cells
- Configuration of surrounding cells may be represented by matrices:

$$\begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 1 & \bullet & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Hexagonal Neighborhood

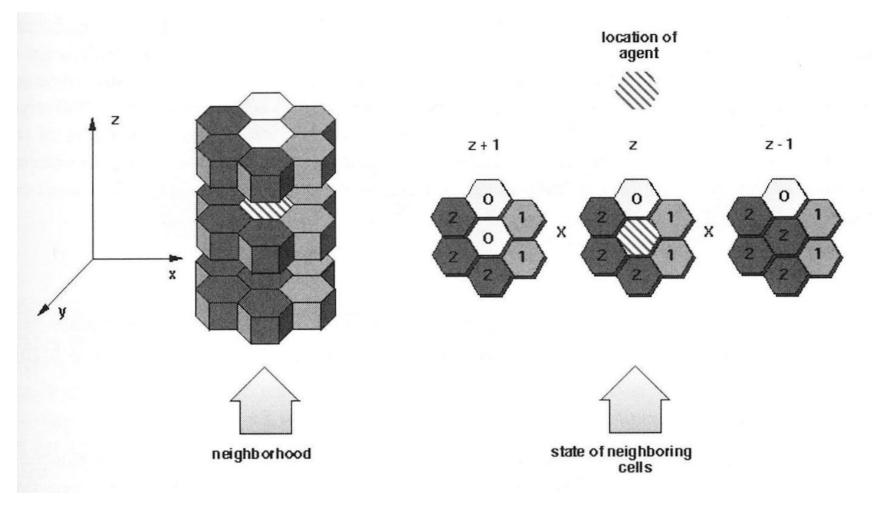
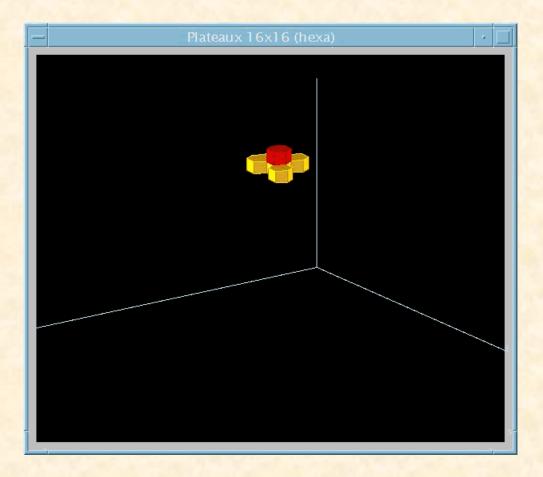


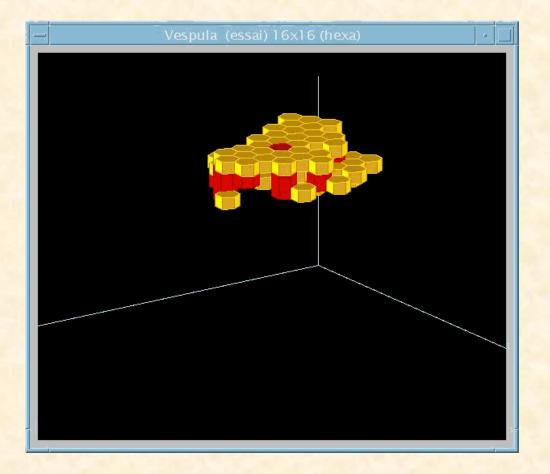
Fig. from Bonabeau, Dorigo & Theraulaz

Example Construction



2014/4/21

Another Example



A Simple Pair of Rules

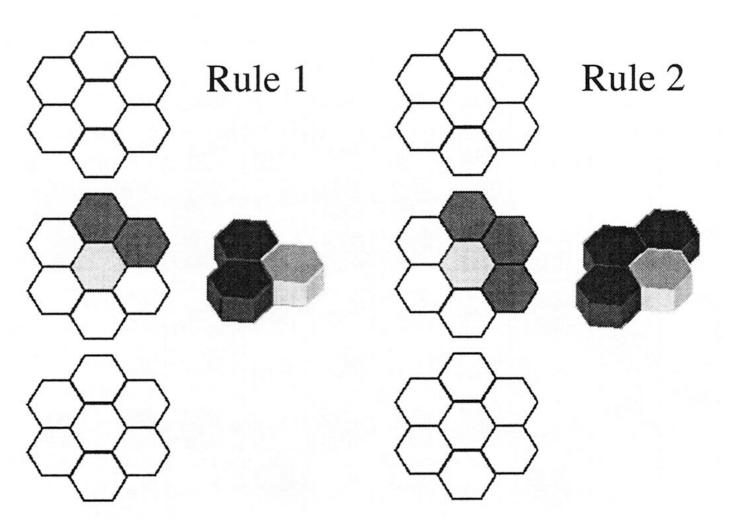
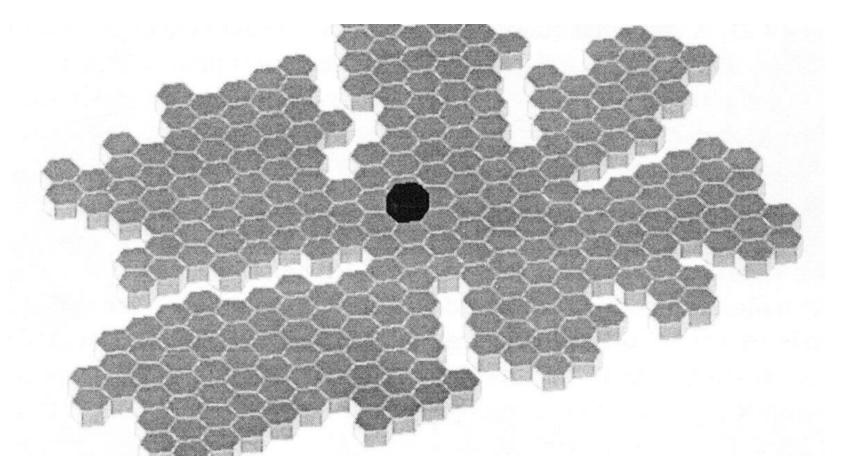
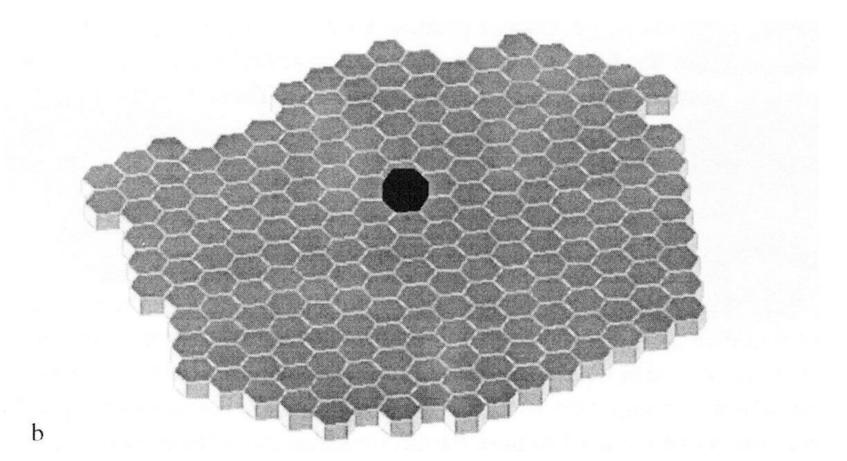


Fig. from Self-Org. in Biol. Sys.

Result from Deterministic Rules



Result from Probabilistic Rules



Example Rules for a More Complex Architecture

The following stimulus configurations cause the agent to deposit a type-1 brick:

(1.1)
$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

В

(2.1)		$\begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$	0 0 • 0 0 0	$] \times \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} $	$\begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$
(2.2)	$\begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$	$ \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} $	2 0 • 0 0 0	$] \times \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} $	$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
(2.3)	$\begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \end{bmatrix}$		0 0 • 0 2 0	$] \times \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} $	$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
(2.4)) 0 × 2	0 0 • 0 0 0	$] \times \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} $	$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
(2.5)) 0 × 2	0 0 • 0 2 0	$\left[\begin{array}{c} 0\\ 0\\ 0\\ 0 \end{array} \right]$	$\begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$
(2.6)			2 0 • 0 0 0		$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
(2.7)) 0 × 0			$\begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$
(2.8)) 0 × 0	0 0 • 0 2 2		$\begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$
(2.9)	0 0 0 0 0 0	$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \times \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	2 0 • 0 0 0	×0 0 0 0	0 0 0 0

$(2.10) \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & \bullet & 0 \\ 1 & 2 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
$(2.11)^{*} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 2 & 2 & 0 \\ 2 & 0 & 0 \\ 2 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
$(2.12)^{*}\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 2 & 2 \\ 0 & \cdot & 2 \\ 0 & 0 & 2 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
$ (2.13) \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 2 & 2 & 2 \\ 2 & \cdot & 2 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} $
$ (2.14) \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 2 & 2 & 0 \\ 2 & \cdot & 0 \\ 2 & 2 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} $
$ (2.15) \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 2 & 2 \\ 2 & 2 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} $
$ (2.16) \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 2 & 2 \\ 0 & \cdot & 2 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} $
$ (2.17) \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & \cdot & 2 \\ 0 & 2 & 2 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} $
$(2.18) * \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \times \begin{bmatrix} 2 & 0 & 0 \\ 2 & 0 \\ 2 & 2 \end{bmatrix} \times \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

Second Group of Rules

For these configurations, deposit a type-2 brick

Result

- 20×20×20 lattice
- 10 wasps
- After 20 000 simulation steps
- Axis and plateaus
- Resembles nest of *Parachartergus*

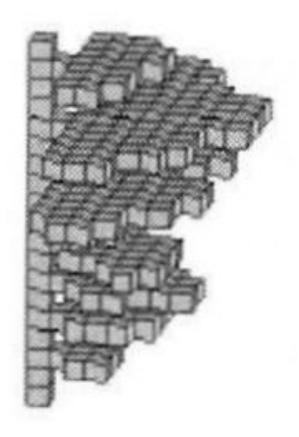
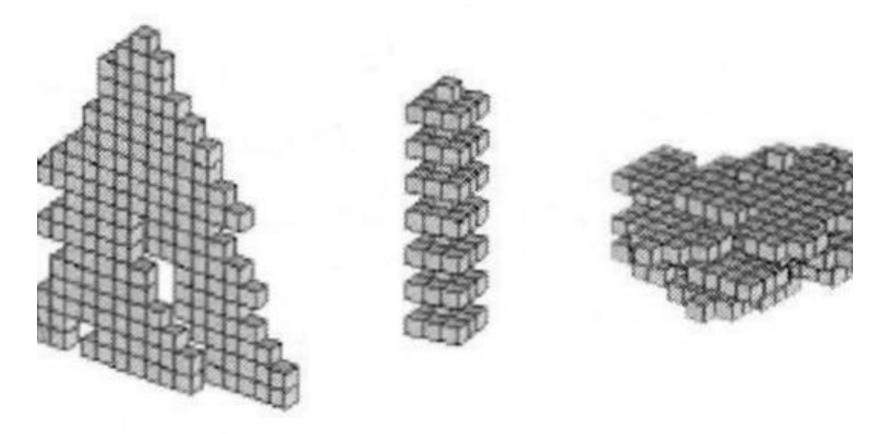
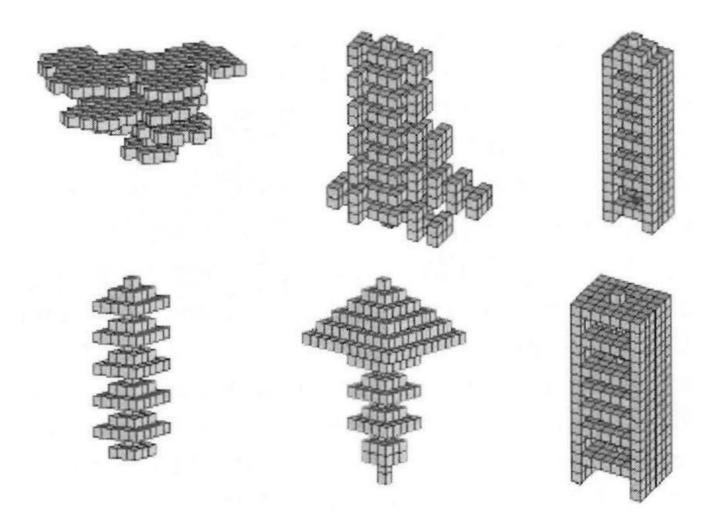


Fig. from Bonabeau & al., Swarm Intell.

Architectures Generated from Other Rule Sets



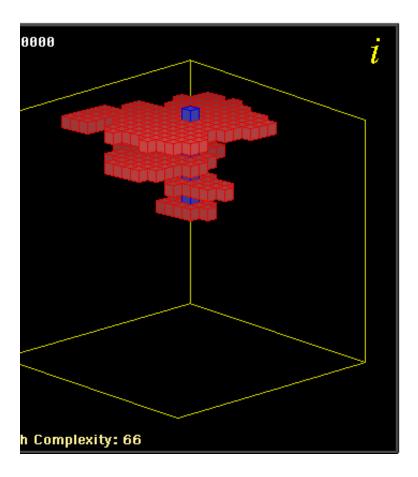
More Cubic Examples

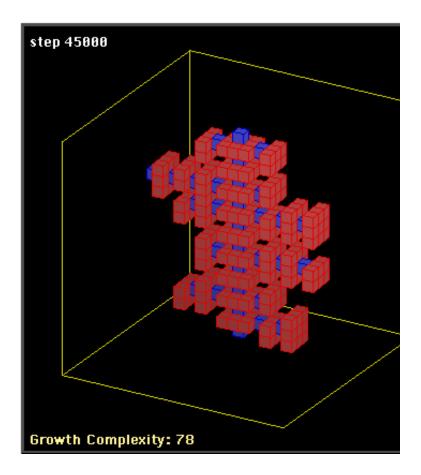


2014/4/21

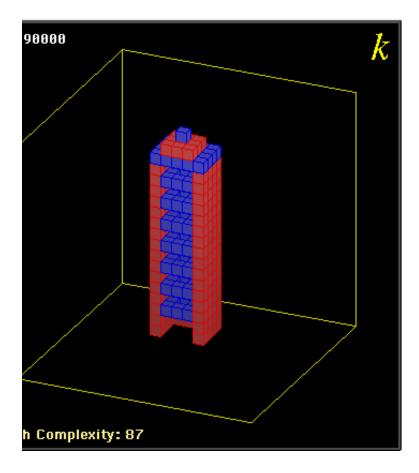
Fig. from Bonabeau & al., Swarm Intell.

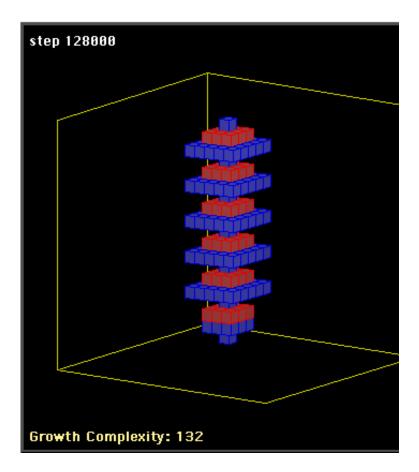
Cubic Examples (1)



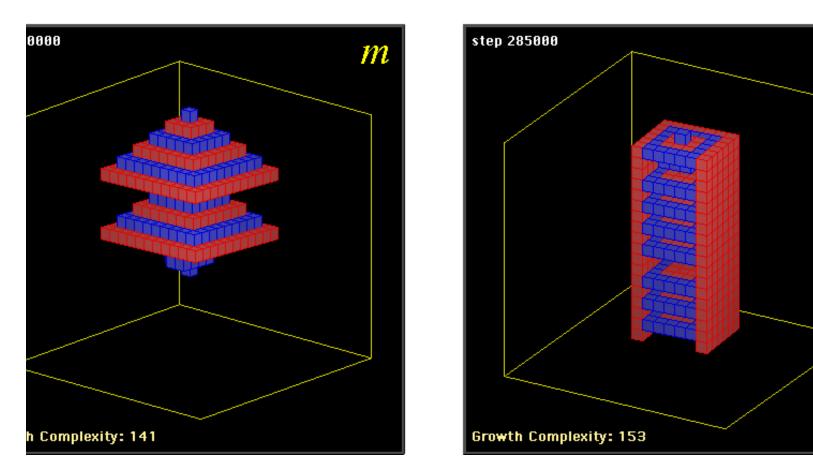


Cubic Examples (2)

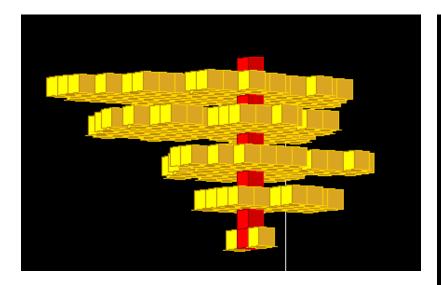


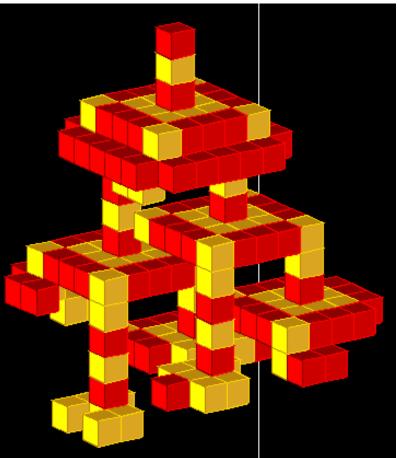


Cubic Examples (3)

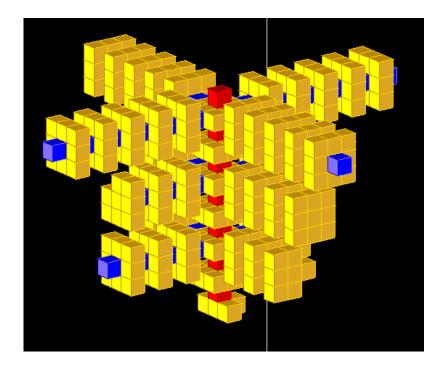


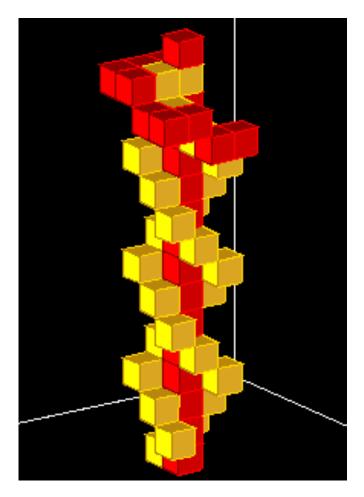
Cubic Examples (4)

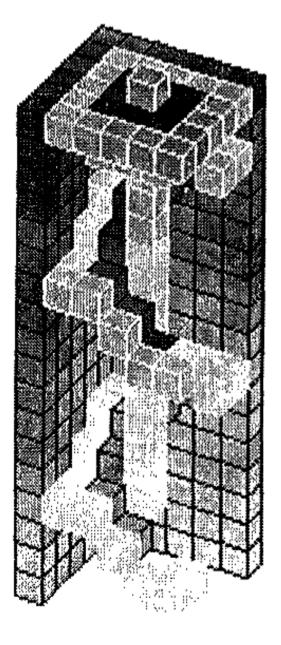




Cubic Examples (5)



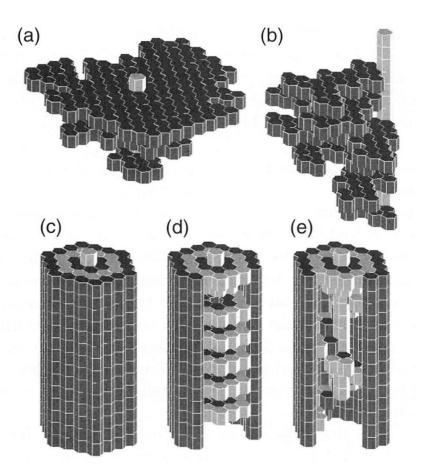




An Interesting Example

- Includes
 - central axis
 - external envelope
 - long-range helical ramp
- Similar to *Apicotermes* termite nest

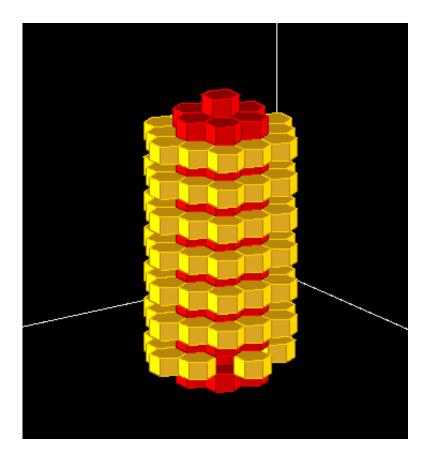
Similar Results with Hexagonal Lattice



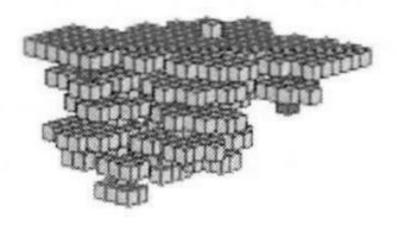
- $20 \times 20 \times 20$ lattice
- 10 wasps
- All resemble nests of wasp species
- (d) is (c) with envelope cut away
- (e) has envelope cut away

Fig. from Bonabeau & al., Swarm Intell.

More Hexagonal Examples



Effects of Randomness (Coordinated Algorithm)



- Specifically different (i.e., different in details)
- Generically the same (qualitatively identical)
- Sometimes results are <u>fully constrained</u>

2014/4/21

Fig. from Bonabeau & al., Swarm Intell.

Effects of Randomness (Non-coordinated Algorithm)

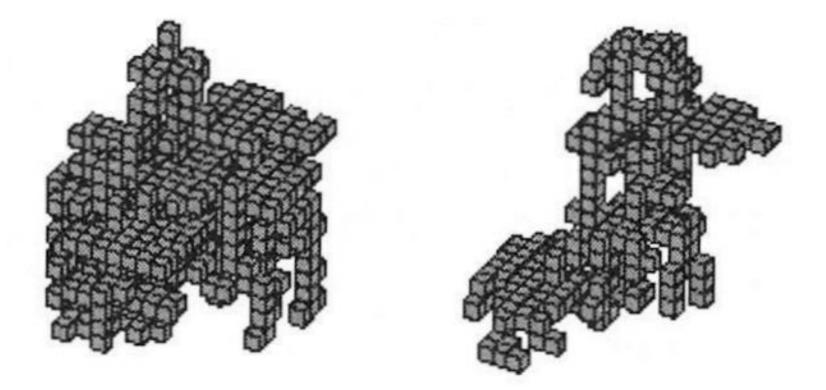


Fig. from Bonabeau & al., Swarm Intell.

Non-coordinated Algorithms

- Stimulating configurations are not ordered in time and space
- Many of them overlap
- Architecture grows without any coherence
- May be convergent, but are still unstructured

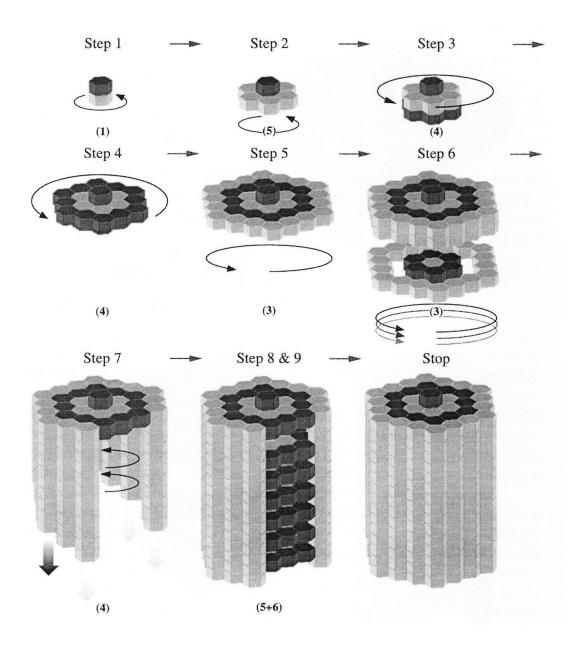
Coordinated Algorithm

Non-conflicting rules

- can't prescribe two different actions for the same configuration
- Stimulating configurations for different building stages cannot overlap
- At each stage, "handshakes" and "interlocks" are required to prevent conflicts in parallel assembly

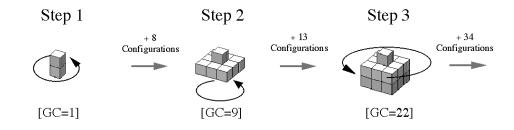
More Formally...

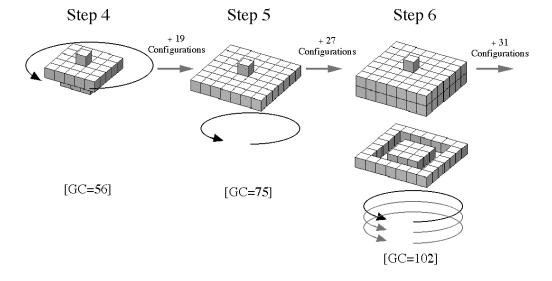
- Let $C = \{c_1, c_2, ..., c_n\}$ be the set of local stimulating configurations
- Let $(S_1, S_2, ..., S_m)$ be a sequence of assembly stages
- These stages partition C into mutually disjoint subsets $C(S_p)$
- Completion of S_p signaled by appearance of a configuration in $C(S_{p+1})$



Example

Fig. from Camazine &al., Self-Org. Biol. Sys.





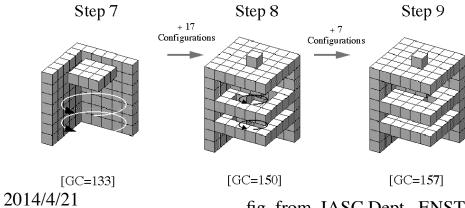
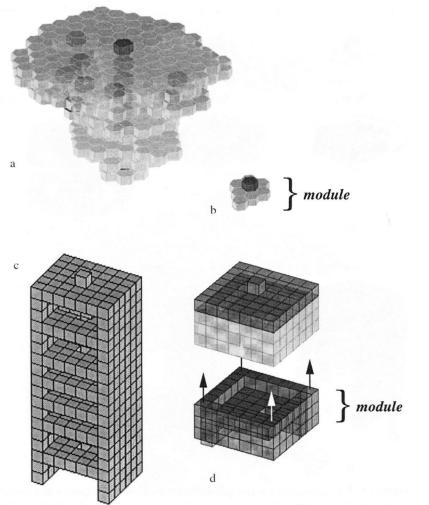


fig. from IASC Dept., ENST de Bretagne.

Modular Structure



- Recurrent states induce cycles in group behavior
- These cycles induce modular structure
- Each module is built during a cycle
- Modules are qualitatively similar

Possible Termination Mechanisms

- Qualitative
 - the assembly process leads to a configuration that is not stimulating
- Quantitative
 - a separate rule inhibiting building when nest a certain size relative to population
 - "empty cells rule": make new cells only when no empties available
 - growing nest may inhibit positive feedback mechanisms

Observations

- Random algorithms tend to lead to uninteresting structures

 random or space-filling shapes
- Similar structured architectures tend to be generated by similar coordinated algorithms
- Algorithms that generate structured architectures seem to be confined to a small region of rule-space

Analysis

- Define matrix M:
 - 12 columns for 12 sample structured architectures
 - 211 rows for stimulating configurations
 - $M_{ij} = 1$ if architecture *j* requires configuration *i*

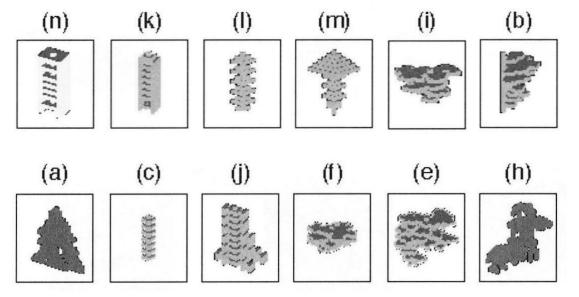
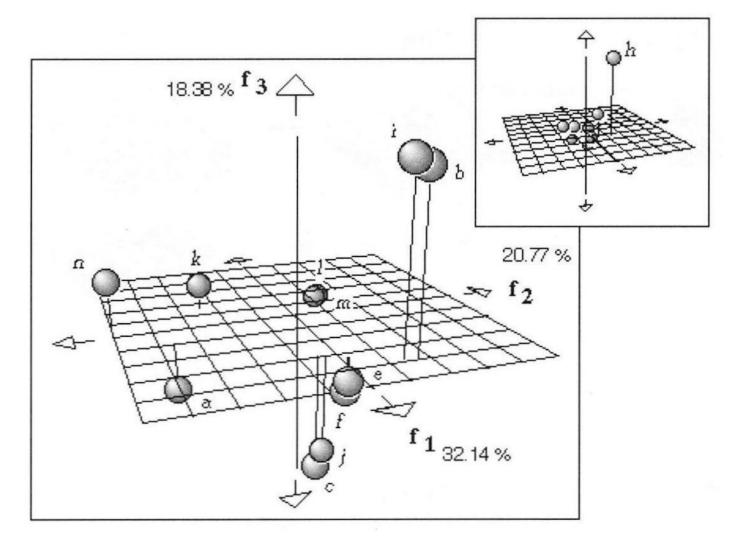


Fig. from Bonabeau & al., Swarm Intell.

Factorial Correspondence Analysis



Conclusions

- Simple rules that exploit discrete (qualitative) stigmergy can be used by autonomous agents to assemble complex, 3D structures
- The rules must be non-conflicting and coordinated according to stage of assembly
- The rules corresponding to interesting structures occupy a comparatively small region in rule-space

The Termes Project

Wyss Institute for Biologically Inspired Engineering Harvard

Introduction

Self-Organizing Systems Research School of Engineering and Applied Sciences Harvard University

TERMES: Simple Climbing Robots Building 3D Structures

Algorithmic Assembly

Self-Organizing Systems Research School of Engineering and Applied Sciences Harvard University

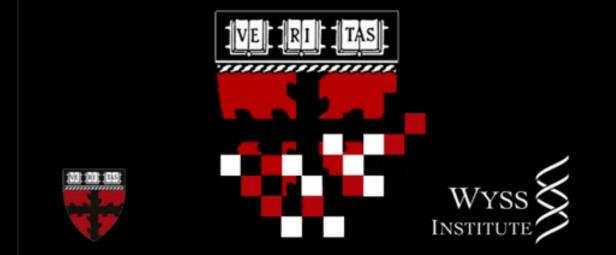
Distributed Multi-Robot Algorithms for the TERMES 3D Collective Construction System

Justin Werfel, Kirstin Petersen, Radhika Nagpal

IROS 2011 Workshop on Reconfigurable Modular Robotics

The Robot

Self-Organizing Systems Research Group



Harvard University School of Engineering and Applied Sciences Wyss Institute for Biologically Inspired Engineering

Final Video (2014)

Additional Bibliography

- Camazine, S., Deneubourg, J.-L., Franks, N. R., Sneyd, J., Theraulaz, G.,& Bonabeau, E. Self-Organization in Biological Systems. Princeton, 2001, chs. 11, 13, 18, 19.
- 2. Bonabeau, E., Dorigo, M., & Theraulaz, G. Swarm Intelligence: From Natural to Artificial Systems. Oxford, 1999, chs. 2, 6.
- 3. Solé, R., & Goodwin, B. Signs of Life: How Complexity Pervades Biology. Basic Books, 2000, ch. 6.
- 4. Resnick, M. Turtles, Termites, and Traffic Jams: Explorations in Massively Parallel Microworlds. MIT Press, 1994, pp. 59-68, 75-81.
- Kennedy, J., & Eberhart, R. "Particle Swarm Optimization," *Proc. IEEE Int'l. Conf. Neural Networks* (Perth, Australia), 1995. <u>http://www.engr.iupui.edu/~shi/pso.html</u>.

