
\qquad
\qquad
\qquad
\qquad
\qquad
A.

Artificial Neural Net Learning

Supervised Learning

- Produce desired outputs for training inputs
- Generalize reasonably \& appropriately to other inputs
- Good example: pattern recognition
- Feedforward multilayer networks \qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Typical Artificial Neuron

3/23/16
5

Typical Artificial Neuron

\qquad

Equations

Net input:

$$
\begin{aligned}
h_{i} & =\left(\sum_{j=1}^{n} w_{i j} s_{j}\right)-\theta \\
\mathbf{h} & =\mathbf{W} \mathbf{s}-\theta \\
s_{i}^{\prime} & =\sigma\left(h_{i}\right) \\
\mathbf{s}^{\prime} & =\sigma(\mathbf{h})
\end{aligned}
$$

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Single Layer Perceptron Equations

Binary threshold activation function:
$\sigma(h)=\Theta(h)= \begin{cases}1, & \text { if } h>0 \\ 0, & \text { if } h \leq 0\end{cases}$
Hence, $y= \begin{cases}1, & \text { if } \sum_{j} w_{j} x_{j}>\theta \\ 0, & \text { otherwise }\end{cases}$
$= \begin{cases}1, & \text { if } \mathbf{w} \cdot \mathbf{x}>\theta \\ 0, & \text { if } \mathbf{w} \cdot \mathbf{x} \leq \theta\end{cases}$
3/23/16

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Goal of Perceptron Learning

- Suppose we have training patterns $\mathbf{x}^{1}, \mathbf{x}^{2}$, \ldots, \mathbf{x}^{P} with corresponding desired outputs $y^{1}, y^{2}, \ldots, y^{P}$
- where $\mathbf{x}^{p} \in\{0,1\}^{n}, y^{p} \in\{0,1\}$
- We want to find \mathbf{w}, θ such that $y^{p}=\Theta\left(\mathbf{w} \cdot \mathbf{x}^{p}-\theta\right)$ for $p=1, \ldots, P$

Treating Threshold as Weight
\qquad

3/23/16

Treating Threshold as Weight

$323 / 16$
15

> Augmented Vectors
> $\tilde{\mathbf{w}}=\left(\begin{array}{c}\theta \\ w_{1} \\ \vdots \\ w_{n}\end{array}\right) \quad \tilde{\mathbf{x}}^{p}=\left(\begin{array}{c}-1 \\ x_{1}^{p} \\ \vdots \\ x_{n}^{p}\end{array}\right)$

We want $y^{p}=\Theta\left(\tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}}^{p}\right), p=1, \ldots, P$

Reformulation as Positive Examples

We have positive $\left(y^{p}=1\right)$ and negative $\left(y^{p}=0\right)$ examples \qquad
Want $\tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}}^{p}>0$ for positive, $\tilde{\mathbf{w}} \cdot \tilde{\mathbf{x}}^{p} \leq 0$ for negative
Let $\mathbf{z}^{p}=\tilde{\mathbf{x}}^{p}$ for positive, $\mathbf{z}^{p}=-\tilde{\mathbf{x}}^{p}$ for negative

Want $\tilde{\mathbf{w}} \cdot \mathbf{z}^{p} \geq 0$, for $p=1, \ldots, P$
Hyperplane through origin with all \mathbf{z}^{p} on one side 3/23/16 17

Adjustment of Weight Vector

\qquad

Outline of
 Perceptron Learning Algorithm

\qquad

1. initialize weight vector randomly
2. until all patterns classified correctly, do: \qquad
a) for $p=1, \ldots, P$ do:
1) if \mathbf{z}^{p} classified correctly, do nothing
2) else adjust weight vector to be closer to correct classification

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Improvement in Performance

$$
\begin{aligned}
\tilde{\mathbf{w}}^{\prime} \cdot \mathbf{z}^{p} & =\left(\tilde{\mathbf{w}}+\eta \mathbf{z}^{p}\right) \cdot \mathbf{z}^{p} \\
& =\tilde{\mathbf{w}} \cdot \mathbf{z}^{p}+\eta \mathbf{z}^{p} \cdot \mathbf{z}^{p} \\
& =\tilde{\mathbf{w}} \cdot \mathbf{z}^{p}+\eta\left\|\mathbf{z}^{p}\right\|^{2} \\
& >\tilde{\mathbf{w}} \cdot \mathbf{z}^{p}
\end{aligned}
$$

Perceptron Learning Theorem

- If there is a set of weights that will solve the problem,
- then the PLA will eventually find it
- (for a sufficiently small learning rate)
- Note: only applies if positive \& negative examples are linearly separable

NetLogo Simulation of Perceptron Learning

Run Perceptron-Geometry.nlogo

3/23/16

Classification Power of Multilayer Perceptrons

\qquad
\qquad

- Perceptrons can function as logic gates
- Therefore MLP can form intersections, unions, differences of linearly-separable regions
- Classes can be arbitrary hyperpolyhedra
- Minsky \& Papert criticism of perceptrons
- No one succeeded in developing a MLP learning algorithm
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Credit Assignment Problem
How do we adjust the weights of the hidden layers?
\qquad

\qquad
\qquad
\qquad

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Gradient

$\frac{\partial F}{\partial P_{k}}$ measures how F is altered by variation of P_{k} \qquad

$$
\nabla F=\left(\begin{array}{c}
\partial F / \partial P_{1} \\
\vdots \\
\partial F / \partial P_{k} \\
\vdots \\
\partial F / \partial P_{m}
\end{array}\right)
$$

∇F points in direction of maximum local increase in F

3/23/16

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Gradient Ascent Process

$$
\dot{\mathbf{P}}=\eta \nabla F(\mathbf{P})
$$

Change in fitness :
$\dot{F}=\frac{\mathrm{d} F}{\mathrm{~d} t}=\sum_{k=1}^{m} \frac{\partial F}{\partial P_{k}} \frac{\mathrm{~d} P_{k}}{\mathrm{~d} t}=\sum_{k=1}^{m}(\nabla F)_{k} \dot{P}_{k}$
$\dot{F}=\nabla F \cdot \dot{\mathbf{P}}$
$\dot{F}=\nabla F \cdot \eta \nabla F=\eta\|\nabla F\|^{2} \geq 0$
Therefore gradient ascent increases fitness (until reaches 0 gradient)

General Ascent in Fitness

Note that any adaptive process $\mathbf{P}(t)$ will increase fitness provided:
$0<\dot{F}=\nabla F \cdot \dot{\mathbf{P}}=\|\nabla F\| \| \dot{\mathbf{P}}| | \cos \varphi$
where φ is angle between ∇F and $\dot{\mathbf{P}}$ \qquad

Hence we need $\cos \varphi>0$
or $|\varphi|<90$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Fitness as Minimum Error

Suppose for Q different inputs we have target outputs $\mathbf{t}^{1}, \ldots, \mathbf{t}^{Q}$
Suppose for parameters \mathbf{P} the corresponding actual outputs are $\mathbf{y}^{1}, \ldots, \mathbf{y}^{Q}$

Suppose $D(\mathbf{t}, \mathbf{y}) \in[0, \infty)$ measures difference between \qquad target \& actual outputs

$$
\begin{aligned}
& \text { Let } E^{q}=D\left(\mathbf{t}^{q}, \mathbf{y}^{q}\right) \text { be error on } q \text { th sample } \\
& \text { Let } F(\mathbf{P})=-\sum_{q=1}^{Q} E^{q}(\mathbf{P})=-\sum_{q=1}^{Q} D\left[\mathbf{t}^{q}, \mathbf{y}^{q}(\mathbf{P})\right]
\end{aligned}
$$

> Gradient of Fitness
> $\nabla F=\nabla\left(-\sum_{q} E^{q}\right)=-\sum_{q} \nabla E^{q}$
> $\frac{\partial E^{q}}{\partial P_{k}}=\frac{\partial}{\partial P_{k}} D\left(\mathbf{t}^{q}, \mathbf{y}^{q}\right)=\sum_{j} \frac{\partial D\left(\mathbf{t}^{q}, \mathbf{y}^{q}\right)}{\partial y_{j}^{q}} \frac{\partial y_{j}^{q}}{\partial P_{k}}$
> $=\frac{\mathrm{d} D\left(\mathbf{t}^{q}, \mathbf{y}^{q}\right)}{\mathrm{d} \mathbf{y}^{q}} \cdot \frac{\partial \mathbf{y}^{q}}{\partial P_{k}}$
> $=\nabla_{y^{9}} D\left(\mathbf{t}^{q}, \mathbf{y}^{q}\right) \cdot \partial \mathbf{y}^{q} / \partial P_{k}$

Jacobian Matrix

Define Jacobian matrix $\mathbf{J}^{q}=\left(\begin{array}{ccc}\partial y_{1}^{q} / \partial P_{1} & \ldots & \partial y_{1}^{q} / \partial P_{m} \\ \vdots & \ddots & \vdots \\ \partial y_{n}^{q} / \partial P_{1} & \ldots & \partial y_{n}^{q} / \partial P_{m}\end{array}\right)$
Note $\mathbf{J}^{q} \in \Re^{n \times m}$ and $\nabla D\left(\mathbf{t}^{q}, \mathbf{y}^{q}\right) \in \Re^{n \times 1}$
Since $\left(\nabla E^{q}\right)_{k}=\frac{\partial E^{q}}{\partial P_{k}}=\sum_{j} \frac{\partial y_{j}^{q}}{\partial P_{k}} \frac{\partial D\left(\mathbf{t}^{q}, \mathbf{y}^{q}\right)}{\partial y_{j}^{q}}$,
$\therefore \nabla E^{q}=\left(\mathbf{J}^{q}\right)^{\mathrm{T}} \nabla D\left(\mathbf{t}^{q}, \mathbf{y}^{q}\right)$

3/23/16

Derivative of Squared Euclidean Distance
Suppose $D(\mathbf{t}, \mathbf{y})=\|\mathbf{t}-\mathbf{y}\|^{2}=\sum_{i}\left(t_{i}-y_{i}\right)^{2}$
$\frac{\partial D(\mathbf{t}-\mathbf{y})}{\partial y_{j}}=\frac{\partial}{\partial y_{j}} \sum_{i}\left(t_{i}-y_{i}\right)^{2}=\sum_{i} \frac{\partial\left(t_{i}-y_{i}\right)^{2}}{\partial y_{j}}$
$=\frac{\mathrm{d}\left(t_{j}-y_{j}\right)^{2}}{\mathrm{~d} y_{j}}=-2\left(t_{j}-y_{j}\right)$
$\therefore \frac{\mathrm{d} D(\mathbf{t}, \mathbf{y})}{\mathrm{d} \mathbf{y}}=2(\mathbf{y}-\mathbf{t})$

Gradient of Error on $q^{\text {th }}$ Input

$$
\begin{aligned}
\frac{\partial E^{q}}{\partial P_{k}} & =\frac{\mathrm{d} D\left(\mathbf{t}^{q}, \mathbf{y}^{q}\right)}{\mathrm{d} \mathbf{y}^{q}} \cdot \frac{\partial \mathbf{y}^{q}}{\partial P_{k}} \\
& =2\left(\mathbf{y}^{q}-\mathbf{t}^{q}\right) \cdot \frac{\partial \mathbf{y}^{q}}{\partial P_{k}} \\
& =2 \sum_{j}\left(y_{j}^{q}-t_{j}^{q}\right) \frac{\partial y_{j}^{q}}{\partial P_{k}} \\
\nabla E^{q} & =2\left(\mathbf{J}^{q}\right)^{\mathrm{T}}\left(\mathbf{y}^{q}-\mathbf{t}^{q}\right)
\end{aligned}
$$

$$
\begin{gathered}
\text { Recap } \\
\dot{\mathbf{P}}=\eta \sum_{q}\left(\mathbf{J}^{\boldsymbol{q}}\right)^{\mathrm{T}}\left(\mathbf{t}^{\boldsymbol{q}}-\mathbf{y}^{q}\right)
\end{gathered}
$$

To know how to decrease the differences between \qquad actual \& desired outputs,
we need to know elements of Jacobian, ${ }^{\partial y_{j}^{q}} / \partial P_{k}$,
which says how j th output varies with k th parameter (given the q th input)
The Jacobian depends on the specific form of the system, in this case, a feedforward neural network

Multilayer Notation

\qquad
\qquad
\qquad
\qquad

Notation

- L layers of neurons labeled $1, \ldots, L$
- N_{l} neurons in layer l
- $\mathbf{s}^{l}=$ vector of outputs from neurons in layer l
- input layer $\mathbf{s}^{1}=\mathbf{x}^{q}$ (the input pattern)
- output layer $\mathbf{s}^{L}=\mathbf{y}^{q}$ (the actual output)
- $\mathbf{W}^{l}=$ weights between layers l and $l+1$
- Problem: find out how outputs y_{i}^{q} vary with weights $W_{j k}^{l}(l=1, \ldots, L-1)$

3/23/16

Typical Neuron

3/23/16

Error Back-Propagation

We will compute $\frac{\partial E^{q}}{\partial W_{i j}^{l}}$ starting with last layer $(l=L-1)$ and working back to earlier layers ($l=L-2, \ldots, 1$)

Delta Values

Convenient to break derivatives by chain rule:
$\frac{\partial E^{q}}{\partial W_{i j}^{l-1}}=\frac{\partial E^{q}}{\partial h_{i}^{l}} \frac{\partial h_{i}^{l}}{\partial W_{i j}^{l-1}}$
Let $\delta_{i}^{l}=\frac{\partial E^{q}}{\partial h_{i}^{l}}$
So $\frac{\partial E^{q}}{\partial W_{i j}^{l-1}}=\delta_{i}^{l} \frac{\partial h_{i}^{l}}{\partial W_{i j}^{l-1}}$

3/23/16

Output-Layer Neuron

3/23/6
47

Output-Layer Derivatives (1)

$$
\begin{aligned}
\delta_{i}^{L} & =\frac{\partial E^{q}}{\partial h_{i}^{L}}=\frac{\partial}{\partial h_{i}^{L}} \sum_{k}\left(s_{k}^{L}-t_{k}^{q}\right)^{2} \\
& =\frac{\mathrm{d}\left(s_{i}^{L}-t_{i}^{q}\right)^{2}}{\mathrm{~d} h_{i}^{L}}=2\left(s_{i}^{L}-t_{i}^{q}\right) \frac{\mathrm{d} s_{i}^{L}}{\mathrm{~d} h_{i}^{L}} \\
& =2\left(s_{i}^{L}-t_{i}^{q}\right) \sigma^{\prime}\left(h_{i}^{L}\right)
\end{aligned}
$$

Output-Layer Derivatives (2)

$$
\begin{aligned}
& \frac{\partial h_{i}^{L}}{\partial W_{i}^{L-L}}=\frac{\partial}{\partial W_{i j}^{L-L}} \sum_{k} w_{i k}^{L-1} s_{k}^{L-1}=s_{j}^{s^{L-1}} \\
& \therefore \frac{\partial E^{q}}{\partial W_{1-1}^{L-1}}=\delta_{i}^{t} s_{s}^{L-1} \\
& \text { where } \delta_{i}^{L}=2\left(s_{i}^{L}-t_{i}^{q} \sigma^{\top}\left(h_{i}^{L}\right)\right.
\end{aligned}
$$

Hidden-Layer Neuron

Hidden-Layer Derivatives (1)

$$
\text { Recall } \frac{\partial E^{9}}{\partial W_{i}^{-1}} \delta_{i} \frac{\partial h_{i}^{\prime}}{\partial W_{i}^{-1}}
$$

$\therefore \delta_{i}^{\prime}=\sum_{k}^{\delta_{k}^{\prime \prime} W_{k}^{\prime} \sigma^{\prime}\left(h_{i}^{\prime}\right)=\sigma^{\prime}\left(h_{i}^{\prime}\right) \sum_{k} \delta_{k}^{\prime \prime} W_{k i}^{\prime}}$

Hidden-Layer Derivatives (2)

$$
\begin{aligned}
& \frac{\partial h_{i}^{l}}{\partial W_{i j}^{l-1}}=\frac{\partial}{\partial W_{i j}^{l-1}} \sum_{k} W_{i k}^{l-1} s_{k}^{l-1}=\frac{\mathrm{d} W_{i j}^{l-1} s_{j}^{l-1}}{\mathrm{~d} W_{i j}^{l-1}}=s_{j}^{l-1} \\
\therefore & \frac{\partial E^{q}}{\partial W_{i j}^{l-1}}=\delta_{i}^{l} s_{j}^{l-1} \\
& \text { where } \delta_{i}^{l}=\sigma^{\prime}\left(h_{i}^{l}\right) \sum_{k} \delta_{k}^{l+1} W_{k i}^{l}
\end{aligned}
$$

Derivative of Sigmoid

Suppose $s=\sigma(h)=\frac{1}{1+\exp (-\alpha h)}$ (logistic sigmoid)
$\mathrm{D}_{h} s=\mathrm{D}_{h}[1+\exp (-\alpha h)]^{-1}=-[1+\exp (-\alpha h)]^{-2} \mathrm{D}_{h}\left(1+e^{-\alpha h}\right)$
$=-\left(1+e^{-\alpha h}\right)^{-2}\left(-\alpha e^{-\alpha h}\right)=\alpha \frac{e^{-\alpha h}}{\left(1+e^{-\alpha h}\right)^{2}}$
$=\alpha \frac{1}{1+e^{-\alpha h}} \frac{e^{-\alpha h}}{1+e^{-\alpha h}}=\alpha s\left(\frac{1+e^{-\alpha h}}{1+e^{-\alpha h}}-\frac{1}{1+e^{-\alpha h}}\right)$
$=\alpha s(1-s)$

3/23/16

Summary of Back-Propagation Algorithm

Output layer: $\delta_{i}^{L}=2 \alpha s_{i}^{L}\left(1-s_{i}^{L}\right)\left(s_{i}^{L}-t_{i}^{q}\right)$

$$
\frac{\partial E^{q}}{\partial W_{i j}^{L-1}}=\delta_{i}^{L} s_{j}^{L-1}
$$

Hidden layers: $\delta_{i}^{l}=\alpha s_{i}^{l}\left(1-s_{i}^{l}\right) \sum_{k} \delta_{k}^{l+1} W_{k i}^{l}$ \qquad

$$
\frac{\partial E^{q}}{\partial W_{i j}^{l-1}}=\delta_{i}^{l} s_{j}^{l-1}
$$

\qquad

Hidden-Layer Computation

Training Procedures

- Batch Learning
- on each epoch (pass through all the training pairs),
- weight changes for all pattems accumulated
- weight matrices updated at end of epoch
- accurate computation of gradient \qquad
- Online Learning
- weight are updated after back-prop of each training pair \qquad
- usually randomize order for each epoch
- approximation of gradient
- Doesn't make much difference

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

3/23/6

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

A Few Random Tips

- Too few neurons and the ANN may not be able to \qquad decrease the error enough
- Too many neurons can lead to rote learning \qquad
- Preprocess data to:
- standardize \qquad
- eliminate irrelevant information
- capture invariances
- keep relevant information
- If stuck in local min.,restart with different random weights
3/23/16

Run Example BP Learning

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

3/23/16

Beyond Back-Propagation

- Adaptive Learning Rate
- Adaptive Architecture
- Add/delete hidden neurons \qquad
- Add/delete hidden layers
- Radial Basis Function Networks \qquad
- Recurrent BP
- Etc., etc., etc....

Deep Belief Networks

- Inspired by hierarchical representations in mammalian sensory systems
- Use "deep" (multilayer) feed-forward nets
- Layers self-organize to represent input at progressively more abstract, task-relevant levels
- Supervised training (e.g.,BP) can be used to tune network performance.
- Each layer is a Restricted Boltzmann Machine

3/23/16

Restricted Boltzmann Machine

- Goal: hidden units become model of input domain
- Should capture statistics of input
- Evaluate by testing its ability to reproduce input statistics
- Change weights to decrease difference ${ }^{323316}$

(fig. from wikipedia) ${ }^{68}$

Unsupervised RBM Learning

- Stochastic binary units - Set y_{i}^{\prime} with probability
- Assume bias units $x_{0}=y_{0}=1$
- Set y_{i} with probability $\sigma\left(\sum_{j} W_{i j} x_{j}\right)$
- Set x_{j}^{\prime} with probability $\sigma\left(\sum_{i} W_{i j} y_{i}\right)$
$\sigma\left(\sum_{j} W_{i j} x_{j}^{\prime}\right)$
- After several cycles of sampling, update weights based on statistics:
$\Delta W_{i j}=\eta\left(\left\langle y_{i} x_{j}\right\rangle-\left\langle y_{i}^{\prime} x_{j}^{\prime}\right\rangle\right)$

Training a DBN Network

- Present inputs and do RBM learning with first hidden layer to develop model
- When converged, do RBM learning between first and second hidden layers to develop higher-level model
- Continue until all weight layers trained
- May further train with BP or other supervised learning algorithms

3/23/16

What is the Power of

 Artificial Neural Networks? \qquad- With respect to Turing machines?
- As function approximators?

3/23/16

Can ANNs Exceed the "Turing Limit"?

\qquad

- There are many results, which depend sensitively on \qquad assumptions; for example:
- Finite NNs with real-valued weights have super-Turing power (Siegelmann \& Sontag ‘94)
- Recurrent nets with Gaussian noise have sub-Turing power (Maass \& Sontag '99) \qquad
- Finite recurrent nets with real weights can recognize all languages, and thus are super-Turing (Siegelmann '99)
- Stochastic nets with rational weights have super-Turing
\qquad power (but only P/POLY, BPP/log*) (Siegelmann '99)
- But computing classes of functions is not a very rele vant
\qquad way to evaluate the capabilities of neural computation 3/23/16 72

A Universal Approximation Theorem

\qquad
Suppose f is a continuous function on $[0,1]^{n}$
Suppose σ is a nonconstant, bounded,
monotone increasing real function on \Re.
For any $\varepsilon>0$, there is an m such that
$\exists \mathbf{a} \in \mathfrak{R}^{m}, \mathbf{b} \in \mathfrak{R}^{n}, \mathbf{W} \in \mathfrak{R}^{m \times n}$ such that if
$F\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{m} a_{i} \sigma\left(\sum_{j=1}^{n} W_{i j} x_{j}+b_{j}\right)$
$[$ i.e., $F(\mathbf{x})=\mathbf{a} \cdot \sigma(\mathbf{W} \mathbf{x}+\mathbf{b})]$
then $|F(\mathbf{x})-f(\mathbf{x})|<\varepsilon$ for all $\mathbf{x} \in[0,1]^{\prime \prime}$
3/23/16
(see, e.g., Haykin, N.Nets 2/e, 208-9)

One Hidden Layer is Sufficient

- Conclusion: One hidden layer is sufficient to approximate any continuous function arbitrarily closely

3/23/16

The Golden Rule of Neural Nets

\qquad

Neural Networks are the second-best way to do everything!
\qquad
\qquad
B \qquad

