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B.
Stochastic Neural Networks

(in particular, the stochastic Hopfield network)
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Trapping in Local Minimum
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Escape from Local Minimum

3/1/16 4

Escape from Local Minimum
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Motivation
• Idea: with low probability, go against the local 

field
– move up the energy surface
– make the “wrong” microdecision

• Potential value for optimization: escape from local 
optima

• Potential value for associative memory: escape 
from spurious states
– because they have higher energy than imprinted states
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The Stochastic Neuron

€ 

Deterministic neuron :  " s i = sgn hi( )
Pr " s i = +1{ } =Θ hi( )
Pr " s i = −1{ } =1−Θ hi( )

€ 

Stochastic neuron :  
Pr " s i = +1{ } =σ hi( )
Pr " s i = −1{ } =1−σ hi( )

€ 

Logistic sigmoid :  σ h( ) =
1

1+ exp −2h T( )

h

σ(h)
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Properties of Logistic Sigmoid

• As h → +∞, σ(h) → 1
• As h → –∞, σ(h) → 0
• σ(0) = 1/2

€ 

σ h( ) =
1

1+ e−2h T
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Logistic Sigmoid
With Varying T

T varying from 0.05 to ∞ (1/T= β = 0, 1, 2, …, 20) 
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Logistic Sigmoid
T = 0.5

Slope at origin = 1 / 2T
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Logistic Sigmoid
T = 0.01
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Logistic Sigmoid
T = 0.1
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Logistic Sigmoid
T = 1
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Logistic Sigmoid
T = 10
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Logistic Sigmoid
T = 100
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Pseudo-Temperature
• Temperature = measure of thermal energy (heat)
• Thermal energy = vibrational energy of molecules
• A source of random motion
• Pseudo-temperature = a measure of nondirected 

(random) change
• Logistic sigmoid gives same equilibrium 

probabilities as Boltzmann-Gibbs distribution
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Transition Probability

€ 

Recall, change in energy ΔE = −Δskhk
= 2skhk

  

€ 

Pr " s k = ±1sk = 1{ } =σ ±hk( ) =σ −skhk( )

€ 

Pr sk →−sk{ } =
1

1+ exp 2skhk T( )

=
1

1+ exp ΔE T( )
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Stability

• Are stochastic Hopfield nets stable?
• Thermal noise prevents absolute stability
• But with symmetric weights:

€ 

average values si  become time - invariant
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Does “Thermal Noise” Improve 
Memory Performance?

• Experiments by Bar-Yam (pp. 316–20):
§ n = 100
§ p = 8

• Random initial state
• To allow convergence, after 20 cycles

set T = 0
• How often does it converge to an imprinted 

pattern?
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Probability of Random State Converging 
on Imprinted State (n=100, p=8)

T = 1 / β

(fig . from Bar-Yam) 3/1/16 20

Probability of Random State Converging 
on Imprinted State (n=100, p=8)

(fig. from Bar-Yam)
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Analysis of Stochastic Hopfield 
Network

• Complete analysis by Daniel J. Amit & 
colleagues in mid-80s

• See D. J. Amit, Modeling Brain Function: 
The World of Attractor Neural Networks, 
Cambridge Univ. Press, 1989.

• The analysis is beyond the scope of this 
course
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Phase Diagram

(fig. from Domany & al. 1991)

(A) imprinted
= minima

(B) imprinted,
but s.g. = min.

(C) spin-glass states

(D) all states melt
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Conceptual Diagrams
of Energy Landscape

(fig. from Hertz & al. Intr. Theory Neur. Comp.) 3/1/16 24

Phase Diagram Detail

(fig. from Domany & al. 1991)
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Simulated Annealing

(Kirkpatrick, Gelatt & Vecchi, 1983)
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Dilemma
• In the early stages of search, we want a high 

temperature, so that we will explore the 
space and find the basins of the global 
minimum

• In the later stages we want a low 
temperature, so that we will relax into the 
global minimum and not wander away from 
it

• Solution: decrease the temperature 
gradually during search
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Quenching vs. Annealing
• Quenching:

– rapid cooling of a hot material
– may result in defects & brittleness
– local order but global disorder
– locally low-energy, globally frustrated

• Annealing:
– slow cooling (or alternate heating & cooling)
– reaches equilibrium at each temperature
– allows global order to emerge
– achieves global low-energy state
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Multiple Domains

local
coherence

global incoherence
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Moving Domain Boundaries
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Effect of Moderate Temperature

(fig. from Anderson Intr . Neur . Comp.)
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Effect of High Temperature

(fig. from Anderson Intr . Neur . Comp.) 3/1/16 32

Effect of Low Temperature

(fig. from Anderson Intr . Neur . Comp.)
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Annealing Schedule

• Controlled decrease of temperature
• Should be sufficiently slow to allow 

equilibrium to be reached at each 
temperature

• With sufficiently slow annealing, the global 
minimum will be found with probability 1

• Design of schedules is a topic of research
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Typical Practical
Annealing Schedule

• Initial temperature T0 sufficiently high so all 
transitions allowed

• Exponential cooling: Tk+1 = αTk
§ typical 0.8 < α < 0.99
§ fixed number of trials at each temp.
§ expect at least 10 accepted transitions

• Final temperature: three successive 
temperatures without required number of 
accepted transitions
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Summary

• Non-directed change (random motion) 
permits escape from local optima and 
spurious states

• Pseudo-temperature can be controlled to 
adjust relative degree of exploration and 
exploitation

Quantum Annealing
• See for example D-wave 

Systems 
<www.dwavesys.com>
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Hopfield Network for
Task Assignment Problem

• Six tasks to be done (I, II, …, VI)
• Six agents to do tasks (A, B, …, F)
• They can do tasks at various rates

– A (10, 5, 4, 6, 5, 1)
– B (6, 4, 9, 7, 3, 2)
– etc

• What is the optimal assignment of tasks to 
agents?

Continuous Hopfield Net
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˙ U i = TijV j + Ii −
Ui

τj =1

n

∑

Vi =σ(Ui)∈ (0,1)

k-out-of-n Rule
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2k-1

2k-1

2k-1

2k-1
2k-1

-2

-2

-2

Network for Task Assignment
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C

III

2 biased by rate
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NetLogo Implementation of
Task Assignment Problem

Run TaskAssignment.nlogo

Part IV


