COSC 420/427/527

Biologically-Inspired Computation

Bruce MacLennan

Contact Information

 Instructor: Bruce MacLennan maclennan@utk.edu

Min Kao 550

Office Hours: 2:30–3:30 MWF (or make appt.)

• Teaching Assistant: Zahra Mahoor (zmahoor@utk.edu)

1/13/16

COSC 420 vs. COSC 527

- COSC 420: Undergraduate credit (but graduate students can count one 400-level course)
- COSC 427: Honors = COSC 527
- COSC 527: Graduate credit, additional work
 - Approved for the Interdisciplinary Graduate Minor in Computational Science
 - You cannot take 527 if you have already taken 420/7

1/13/16

Grading

- You will conduct a series of computer experiments, which you will write up
- Some of these will be run on off-the-shelf simulators
- Others will be run on simulators that you will program
- There may be some written homework
- Graduate students will do additional experiments and mathematical exercises
- Occasional pop quizzes
- No other exams

1/13/16

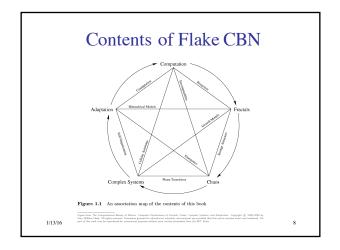
Prerequisites

- COSC 420/427/527: None per se, but you will be required to write some simulations (in Java, C++, NetLogo, or whatever)
- I will assume you know the things any senior or grad student in CS should know
- COSC 527: Basic calculus through differential equations, linear algebra, basic probability and statistics

13/16

Non-CS Majors

- I welcome non-CS majors in this class to broaden the interdisciplinary discussion
- If you are a non-CS major and think your programming skills might not be adequate, we can arrange alternative projects for you


1/13/16

Textbook

Flake, Gary William. *The Computational Beauty of Nature*. MIT Press, 1998

- You are expected to do readings before class
- I will not necessarily cover it in class

1/13/16

What We Will Cover Computation Computation Fractals Fractals

Reading for Next Week • Flake: Ch. 1 (Introduction) • Flake: Ch. 15 (Cellular Automata)

Course Web Site

- web.eecs.utk.edu/~mclennan/Classes/420 or 527
- · Syllabus
- Link to Flake CBN site (with errata, software, etc.)
- Links to other interesting sites
- Handouts:
 - assignments
 - slides in pdf format (revised after class)
- Models (simulation programs)
- Piazza for questions, answers, discussions,...

/16

B. Biologically-Inspired Computation

What is Biologically-Inspired Computation?

- Computer systems, devices, and algorithms based, more or less closely, on biological systems
- Biomimicry applied to computing
- Approximately synonymous with: natural computation, organic computing

1/13/16

Two Kinds of Computation Motivated by Biology

- Computation applied to biology
 - bioinformatics
 - computational biology
 - modeling DNA, cells, organs, populations, etc.
- Biology applied to computation
 - biologically-inspired computation
 - neural networks
 - artificial life
 - etc.

1/13/16

Natural Computation

- "Computation occurring in nature or inspired by that occurring in nature"
- Information processing occurs in natural systems from the DNA-level up through the brain to the social level
- We can learn from these processes and apply them in CS (bio-inspired computing)
- In practice, can't do one without the other

13/16

Biological Computation

- Refers to the use of biological materials for computation
 - e.g. DNA, proteins, viruses, bacteria
- · Sometimes called "biocomputing"
- Goal: Biocomputers
- Bio-inspired computing need not be done on biocomputers

1/13/16 16

Why Do Bio-Inspired Computation?

- Biological systems are:
 - efficient
- self-organizing
- robust
- self-repairing
- adaptive
- self-optimizing
- flexible
- self-protecting
- parallel
- self-*

decentralized

- etc.

/13/16

Some of the Natural Systems We Will Study

- adaptive path minimization by ants
- wasp and termite nest building
- army ant raiding
- fish schooling and bird flocking
- pattern formation in animal coats
- coordinated cooperation in slime molds
- synchronized firefly flashing
- soft constraint satisfaction in spin glasses
- evolution by natural selection
- game theory and the evolution of cooperation
- computation at the edge of chaos
- information processing in the brain

Some of the Artificial Systems We Will Study

- artificial neural networks
- simulated annealing
- cellular automata
- ant colony optimization
- · particle swarm optimization
- · artificial immune systems
- genetic algorithms
- · other evolutionary computation systems

1/13/16

19

C. Ants

Think about the value of having computers, networks, and robots that could do these things.

Why Ants?

- · Ants are successful:
 - 30% of Amazon biomass is ants and termites
 - Dry weight of social insects is four times thatof other land animals in Amazon
 - Perhaps 10% of Earth's total biomass
 - Comparable to biomass of humans
- · Good sources:
 - Deborah Gordon: Ants at Work (1999)
 - B. Hölldobler & E. O. Wilson: *The Superorganism* (2009)

1/13/16

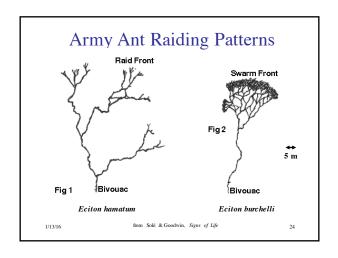
21

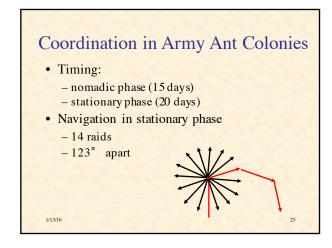
Intelligent Behavior of Harvester Ants

- · Find shortest path to food
- Prioritize food sources based on distance & ease of access
- Adjust number involved in foraging based on:
 - colony size
 - amount of food stored
 - amount of food in area
 - presence of other colonies
 - etc.

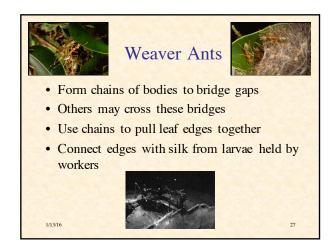
1/13/16

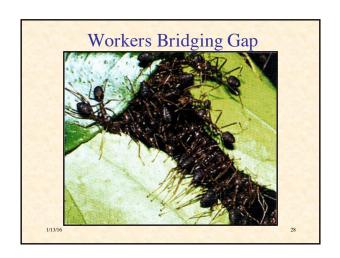
1/13/16

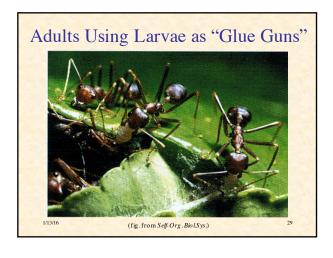

22

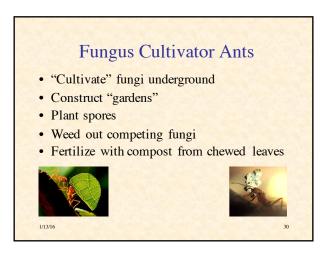

Army Ants

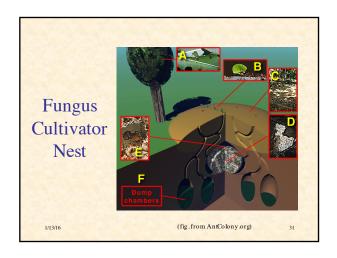
- No permanent nest
- Create temporary "bivouacs" from bodies of workers
- Raiding parties of up to 200 000
- · Act like unified entity

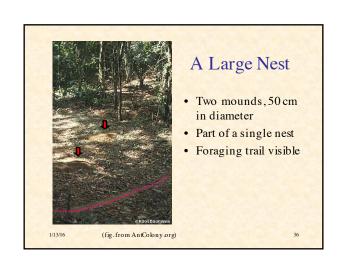


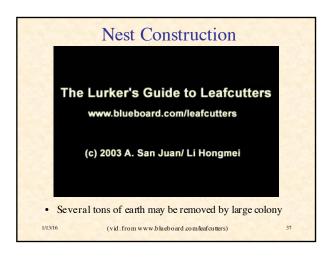


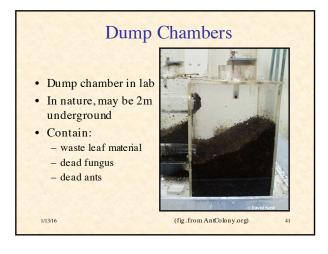

Collective Navigation

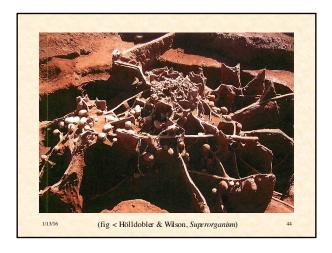

- Ants may use polarized sunlight to determine direction
- But army ants have single-facet eyes
 most insects have multiple facet eyes
- Theory: the two facets of individual ants in group function collectively as a multiple facet eye

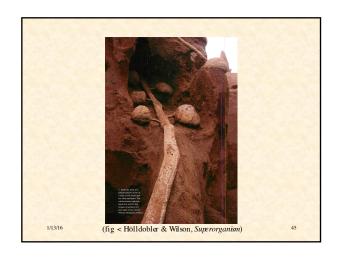

/13/16 26

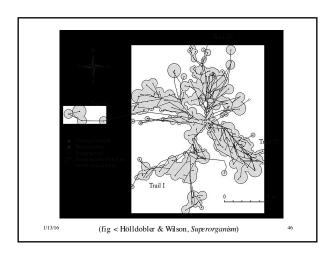


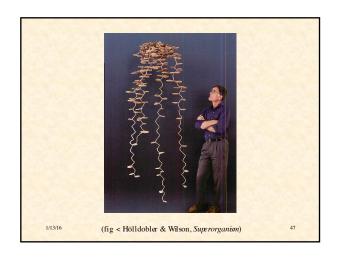


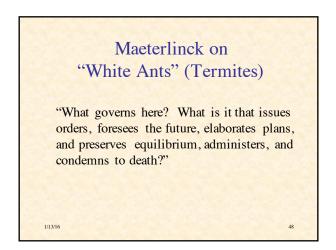












Emergent Aspects

- Colony size $\sim 8 \times 10^6$ but no one is "in charge"!
- Colony lifetime ~ 15 years
- Colonies have a "life cycle"
 older behave differently from younger
- But ants live no longer than one year
 Males live one day!

1/13/16

49

How Do They Do It?

- Communication in Red Harvester Ants
- Good source: Deborah Gordon: Ants at Work (1999)

1/13/16

1/13/16

(video from Stanford Report, April 2003)

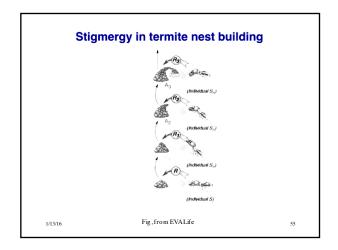
How do they do it?

- Semiochemically: deposit pheromones
 - 10-20 signs, many signal tasks
 - ants detect pheromone gradients and frequency of encounter
- Follow trails imperfectly
 exploration
- Feedback reinforces successful trails => biased randomness

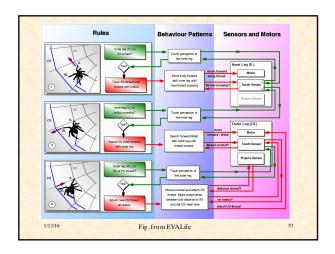
1/13/16

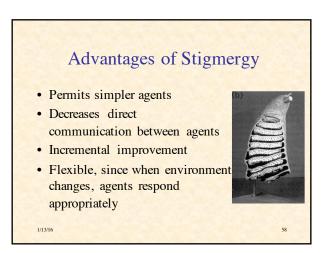
51

Demonstration: Simulation of Ant Foraging


Run NetLogo Ant-Foraging

• Global pattern emergent from total system • Individuals respond to local field • Also called circular causality fig.from Solé & Goodwin 53


Stigmergy


- From στιγμός = pricking + ἔργον = work
- The project (work) in the environment is an instigation
- Agent interactions may be:
 - direc
 - indirect (time-delayed through environment)
- Mediates individual and colony levels

13/16 54

Emergence

- The appearance of *macroscopic* patterns, properties, or behaviors
- that are not simply the "sum" of the *microscopic* properties or behaviors of the components
 - non-linear but not chaotic
- Macroscopic order often described by fewer & different variables than microscopic order
 - e.g. ant trails vs. individual ants
 - order parameters

D. Self-Organization

- Order may be imposed from outside a system
 - to understand, look at the external source of organization
- In *self-organization*, the order emerges from the system itself
 - must look at interactions within system
- In biological systems, the emergent order often has some adaptive purpose
 - e.g., efficient operation of ant colony

/13/16

Why Self-Organization is Important for CS

- Fundamental to theory & implementation of massively parallel, distributed computation systems
- How can millions of independent computational (or robotic) agents cooperate to process information & achieve goals, in a way that is:
 - efficient
 - self-optimizing
 - adaptive
 - robust in the face of damage or attack

1/13/16

Additional Bibliography

- Solé, Ricard, & Goodwin, Brian. Signs of Life: How Complexity Pervades Biology. Basic Books, 2000.
- Bonabeau, Eric, Dorigo, Marco, & Theraulaz, Guy. Swarm Intelligence: From Natural to Artificial Systems. Oxford, 1999.
- 3. Gordon, Deborah. Ants at Work: How an Insect Society Is Organized. Free Press, 1999.
- 4. Hölldobler, B., & Wilson, E. O. *The Superorganism* (2009)
- Johnson, Steven. Emergence: The Connected Lives of Ants, Brains, Cities, and Software. Scribner, 2001. A popular book, but with many good insights.

1/13/16

Part II