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III. Recurrent Neural Networks
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A.���
The Hopfield Network
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Typical Artificial Neuron

inputs

connection���
weights

threshold

output
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Typical Artificial Neuron

linear���
combination

net input���
(local field)

activation���
function
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Equations

€ 

hi = wijs j
j=1

n

∑
# 

$ 
% % 

& 

' 
( ( −θ

h =Ws−θ

Net input:

€ 

" s i =σ hi( )
" s =σ h( )

New neural state:
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Hopfield Network
•  Symmetric weights: wij = wji 
•  No self-action: wii = 0
•  Zero threshold: 𝜃 = 0
•  Bipolar states: si ∈ {–1, +1}
•  Discontinuous bipolar activation function:

€ 

σ h( ) = sgn h( ) =
−1, h < 0
+1, h > 0
$ 
% 
& 
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What to do about h = 0?
•  There are several options:

§  σ(0) = +1
§  σ(0) = –1
§  σ(0) = –1 or +1 with equal probability
§  hi = 0 ⇒ no state change (si′= si)

•  Not much difference, but be consistent
•  Last option is slightly preferable, since 

symmetric
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Positive Coupling

•  Positive sense (sign)
•  Large strength
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Negative Coupling

•  Negative sense (sign)
•  Large strength
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Weak Coupling
•  Either sense (sign)
•  Little strength
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State = –1 & Local Field < 0

h < 0
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State = –1 & Local Field > 0

h > 0
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State Reverses

h > 0
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State = +1 & Local Field > 0

h > 0
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State = +1 & Local Field < 0

h < 0
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State Reverses

h < 0

2/9/15 17

NetLogo Demonstration of 
Hopfield State Updating

Run Hopfield-update.nlogo
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Hopfield Net as Soft Constraint 
Satisfaction System

•  States of neurons as yes/no decisions
•  Weights represent soft constraints between 

decisions
–  hard constraints must be respected
–  soft constraints have degrees of importance

•  Decisions change to better respect 
constraints

•  Is there an optimal set of decisions that best 
respects all constraints?
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Demonstration of Hopfield Net 
Dynamics I

Run Hopfield-dynamics.nlogo
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Convergence

•  Does such a system converge to a stable 
state?

•  Under what conditions does it converge?
•  There is a sense in which each step relaxes 

the “tension” in the system
•  But could a relaxation of one neuron lead to 

greater tension in other places?
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Quantifying “Tension”
•  If wij > 0, then si and sj want to have the same sign 

(si sj = +1)
•  If wij < 0, then si and sj want to have opposite signs 

(si sj = –1)
•  If wij = 0, their signs are independent
•  Strength of interaction varies with |wij|
•  Define disharmony (“tension”) Dij between 

neurons i and j:
Dij = – si wij sj 
Dij < 0  ⇒  they are happy
Dij > 0  ⇒  they are unhappy
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Total Energy of System
The “energy” of the system is the total 

“tension” (disharmony) in it:

€ 

E s{ } = Dij
ij
∑ = − siwijs j

ij
∑

= − 1
2 siwijs j

j≠ i
∑

i
∑

= − 1
2

j
∑ siwijs j

i
∑

= − 1
2 s

TWs
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Review of Some Vector Notation

  

€ 

x =

x1

xn

" 

# 

$ 
$ $ 

% 

& 

' 
' ' 

= x1  xn( )T (column vectors)

€ 

xTy = xiyi = x ⋅ y
i=1

n
∑ (inner product)

  

€ 

xyT =

x1y1  x1yn
  

xmy1  xmyn

" 

# 

$ 
$ $ 

% 

& 

' 
' ' 

(outer product)

€ 

xTMy = xiMij y jj=1

n
∑i=1

m
∑ (quadratic form)
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Another View of Energy
The energy measures the disharmony of the 

neurons’ states with their local fields (i.e. of 
opposite sign):

€ 

E s{ } = − 1
2 siwijs j

j
∑

i
∑

= − 1
2 si wijs j

j
∑

i
∑

= − 1
2 sihi

i
∑

= − 1
2 s

Th
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Do State Changes Decrease Energy?
•  Suppose that neuron k changes state
•  Change of energy:

€ 

ΔE = E # s { }− E s{ }

= − # s iwij # s j + siwijs j
ij
∑

ij
∑

€ 

= − # s kwkj
j≠k
∑ s j + skwkjs j

j≠k
∑

€ 

= − # s k − sk( ) wkjs j
j≠k
∑

€ 

= −Δskhk

€ 

< 0
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Energy Does Not Increase

•  In each step in which a neuron is considered 
for update:���
E{s(t + 1)} – E{s(t)} ≤ 0

•  Energy cannot increase
•  Energy decreases if any neuron changes
•  Must it stop?
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Proof of Convergence���
in Finite Time

•  There is a minimum possible energy:
– The number of possible states s∈ {–1, +1}n is 

finite
– Hence Emin = min {E(s) | s ∈ {±1}n} exists

•  Must reach in a finite number of steps 
because only finite number of states
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Conclusion

•  If we do asynchronous updating, the 
Hopfield net must reach a stable, minimum 
energy state in a finite number of updates

•  This does not imply that it is a global 
minimum
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Lyapunov Functions
•  A way of showing the convergence of discrete- 

or continuous-time dynamical systems
•  For discrete-time system:

§  need a Lyapunov function E (“energy” of the state)
§  E is bounded below (E{s} > Emin)
§   ∆E < (∆E)max ≤ 0 (energy decreases a certain 

minimum amount each step)
§  then the system will converge in finite time

•  Problem: finding a suitable Lyapunov function

2/9/15 30

Example Limit Cycle with 
Synchronous Updating

w > 0 w > 0
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The Hopfield Energy Function is 
Even

•  A function f is odd if f (–x) = – f (x),���
for all x 

•  A function f is even if f (–x) = f (x),���
for all x 

•  Observe:

€ 

E −s{ } = − 12 (−s)
TW(−s) = − 1

2 s
TWs = E s{ }
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Conceptual 
Picture of 

Descent on 
Energy 
Surface

(fig. from Solé & Goodwin)
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Energy 
Surface

(fig. from Haykin Neur. Netw.)
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Energy 
Surface 

+���
Flow 
Lines

(fig. from Haykin Neur. Netw.)
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Flow 
Lines

(fig. from Haykin Neur. Netw.)

Basins of���
Attraction
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Bipolar 
State 
Space
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Basins 
in 

Bipolar 
State 
Space

energy decreasing paths
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Demonstration of Hopfield Net 
Dynamics II

Run initialized Hopfield.nlogo
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Storing 
Memories as 

Attractors

(fig. from Solé & Goodwin)
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Example of 
Pattern 

Restoration

(fig. from Arbib 1995)
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Example of 
Pattern 

Restoration

(fig. from Arbib 1995)
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Example of 
Pattern 

Restoration

(fig. from Arbib 1995)
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Example of 
Pattern 

Restoration

(fig. from Arbib 1995)
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Example of 
Pattern 

Restoration

(fig. from Arbib 1995)
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Example of 
Pattern 

Completion

(fig. from Arbib 1995)
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Example of 
Pattern 

Completion

(fig. from Arbib 1995)
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Example of 
Pattern 

Completion

(fig. from Arbib 1995)

2/9/15 48

Example of 
Pattern 

Completion

(fig. from Arbib 1995)



Part 3A: Hopfield Network 2/9/15

17

2/9/15 49

Example of 
Pattern 

Completion

(fig. from Arbib 1995)
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Example of 
Association

(fig. from Arbib 1995)
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Example of 
Association

(fig. from Arbib 1995)
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Example of 
Association

(fig. from Arbib 1995)
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Example of 
Association

(fig. from Arbib 1995)
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Example of 
Association

(fig. from Arbib 1995)
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Applications of���
Hopfield Memory

•  Pattern restoration
•  Pattern completion
•  Pattern generalization
•  Pattern association
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Hopfield Net for Optimization 
and for Associative Memory

•  For optimization:
– we know the weights (couplings)
– we want to know the minima (solutions)

•  For associative memory:
– we know the minima (retrieval states)
– we want to know the weights
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Hebb’s Rule

“When an axon of cell A is near enough to 
excite a cell B and repeatedly or persistently 
takes part in firing it, some growth or 
metabolic change takes place in one or both 
cells such that A’s efficiency, as one of the 
cells firing B, is increased.”

—Donald Hebb (The Organization of Behavior, 1949, p. 62)

“Neurons that fire together, wire together”
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Example of Hebbian Learning:���
Pattern Imprinted
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Example of Hebbian Learning:���
Partial Pattern Reconstruction
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Mathematical Model of Hebbian 
Learning for One Pattern

€ 

Let Wij =
xix j , if i ≠ j

0, if i = j
# 
$ 
% 

€ 

Since xixi = xi
2 =1,

€ 

W = xxT − I

For simplicity, we will include self-coupling:

€ 

W = xxT
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A Single Imprinted Pattern is a 
Stable State

•  Suppose W = xxT

•  Then h = Wx = xxTx = nx ���
since���
 

•  Hence, if initial state is s = x, then new state 
is s′= sgn (n x) = x 

•  For this reason, scale W by 1/n
•  May be other stable states (e.g., –x)
€ 

xTx = xi
2 = ±1( )2

i=1

n
∑ = n

i=1

n
∑
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Questions

•  How big is the basin of attraction of the 
imprinted pattern?

•  How many patterns can be imprinted?
•  Are there unneeded spurious stable states?
•  These issues will be addressed in the 

context of multiple imprinted patterns
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Imprinting Multiple Patterns

•  Let x1, x2, …, xp be patterns to be imprinted
•  Define the sum-of-outer-products matrix:

€ 

Wij = 1
n xi

k x j
k

k=1

p

∑

W = 1
n x k x k( )

T

k=1

p

∑
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Definition of Covariance
Consider samples (x1, y1), (x2, y2), …, (xN, yN)

€ 

Let x = xk  and y = yk

€ 

Covariance of x and y values :

€ 

= xk yk − x yk − xk y + x ⋅ y 

€ 

= xk yk − x yk − xk y + x ⋅ y 

€ 

= xk yk − x ⋅ y − x ⋅ y + x ⋅ y 

€ 

Cxy = xk yk − x ⋅ y 

€ 

Cxy = xk − x ( ) yk − y ( )
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Weights & the Covariance Matrix
Sample pattern vectors: x1, x2, …, xp 
Covariance of ith and jth components:

€ 

Cij = xi
k x j

k − xi ⋅ x j

€ 

If ∀i : xi = 0  (±1 equally likely in all positions) :

€ 

Cij = xi
k x j

k

€ 

= 1
p xi

k x j
k

k=1

p
∑

€ 

∴nW = pC
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Characteristics ���
of Hopfield Memory

•  Distributed (“holographic”)
–  every pattern is stored in every location 

(weight)
•  Robust

–  correct retrieval in spite of noise or error in 
patterns

–  correct operation in spite of considerable 
weight damage or noise
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Demonstration of Hopfield Net

Run Malasri Hopfield Demo
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Stability of Imprinted Memories
•  Suppose the state is one of the imprinted 

patterns xm 
•  Then:

€ 

h =Wxm = 1
n x k x k( )

T

k∑[ ]xm
= 1

n x k x k( )T xmk∑
= 1

n x
m xm( )T xm + 1

n x k x k( )T xm
k≠m
∑

= xm + 1
n x k ⋅ xm( )x k
k≠m
∑
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Interpretation of Inner Products
•  xk ∙ xm = n if they are identical

–  highly correlated
•  xk ∙ xm = –n if they are complementary

–  highly correlated (reversed)
•  xk ∙ xm = 0 if they are orthogonal

–  largely uncorrelated
•  xk ∙ xm measures the crosstalk between 

patterns k and m 
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Cosines and Inner products

€ 

u ⋅ v = u  v cosθuv

€ 

If u is bipolar, then u 2
= u ⋅u = n

€ 

Hence, u ⋅ v = n n cosθuv = ncosθuv

u

v

€ 

θuv

€ 

Hence h = xm + x k cosθkm
k≠m
∑
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Conditions for Stability

€ 

Stability of entire pattern :

xm = sgn xm + x k cosθkm
k≠m
∑

% 

& 
' 

( 

) 
* 

€ 

Stability of a single bit :

xi
m = sgn xi

m + xi
k cosθkm

k≠m
∑

% 

& 
' 

( 

) 
* 
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Sufficient Conditions for 
Instability (Case 1)

€ 

Suppose xi
m = −1.  Then unstable if :

€ 

−1( ) + xi
k cosθkm > 0

k≠m
∑

€ 

xi
k cosθkm >1

k≠m
∑
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Sufficient Conditions for 
Instability (Case 2)

€ 

Suppose xi
m = +1.  Then unstable if :

€ 

+1( ) + xi
k cosθkm < 0

k≠m
∑

€ 

xi
k cosθkm < −1

k≠m
∑
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Sufficient Conditions for Stability

€ 

xi
k cosθkm

k≠m
∑ ≤1

The crosstalk with the sought pattern must be 
sufficiently small
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Capacity of Hopfield Memory

•  Depends on the patterns imprinted
•  If orthogonal, pmax = n 

– weight matrix is identity matrix
–  hence every state is stable ⇒ trivial basins

•  So pmax < n 
•  Let load parameter α = p / n 

equations
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Single Bit Stability Analysis
•  For simplicity, suppose xk are random
•  Then xk ∙ xm are sums of n random ±1

§  binomial distribution ≈ Gaussian
§  in range –n, …, +n 
§ with mean µ = 0
§  and variance σ2 = n 

•  Probability sum > t:

[See “Review of Gaussian (Normal) Distributions” on course website]

€ 

1
2 1− erf

t
2n

# 

$ 
% 

& 

' 
( 

) 

* 
+ 

, 

- 
. 
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Approximation of Probability

€ 

Let crosstalk Ci
m = 1

n xi
k x k ⋅ xm( )

k≠m
∑

€ 

We want Pr Ci
m >1{ } = Pr nCi

m > n{ }

€ 

Note :  nCi
m = xi

k x j
k x j

m

j=1

n

∑
k=1
k≠m

p

∑

€ 

A sum of n(p −1) ≈ np random ±1s

€ 

Variance σ 2 = np
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Probability of Bit Instability

€ 

Pr nCi
m > n{ } = 1

2 1− erf
n
2np

# 

$ 
% 

& 

' 
( 

) 

* 
+ 
+ 

, 

- 
. 
. 

= 1
2 1− erf n 2p( )[ ]

= 1
2 1− erf 1 2α( )[ ]

(fig. from Hertz & al. Intr. Theory Neur. Comp.)
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Tabulated Probability of���
Single-Bit Instability

Perror α

0.1% 0.105

0.36% 0.138

1% 0.185

5% 0.37

10% 0.61

(table from Hertz & al. Intr. Theory Neur. Comp.)

Orthogonality of Random Bipolar 
Vectors of High Dimension

•  99.99% probability of being 
within 4σ of mean

•  It is 99.99% probable that random 
n-dimensional vectors will be 
within ε = 4/√n orthogonal

•  ε = 4% for n = 10,000
•  Probability of being less 

orthogonal than ε decreases 
exponentially with n

•  The brain gets approximate 
orthogonality by assigning 
random high-dimensional vectors
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u ⋅v < 4σ

iff u  v  cosθ < 4 n

iff n cosθ < 4 n

iff cosθ < 4 / n = ε

Pr cosθ > ε{ }= erfc ε n
2

!

"
#

$

%
&

≈
1
6
exp −ε 2n / 2( )+ 12 exp −2ε 2n / 3( )
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Spurious Attractors
•  Mixture states:

–  sums or differences of odd numbers of retrieval states
–  number increases combinatorially with p
–  shallower, smaller basins
–  basins of mixtures swamp basins of retrieval states ⇒ 

overload
–  useful as combinatorial generalizations?
–  self-coupling generates spurious attractors

•  Spin-glass states:
–  not correlated with any finite number of imprinted 

patterns
–  occur beyond overload because weights effectively 

random
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Basins of Mixture States

€ 

xmix

€ 

x k2
€ 

x k1

€ 

x k3

€ 

xi
mix = sgn xi

k1 + xi
k2 + xi

k3( )

Run Hopfield-Capacity Test
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Fraction of Unstable Imprints ���
(n = 100)

(fig from Bar-Yam)
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Number of Stable Imprints ���
(n = 100)

(fig from Bar-Yam)
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Number of Imprints with Basins 
of Indicated Size (n = 100)

(fig from Bar-Yam)
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Summary of Capacity Results
•  Absolute limit: pmax < αcn = 0.138 n 
•  If a small number of errors in each pattern 

permitted: pmax ∝ n 
•  If all or most patterns must be recalled 

perfectly: pmax ∝ n / log n 
•  Recall: all this analysis is based on random 

patterns
•  Unrealistic, but sometimes can be arranged
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