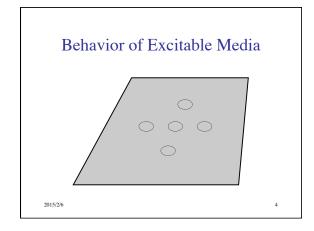
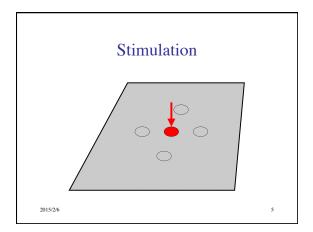
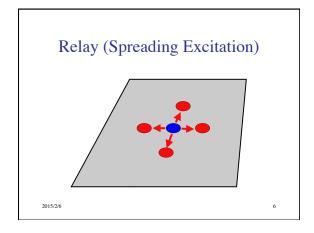
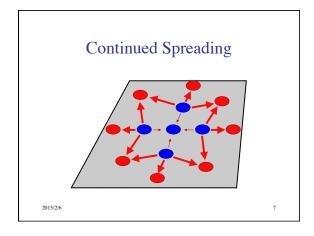
	D.	
	Excitable Media	
2015/2/6		1

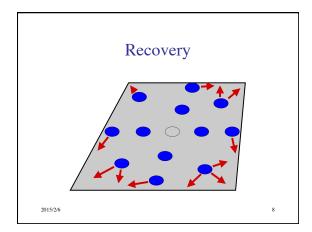
Examples of Excitable Media

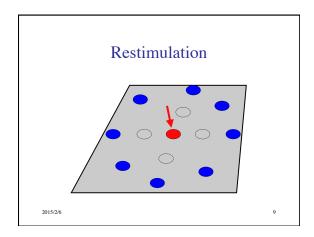

- Slime mold amoebas
- Cardiac tissue (& other muscle tissue)
- Cortical tissue
- Certain chemical systems (e.g., BZ reaction)
- Hodgepodge machine


2015/2/6 2


Characteristics of Excitable Media


- Local spread of excitation
 - for signal propagation
- Refractory period
 - for unidirectional propagation
- Decay of signal
 - avoid saturation of medium


2015/2/6



Circular & Spiral Waves Observed in:

- Slime mold aggregation
- Chemical systems (e.g., BZ reaction)
- Neural tissue
- Retina of the eye
- · Heart muscle
- Intracellular calcium flows
- Mitochondrial activity in oocytes

2015/2/

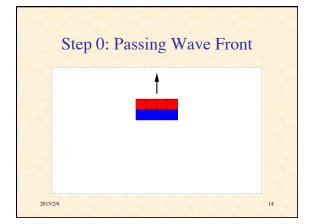
10

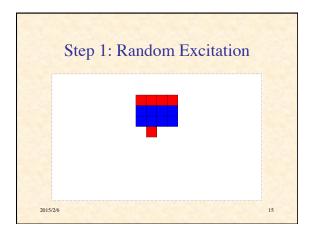
Cause of Concentric Circular Waves

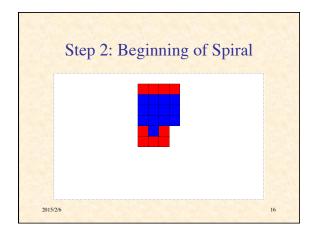
- Excitability is not enough
- But at certain developmental stages, cells can operate as pacemakers
- When stimulated by cAMP, they begin emitting regular pulses of cAMP

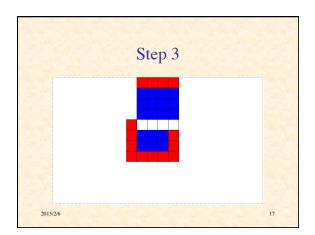
2015/2/6

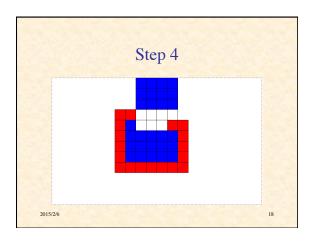
Spiral Waves

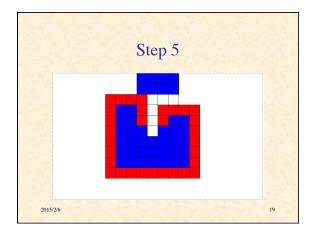

- Persistence & propagation of spiral waves explained analytically (Tyson & Murray, 1989)
- Rotate around a small core of of nonexcitable cells
- Propagate at higher frequency than circular
- Therefore they dominate circular in collisions
- But how do the spirals form initially?

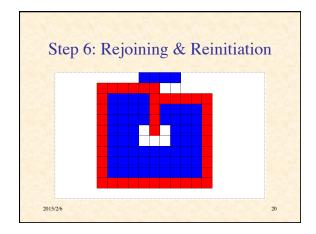

2015/2/6

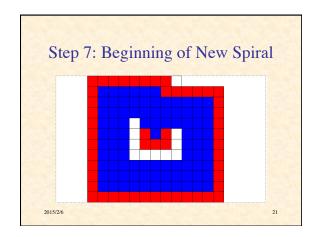

Some Explanations of Spiral Formation

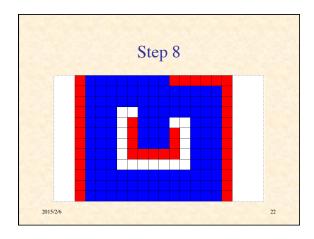

- "the origin of spiral waves remains obscure" (1997)
- Traveling wave meets obstacle and is broken
- Desynchronization of cells in their developmental path
- Random pulse behind advancing wave front

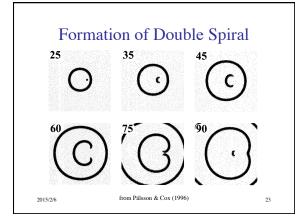

2015/2/6











NetLogo Simulation Of Spiral Formation

- Amoebas are immobile at timescale of wave movement
- A fraction of patches are inert (grey)
- A fraction of patches has initial concentration of cAMP
- At each time step:
 - chemical diffuses
 - each patch responds to local concentration

015/2/6

Response of Patch

if patch is not refractory (brown) then
 if local chemical > threshold then
 set refractory period
 produce pulse of chemical (red)
else

decrement refractory period

degrade chemical in local area

25

Demonstration of NetLogo Simulation of Spiral Formation

Run SlimeSpiral.nlogo

2015/2/6

26

Demonstration of NetLogo Simulation of Spiral Formation (a closer look)

Run SlimeSpiralBig.nlogo

2015/2/6

Observations

- Excitable media can support circular and spiral waves
- Spiral formation can be triggered in a variety of ways
- All seem to involve inhomogeneities (broken symmetries):
 - in space
 - in time
 - in activity
- · Amplification of random fluctuations
- · Circles & spirals are to be expected

2015/2/6

28

NetLogo Simulation of Streaming Aggregation

- 1. chemical diffuses
- 2. **if** cell is refractory (yellow)
- 3. then chemical degrades
- 4. **else** (it's excitable, colored white)
 - if chemical > movement threshold then
 take step up chemical gradient
 - else if chemical > relay threshold then
 produce more chemical (red)
 become refractory
 - 3. else wait

2015/2/6

29

Demonstration of NetLogo Simulation of Streaming

Run SlimeStream.nlogo

2015/2/6

Modified Martiel & Goldbeter Model for Dicty Signalling

Variables (functions of x, y, t):

 β = intracellular concentration of cAMP

 γ = extracellular concentration of cAMP

γ

 ρ = fraction of receptors in active state

21

Equations

$$\frac{d\beta(x,y,t)}{dt} = s\Phi(\rho,\gamma) \qquad -\beta k_i \qquad -\beta k_t \qquad [1]$$

 $\begin{array}{ll} \text{Rate of change in} \\ \text{intracellular [cAMP]} = \begin{array}{ll} \text{Production} \\ \text{of cAMP} \end{array} & - \begin{array}{ll} \text{Intracellular} \\ \text{hydrolysis} \end{array} - \begin{array}{ll} \text{Secretic} \\ \text{of cAM} \end{array}$

$$\frac{d\gamma(x,y,t)}{dt} = \frac{k_t}{h}\beta \qquad -k_e\gamma \qquad +D\nabla^2\gamma \quad [2]$$

 $\frac{\text{Rate of change in}}{\text{extracellular}\left[\text{cAMP}\right]} = \frac{\text{Secretion}}{\text{of cAMP}} \qquad \qquad -\frac{\text{Extracellular}}{\text{hydrolysis}} + \frac{\text{Diffusion}}{\text{of cAMP}}$

$$\frac{d\rho(x,y,t)}{dt} = f_2(\gamma)(1-\rho) \qquad -f_1(\gamma)\rho$$
 [3]

Rate of change in fraction of active receptor = Dephosphorization of receptor - Phosphorylation of receptor

2015/2/6

32

Positive Feedback Loop

- Extracellular cAMP increases (γ increases)
- ⇒ Rate of synthesis of intracellular cAMP increases

(Φ increases)

- ⇒ Intracellular cAMP increases (β increases)
- ⇒ Rate of secretion of cAMP increases
- (⇒ Extracellular cAMP increases)

2015/2/

See Equations

Negative Feedback Loop

- Extracellular cAMP increases (γ increases)
- ⇒ cAMP receptors desensitize
 (f₁ increases, f₂ decreases, ρ decreases)
- ⇒ Rate of synthesis of intracellular cAMP decreases
 - (Φ decreases)
- ⇒ Intracellular cAMP decreases (β decreases)
- ⇒ Rate of secretion of cAMP decreases
- ⇒ Extracellular cAMP decreases

(γ decreases)

See Equations

34

Dynamics of Model

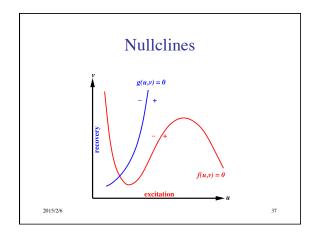
- Unperturbed

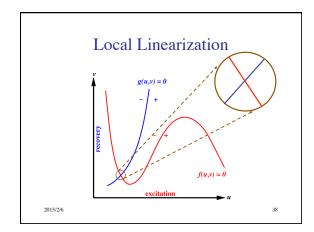
 ⇒ cAMP concentration reaches steady state
- Small perturbation in extracellular cAMP ⇒ returns to steady state
- Perturbation > threshold
 ⇒ large transient in cAMP,
 then return to steady state
- Or oscillation (depending on model parameters)

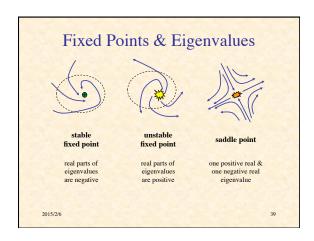
2015/2/

35

Typical Equations for Excitable Medium (ignoring diffusion)


• Excitation variable:


$$\dot{u} = f(u, v)$$


• Recovery variable:

$$\dot{v} = g(u, v)$$

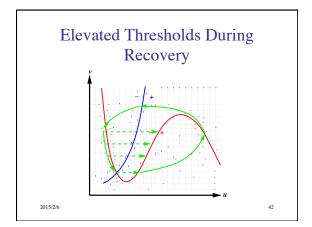
2015/2/6

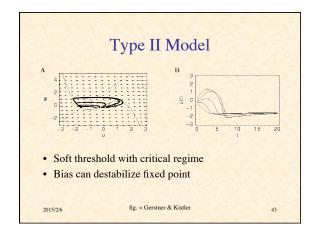
FitzHugh-Nagumo Model

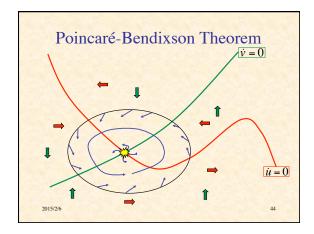
- A simplified model of action potential generation in neurons
- The neuronal membrane is an excitable medium
- *B* is the input bias:

$$\dot{u} = u - \frac{u^3}{3} - v + B$$

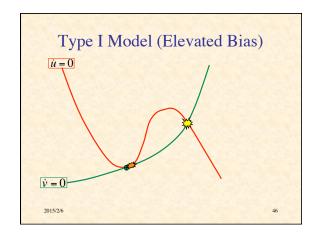
$$\dot{v} = \varepsilon (b_0 + b_1 u - v)$$

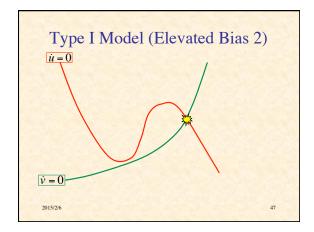

2015/2/6

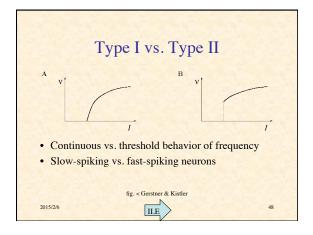

40


NetLogo Simulation of
Excitable Medium
in 2D Phase Space


(EM-Phase-Plane.nlogo)


2015/2





Additional Bibliography

- Kessin, R. H. Dictyostelium: Evolution, Cell Biology, and the Development of Multicellularity. Cambridge, 2001.
 Gerhardt, M., Schuster, H., & Tyson, J. J. "A Cellular Automaton Model of Excitable Media Including Curvature and Dispersion," Science 247 (1990): 1563-6.
 Tyson, J. J., & Keener, J. P. "Singular Perturbation Theory of Traveling Waves in Excitable Media (A Review)," Physica D 32 (1988): 327-61.
 Camazine S. Deneubourg L. I. Franks, N. P. Spacel, L.

- (1988): 321-61.

 Camazine, S., Deneubourg, J.-L., Franks, N. R., Sneyd, J.,
 Theraulaz, G., & Bonabeau, E. Self-Organization in Biological
 Systems. Princeton, 2001.

 Pálsson, E., & Cox, E. C. "Origin and Evolution of Circular Waves
 and Spiral in Dictyostelium discoideum Territories," Proc. Natl.
 Acad. Sci. USA: 93 (1996): 1151-5.

 Solé, R., & Goodwin, B. Signs of Life: How Complexity Pervades
 Biology. Basic Books, 2000.

	0.7		
2015/2/6		II.E	49
		11.2	