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B.
Pattern Formation
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Differentiation
& Pattern Formation

• A central problem in 
development: How do cells 
differentiate to fulfill 
different purposes?

• How do complex systems 
generate spatial & temporal 
structure?

• CAs are natural models of 
intercellular communication

photos  ©2000, S. Cazamine

Plecostomus
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Vermiculated Rabbit Fish

figs . from Camazine & al.: Self-Org. Biol. Sys .
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Zebra

figs . from Camazine & al.: Self-Org. Biol. Sys . 2/2/16 6

Activation & Inhibition
in Pattern Formation

• Color patterns typically have a charac-
teristic length scale

• Independent of cell size and animal size
• Achieved by:

– short-range activation ⇒ local uniformity
– long-range inhibition ⇒ separation
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Interaction Parameters

• R1 and R2 are the interaction ranges
• J1 and J2 are the interaction strengths
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CA Activation/Inhibition Model

• Let states si∈ {–1, +1}
• and h be a bias parameter
• and rij be the distance between cells i and j
• Then the state update rule is:
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Demonstration of NetLogo 
Program for Activation/Inhibition 

Pattern Formation

RunAICA.nlogo
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Example
(R1=1, R2=6, J1=1, J2=–0.1, h=0)

figs. from Bar-Yam
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Effect of Bias
(h = –6, –3, –1; 1, 3, 6)

figs. from Bar-Yam 2/2/16 12

Effect of Interaction Ranges

R2 = 6
R1 = 1
h = 0

R2 = 6
R1 = 1.5

h = 0

R2 = 8
R1 = 1
h = 0

R2 = 6
R1 = 1.5
h = –3

figs. from Bar-Yam
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Differential Interaction Ranges
• How can a system using strictly local 

interactions discriminate between states at 
long and short range?

• E.g. cells in developing organism
• Can use two different morphogens diffusing 

at two different rates
– activator diffuses slowly (short range)
– inhibitor diffuses rapidly (long range)
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Digression on Diffusion
• Simple 2-D diffusion equation:

• Recall the 2-D Laplacian:

• The Laplacian (like 2nd derivative) is:
– positive in a local minimum
– negative in a local maximum€ 

∇2A x,y( ) =
∂ 2A x,y( )
∂x 2

+
∂ 2A x,y( )
∂y 2

A x, y( ) = D∇2A x, y( )
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Reaction-Diffusion System
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reactiondiffusion

General Reaction-Diffusion System
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  where ji =

µici −div Dici  (flux)

where kα =  rate constant for reaction α
and ν iα =  stoichiometric coefficient

and mkα =  a non-negative integer
and µi =  drift vector
and Di =  diffusivity matrix

where div Dc = e j Djk
∂c
∂xkk

∑
j
∑

Framework for Complexity

• change = source terms + transport terms
• source terms = local coupling

= interactions local to a small region
• transport terms = spatial coupling

= interactions with contiguous regions
= advection + diffusion
– advection: non-dissipative, time-reversible
– diffusion: dissipative, irreversible 
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NetLogo Simulation of
Reaction-Diffusion System

1. Diffuse activator in X and Y directions
2. Diffuse inhibitor in X and Y directions
3. Each patch performs:

stimulation = bias + activator – inhibitor + noise
if stimulation > 0 then

set activator and inhibitor to 100
else

set activator and inhibitor to 0
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Demonstration of NetLogo 
Program for Activator/Inhibitor 

Pattern Formation

Run Pattern.nlogo

2/2/16 20

Continuous-time Activator-Inhibitor System

• Activator A and inhibitor I may diffuse at different 
rates in x and y directions

• Cell becomes more active if activator + bias 
exceeds inhibitor

• Otherwise, less active
• A and I are limited to [0, 100] 

(depletion/saturation)
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∂A
∂t

= dAx
∂ 2A
∂x 2

+ dAy
∂ 2A
∂y 2

+ kA A + B − I( )

∂I
∂t

= dIx
∂ 2I
∂x 2

+ dIy
∂ 2I
∂y 2

+ kI A + B − I( )
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Demonstration of NetLogo 
Program for Activator/Inhibitor 

Pattern Formation
with Continuous State Change

Run Activator-Inhibitor.nlogo

Turing Patterns

• Alan Turing studied the mathematics of 
reaction-diffusion systems

• Turing, A. (1952). The chemical basis of 
morphogenesis. Philosophical Transactions 
of the Royal Society B 237: 37–72.

• The resulting patterns are known as Turing 
patterns
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Observations

• With local activation and lateral inhibition
• And with a random initial state
• You can expect to get Turing patterns
• These are stationary states (dynamic 

equilibria)
• Macroscopically, Class I behavior

– Microscopically, may be class III
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A Key Element of
Self-Organization

• Activation vs. Inhibition
• Cooperation vs. Competition
• Amplification vs. Stabilization
• Growth vs. Limit
• Positive Feedback vs. Negative Feedback

– Positive feedback creates

– Negative feedback shapes
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Reaction-Diffusion Computing
• Has been used for image processing

– diffusion ⇒ noise filtering
– reaction ⇒contrast enhancement

• Depending on parameters, RD computing 
can:
– restore broken contours
– detect edges
– improve contrast
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Image Processing in BZ Medium

• (A) boundary detection, (B) contour enhancement, 
(C) shape enhancement, (D) feature enhancement

Image < Adamatzky, Comp. in  Nonlinear Media & Autom. Coll.
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Voronoi Diagrams
• Given a set of generating 

points:
• Construct a polygon 

around each generating 
point of set, so all points 
in a polygon are closer to 
its generating point than to 
any other generating 
points.

Image < Adamatzky & al., Reaction-Diffusion Computers 2/2/16 28

Some Uses of Voronoi Diagrams

• Collision-free path planning
• Determination of service areas for power 

substations
• Nearest-neighbor pattern classification
• Determination of largest empty figure
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Computation of Voronoi Diagram 
by Reaction-Diffusion Processor

Image < Adamatzky & al., Reaction-Diffusion Computers 2/2/16 30

Mixed Cell Voronoi Diagram

Image < Adamatzky & al., Reaction-Diffusion Computers
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Path Planning via BZ medium:
No Obstacles

Image < Adamatzky & al., Reaction-Diffusion Computers 2/2/16 32

Path Planning via BZ medium:
Circular Obstacles

Image < Adamatzky & al., Reaction-Diffusion Computers

2/2/16 33

Mobile Robot with Onboard 
Chemical Reactor

Image < Adamatzky & al., Reaction-Diffusion Computers 2/2/16 34

Actual Path: Pd Processor

Image < Adamatzky & al., Reaction-Diffusion Computers
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Actual Path: Pd Processor

Image < Adamatzky & al., Reaction-Diffusion Computers 2/2/16 36

Actual Path: BZ Processor

Image < Adamatzky & al., Reaction-Diffusion Computers
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