COSC 420/427/527

Biologically-Inspired Computation

Bruce MacLennan

Contact Information

 Instructor: Bruce MacLennan maclennan@utk.edu

Min Kao 550

Office Hours: 1:30–2:30 MWF (or make appt.)

• Teaching Assistant: Zahra Mahoor (zmahoor@utk.edu)

1507

COSC 420 vs. COSC 527

- COSC 420: Undergraduate credit (but graduate students can count one 400-level course)
- COSC 427: Honors = COSC 527
- COSC 527: Graduate credit, additional work
 - Approved for the Interdisciplinary Graduate Minor in Computational Science
 - You cannot take 527 if you have already taken 420

1/7

-			

Grading

- You will conduct a series of computer experiments, which you will write up
- Some of these will be run on off-the-shelf simulators
- Others will be run on simulators that you will program
- There may be some written homework
- Graduate students will do additional experiments and mathematical exercises
- Occasional pop quizzes
- · No other exams

2015/1/

Prerequisites

- COSC 420/427/527: None per se, but you will be required to write some simulations (in Java, C++, NetLogo, or whatever)
- I will assume you know the things any senior or grad student in CS should know
- COSC 527: Basic calculus through differential equations, linear algebra, basic probability and statistics

015/1/7

Non-CS Majors

- I welcome non-CS majors in this class to broaden the interdisciplinary discussion
- If you are a non-CS major and think your programming skills might not be adequate, we can arrange alternative projects for you

2015/1/7 6

Textbook

Flake, Gary William. *The Computational Beauty of Nature*. MIT Press, 1998

Contents of Flake CBN

What We Will Cover

Reading for Next Week • Flake: Ch. 1 (Introduction) • Flake: Ch. 15 (Cellular Automata) Course Web Site • web.eecs.utk.edu/~mclennan/Classes/420 or 527 Syllabus • Link to Flake *CBN* site (with errata, software, etc.) • Links to other interesting sites • Handouts: - assignments - slides in pdf format (revised after class) • Models (simulation programs) • Piazza for questions, answers, discussions,... B. Biologically-Inspired Computation

What is Biologically-Inspired Computation?

- Computer systems, devices, and algorithms based, more or less closely, on biological systems
- Biomimicry applied to computing
- Approximately synonymous with: natural computation, organic computing

2015/1/7

Two Kinds of Computation Motivated by Biology

- Computation applied to biology
 - bioinformatics
 - computational biology
 - modeling DNA, cells, organs, populations, etc.
- · Biology applied to computation
 - biologically-inspired computation
 - neural networks
 - artificial life

- etc.

14

Natural Computation

- "Computation occurring in nature or inspired by that occurring in nature"
- Information processing occurs in natural systems from the DNA-level up through the brain to the social level
- We can learn from these processes and apply them in CS (bio-inspired computing)
- In practice, can't do one without the other

2015/1/7

Biological Computation

- Refers to the use of biological materials for computation
 - e.g. DNA, proteins, viruses, bacteria
- Sometimes called "biocomputing"
- · Goal: Biocomputers
- Bio-inspired computing need not be done on biocomputers

Why Do Bio-Inspired Computation?

- · Biological systems are:

 - efficient
 - robust - adaptive
 - flexible
 - parallel
 - decentralized
- self-organizing
- self-repairing
- self-optimizing
- self-protecting
- self-* - etc.

Some of the Natural Systems We Will Study

- · adaptive path minimization by ants
- wasp and termite nest building
- · army ant raiding
- fish schooling and bird flocking
- pattern formation in animal coats
- coordinated cooperation in information processing in slime molds
- · synchronized firefly
- soft constraint satisfaction in spin glasses
- · evolution by natural selection
- game theory and the evolution of cooperation
- · computation at the edge of chaos
 - the brain

Some of the Artificial Systems We Will Study

- · artificial neural networks
- simulated annealing
- cellular automata
- ant colony optimization
- particle swarm optimization
- artificial immune systems
- genetic algorithms
- other evolutionary computation systems

2015/1/

19

C. Ants

Think about the value of having computers, networks, and robots that could do these things.

2015/1/7

20

Why Ants?

- Ants are successful:
 - 30% of Amazon biomass is ants and termites
 - Dry weight of social insects is four times that of other land animals in Amazon
 - Perhaps 10% of Earth's total biomass
 - Comparable to biomass of humans
- Good sources:
 - Deborah Gordon: Ants at Work (1999)
 - B. Hölldobler & E. O. Wilson: *The Superorganism* (2009)

2015/1/7

Intelligent Behavior of Harvester Ants

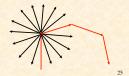
- Find shortest path to food
- Prioritize food sources based on distance & ease of access
- Adjust number involved in foraging based on:
 - colony size
 - amount of food stored
 - amount of food in area
 - presence of other colonies
 - etc.

2015/1/7

22

Army Ants

- No permanent nest
- Create temporary "bivouacs" from bodies of workers
- Raiding parties of up to 200 000
- · Act like unified entity


1/7

22

Army Ant Raiding Patterns Raid Front Swarm Front Fig 2 5 m Fig 1 Bivouac Eciton hamatum Eciton burchelli 2015/1/7 from Solé & Goodwin, Signs of Life 24

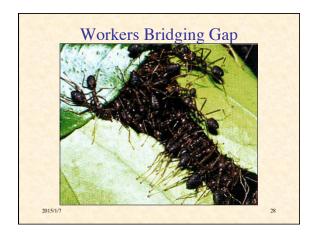
Coordination in Army Ant Colonies

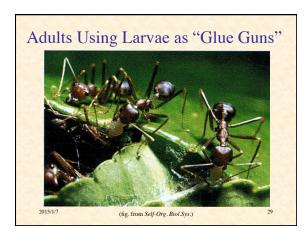
- Timing:
 - nomadic phase (15 days)
 - stationary phase (20 days)
- Navigation in stationary phase
 - 14 raids
 - 123° apart

Collective Navigation

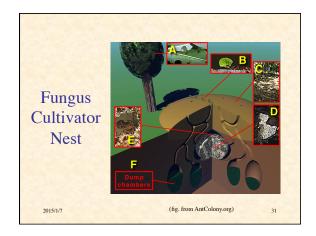
- Ants may use polarized sunlight to determine direction
- But army ants have single-facet eyes
 most insects have multiple facet eyes
- Theory: the two facets of individual ants in group function collectively as a multiple facet eye

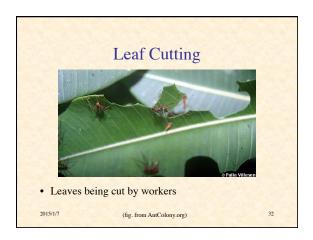
5/1/7

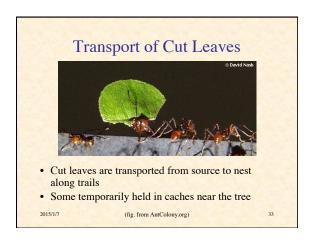

Weaver Ants

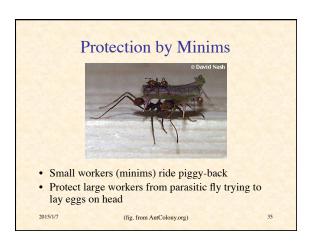


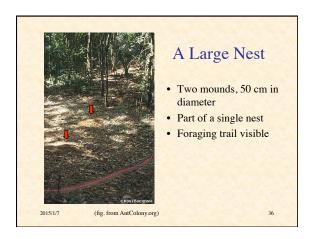
- Form chains of bodies to bridge gaps
- Others may cross these bridges
- Use chains to pull leaf edges together
- Connect edges with silk from larvae held by workers

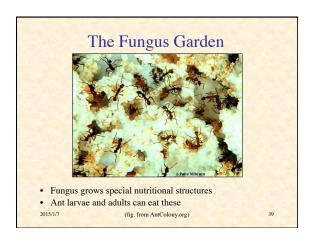



2015/1/



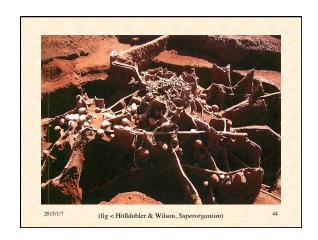

Fungus Cultivator Ants • "Cultivate" fungi underground • Construct "gardens" • Plant spores • Weed out competing fungi • Fertilize with compost from chewed leaves

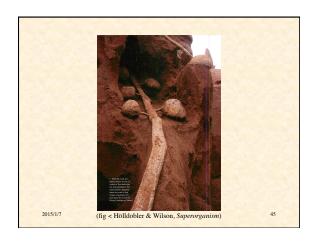


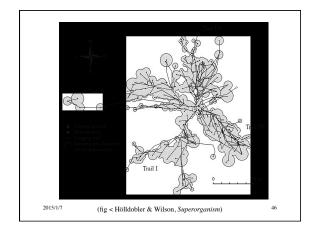

Transporting Cut Leaves to Nest The Lurker's Guide to Leafcutters www.blueboard.com/leafcutters (c) 2003 A. San Juan/ Li Hongmei

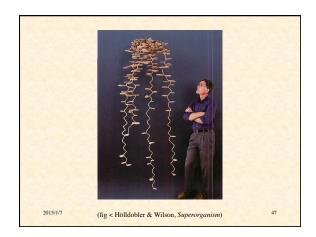
Nest Construction The Lurker's Guide to Leafcutters www.blueboard.com/leafcutters (c) 2003 A. San Juan/ Li Hongmei Several tons of earth may be removed by large colony (vid. from www.blueboard.com/leafcutters) 37

Leaf Brought to Fungus Garden • Leaf being brought to fungus garden in nest • Leaf mulch is fed to fungus 2015/1/7 (fig. from AntColony.org) 38




Queen in Fungus Garden Oueen stays in fungus garden Lays eggs Hatched larvae eat fungus Larvae cared for by nurse workers 2015/17 (fig. from AntColony.org) 40


Dump Chambers • Dump chamber in lab • In nature, may be 2m underground • Contain: - waste leaf material - dead fungus - dead ants (fig. from AntColony.org) 41



Maeterlinck on "White Ants" (Termites)

"What governs here? What is it that issues orders, foresees the future, elaborates plans, and preserves equilibrium, administers, and condemns to death?"

2015/1/7

Emergent Aspects

- Colony size ~ 8×10⁶ but no one is "in charge"!
- Colony lifetime ~ 15 years
- Colonies have a "life cycle"

 older behave differently from younger
- But ants live no longer than one year
 - Males live one day!

2015/1/

49

How Do They Do It?

- Communication in Red Harvester Ants
- Good source: Deborah Gordon: Ants at Work (1999)

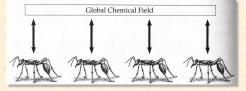
2015/1/7

(video from Stanford Report, April 2003)

How do they do it?

- Semiochemically: deposit pheromones
 - 10-20 signs, many signal tasks
 - ants detect pheromone gradients and frequency of encounter
- Follow trails imperfectly
 - => exploration
- · Feedback reinforces successful trails
 - => biased randomness

2015/1/7


Demonstration: Simulation of Ant Foraging

Run NetLogo Ant-Foraging

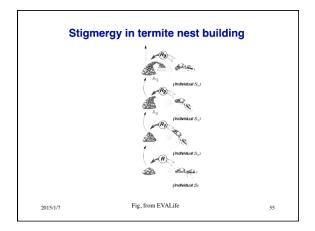
2015/1/7

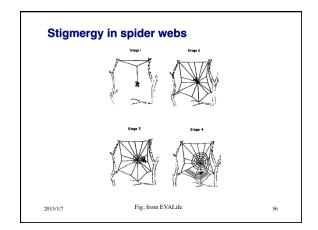
52

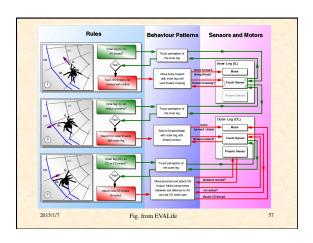
Macro-Micro Feedback

- · Global pattern emergent from total system
- Individuals respond to local field
- Also called <u>circular causality</u>

2015/1/


fig. from Solé & Goodwin


Stigmergy


- From στιγμός = pricking + $\ddot{\epsilon}$ ργον = work
- The project (work) in the environment is an instigation
- Agent interactions may be:
 - direct
- indirect (time-delayed through environment)
- Mediates individual and colony levels

2015/1/7

1	•
	•
	•

Advantages of Stigmergy

- Permits simpler agents
- Decreases direct communication between agents
- Incremental improvement
- Flexible, since when environment changes, agents respond appropriately

2015/1/

58

Emergence

- The appearance of *macroscopic* patterns, properties, or behaviors
- that are not simply the "sum" of the *microscopic* properties or behaviors of the components
 - non-linear but not chaotic
- Macroscopic order often described by fewer & different variables than microscopic order
 - e.g. ant trails vs. individual ants
 - order parameters

2015/1/

59

D. Self-Organization

- Order may be imposed from outside a system
 - to understand, look at the external source of organization
- In *self-organization*, the order emerges from the system itself
 - must look at interactions within system
- In biological systems, the emergent order often has some adaptive purpose
 - e.g., efficient operation of ant colony

2015/1/

Why Self-Organization is Important for CS

- Fundamental to theory & implementation of massively parallel, distributed computation systems
- How can millions of independent computational (or robotic) agents cooperate to process information & achieve goals, in a way that is:
 - efficient
 - self-optimizing
 - adaptive
 - robust in the face of damage or attack

2015/1

Part II

61

Additional Bibliography

- Solé, Ricard, & Goodwin, Brian. Signs of Life: How Complexity Pervades Biology. Basic Books, 2000.
- Bonabeau, Eric, Dorigo, Marco, & Theraulaz, Guy. Swarm Intelligence: From Natural to Artificial Systems. Oxford, 1999.
- 3. Gordon, Deborah. Ants at Work: How an Insect Society Is Organized. Free Press, 1999.
- 4. Hölldobler, B., & Wilson, E. O. *The Superorganism* (2009)
- Johnson, Steven. Emergence: The Connected Lives of Ants, Brains, Cities, and Software. Scribner, 2001. A popular book, but with many good insights.

2015/1/

Part II