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IV. Neural Networks and Learning
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A.
Artificial Neural Net Learning
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Supervised Learning

• Produce desired outputs for training inputs
• Generalize reasonably & appropriately to 

other inputs
• Good example: pattern recognition
• Feedforward multilayer networks
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Feedforward Network
. .

 .

. .
 . . .
 . . .
 .

. .
 .

. .
 .

input
layer

output
layer

hidden
layers

3/23/16 5

Typical Artificial Neuron
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Typical Artificial Neuron
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Equations
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hi = wijs j
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h =Ws−θ

Net input:

€ 

" s i =σ hi( )
" s =σ h( )

Neuron output:
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Single-Layer Perceptron
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Variables
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Single Layer Perceptron 
Equations

€ 

Binary threshold activation function :  

σ h( ) =Θ h( ) =
1, if h > 0
0, if h ≤ 0
% 
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' 
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Hence, y =
1, if w j x j > θ

j∑
0, otherwise
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0, if w ⋅ x ≤θ
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2D Weight Vector

w

w1

w2
x

φ

€ 

w ⋅ x = w x cosφ

v

€ 

cosφ =
v
x

€ 

w ⋅ x = w v

€ 

w ⋅ x > θ

⇔ w v > θ

⇔ v > θ w

€ 

θ
w

+–

3/23/16 12

N-Dimensional Weight Vector
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Goal of Perceptron Learning

• Suppose we have training patterns x1, x2, 
…, xP with corresponding desired outputs 
y1, y2, …, yP

• where xp∈ {0, 1}n, yp∈ {0, 1}
• We want to find w, θ such that

yp = Θ(w·xp – θ) for p = 1, …, P
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Treating Threshold as Weight

ΘΣxj
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Treating Threshold as Weight

ΘΣxj

xn

x1

yh
wj

wn

w1

–θ
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h = w j x j
j=1
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∑
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= −θ + w j x j
j=1
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h = w0x0 + w j x j =
j=1

n

∑ w j x j = ˜ w ⋅ ˜ x 
j= 0

n

∑

= w0

x0 =

Let x0 = 1 and w0 = –𝜃

3/23/16 16

Augmented Vectors
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We want y p =Θ ˜ w ⋅ ˜ x p( ),   p =1,…,P
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Reformulation as Positive 
Examples

€ 

We have positive (y p =1) and negative (y p = 0) examples

€ 

Want ˜ w ⋅ ˜ x p > 0 for positive, ˜ w ⋅ ˜ x p ≤ 0 for negative

€ 

Let z p = ˜ x p  for positive, z p = − ˜ x p  for negative

  

€ 

Want ˜ w ⋅ z p ≥ 0, for p =1,…,P

€ 

Hyperplane through origin with all z p  on one side
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Adjustment of Weight Vector
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Outline of
Perceptron Learning Algorithm

1. initialize weight vector randomly

2. until all patterns classified correctly, do:
a) for p = 1, …, P do:

1) if zp classified correctly, do nothing
2) else adjust weight vector to be closer to correct 

classification
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Weight Adjustment

€ 

˜ w 

€ 

z p

€ 

ηz p

€ 

˜ " w 
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ηz p
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˜ " " w 
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Improvement in Performance

! !w ⋅ z p = !w+ηz p( ) ⋅ z p

= !w ⋅ z p +ηz p ⋅ z p

= !w ⋅ z p +η z p
2

> !w ⋅ z p
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Perceptron Learning Theorem

• If there is a set of weights that will solve the 
problem,

• then the PLA will eventually find it
• (for a sufficiently small learning rate)
• Note: only applies if positive & negative 

examples are linearly separable
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NetLogo Simulation of 
Perceptron Learning

Run Perceptron-Geometry.nlogo
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Classification Power of 
Multilayer Perceptrons

• Perceptrons can function as logic gates
• Therefore MLP can form intersections, 

unions, differences of linearly-separable 
regions

• Classes can be arbitrary hyperpolyhedra
• Minsky & Papert criticism of perceptrons
• No one succeeded in developing a MLP 

learning algorithm
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Hyperpolyhedral Classes
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Credit Assignment Problem
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How do we adjust the weights of the hidden layers?

. . .

Desired
output
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NetLogo Demonstration of
Back-Propagation Learning

Run Artificial Neural Net.nlogo
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Adaptive System

S F

Pk PmP1 … …

System
Evaluation Function

(Fitness, Figure of Merit)

Control Parameters
C

Control
Algorithm
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Gradient

€ 

∂F
∂Pk

 measures how F is altered by variation of Pk
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∇F points in direction of maximum local increase in F
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Gradient Ascent
on Fitness Surface

+
–

∇F

gradient ascent



Part 4A: Neural Network Learning 3/23/16

6

3/23/16 31

Gradient Ascent
by Discrete Steps

+
–

∇F
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Gradient Ascent is Local
But Not Shortest

+
–
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Gradient Ascent Process

€ 

˙ P =η∇F P( )

€ 

Change in fitness :

˙ F = dF
d t

=
∂F
∂Pk

dPk

d tk=1

m
∑ = ∇F( )k

˙ P kk=1

m
∑

˙ F =∇F ⋅ ˙ P 

€ 

˙ F =∇F ⋅η∇F =η ∇F 2
≥ 0

Therefore gradient ascent increases fitness
(until reaches 0 gradient)
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General Ascent in Fitness

€ 

Note that any adaptive process P t( ) will increase
 fitness provided :

0 < ˙ F =∇F ⋅ ˙ P = ∇F ˙ P cosϕ

where ϕ is angle between ∇F and ˙ P 

  

€ 

Hence we need cosϕ > 0
or ϕ < 90!
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General Ascent
on Fitness Surface

+
–

∇F
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Fitness as Minimum Error

  

€ 

Suppose for Q different inputs we have target outputs t1,…,tQ

  

€ 

Suppose for parameters P the corresponding actual outputs
 are y1,…,yQ

€ 

Suppose D t,y( )∈ 0,∞[ ) measures difference between
 target &  actual outputs

€ 

Let E q = D tq ,yq( ) be error on qth sample

€ 

Let F P( ) = − E q P( ) = − D tq ,yq P( )[ ]
q=1

Q

∑
q=1

Q

∑
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Gradient of Fitness

€ 

∇F =∇ − E q

q
∑

% 

& 
' ' 

( 

) 
* * = − ∇E q

q
∑

€ 

∂Eq

∂Pk
=

∂
∂Pk

D tq ,yq( )

€ 

=
∂D tq,yq( )

∂y j
q

j
∑

∂y j
q

∂Pk

€ 

=
dD tq,yq( )
dyq

⋅
∂yq

∂Pk

€ 

=∇y qD t
q,yq( ) ⋅ ∂y

q

∂Pk
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Jacobian Matrix

  

€ 

Define Jacobian matrix Jq =

∂y1
q

∂P1
! ∂y1

q

∂Pm
" # "

∂yn
q

∂P1
! ∂yn

q

∂Pm

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 

€ 

Note Jq ∈ ℜn×m  and ∇D tq,yq( )∈ ℜn×1

€ 

Since ∇E q( )k =
∂Eq

∂Pk
=

∂y j
q

∂Pk

∂D tq,yq( )
∂y j

q
j
∑ ,

€ 

∴∇Eq = Jq( )
T
∇D tq,yq( )
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Derivative of Squared Euclidean 
Distance

€ 

Suppose D t,y( ) = t − y 2
= ti − yi( )2

i∑

€ 

∂D t − y( )
∂y j

=
∂
∂y j

ti − yi( )2
i
∑ =

∂ ti − yi( )2

∂y ji
∑

€ 

=
d t j − y j( )

2

d y j

= −2 t j − y j( )

€ 

∴
dD t,y( )
dy

= 2 y − t( )
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Gradient of Error on qth Input

€ 

∂Eq

∂Pk
=
dD tq,yq( )
dyq

⋅
∂yq

∂Pk

= 2 yq − tq( ) ⋅ ∂y
q

∂Pk

= 2 y j
q − t j

q( )
∂y j

q

∂Pkj∑

€ 

∇Eq = 2 Jq( )
T
yq − tq( )
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Recap

€ 

To know how to decrease the differences between
 actual &  desired outputs,

we need to know elements of Jacobian, ∂y j
q

∂Pk
,

which says how jth output varies with kth parameter
(given the qth input)

The Jacobian depends on the specific form of the system,
in this case, a feedforward neural network

€ 

˙ P =η Jq( )
T

tq − yq( )q∑
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Multilayer Notation

W1 W2 WL–2 WL–1

s1 s2 sL–1 sL

xq yq
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Notation
• L layers of neurons labeled 1, …, L
• Nl neurons in layer l
• sl = vector of outputs from neurons in layer l
• input layer s1 = xq (the input pattern)
• output layer sL = yq (the actual output)
• Wl = weights between layers l and l+1
• Problem: find out how outputs yi

q vary with 
weights Wjk

l (l = 1, …, L–1)
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Typical Neuron

σΣsjl–1

sNl–1

s1 l–1

sil
hilWijl–1

WiNl–1

Wi1 l–1
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Error Back-Propagation

  

€ 

We will compute ∂E
q

∂Wij
l  starting with last layer (l = L −1)

and working back to earlier layers (l = L − 2,…,1)
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Delta Values

€ 

Convenient to break derivatives by chain rule :
∂Eq

∂Wij
l−1 =

∂Eq

∂hi
l
∂hi

l

∂Wij
l−1

Let δi
l =

∂Eq

∂hi
l

So ∂E
q

∂Wij
l−1 = δi

l ∂hi
l

∂Wij
l−1
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Output-Layer Neuron

σΣsjL–1

sNL–1

s1L–1

siL = yiq
hiLWijL–1

WiNL–1

Wi1L–1

tiq

Eq
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Output-Layer Derivatives (1)

€ 

δi
L =

∂Eq

∂hi
L =

∂
∂hi

L sk
L − tk

q( )2k∑

=
d si

L − ti
q( )
2

dhi
L = 2 si

L − ti
q( ) d si

L

dhi
L

= 2 si
L − ti

q( ) & σ hi
L( )
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Output-Layer Derivatives (2)

€ 

∂hi
L

∂Wij
L−1 =

∂
∂Wij

L−1 Wik
L−1sk

L−1

k
∑ = s j

L−1

€ 

∴
∂Eq

∂Wij
L−1 = δi

Ls j
L−1

    where δi
L = 2 si

L − ti
q( ) & σ hi

L( )
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Hidden-Layer Neuron

σΣsjl–1

sNl–1

s1 l–1

sil
hilWijl–1

WiNl–1

Wi1 l–1

skl+1

sNl+1

s1 l+1
W1 il

Wkil

WNil

s1 l

sNl

Eq
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Hidden-Layer Derivatives (1)

€ 

Recall ∂E
q

∂Wij
l−1 = δi

l ∂hi
l

∂Wij
l−1

€ 

δi
l =

∂Eq

∂hi
l =

∂Eq

∂hk
l+1
∂hk

l+1

∂hi
l

k
∑ = δk

l+1 ∂hk
l+1

∂hi
l

k
∑

€ 

∂hk
l+1

∂hi
l =

∂ Wkm
l sm

l

m∑
∂hi

l =
∂Wki

l si
l

∂hi
l =Wki

l dσ hi
l( )

dhi
l =Wki

l % σ hi
l( )

€ 

∴δi
l = δk

l+1Wki
l $ σ hi

l( )
k
∑ = $ σ hi

l( ) δk
l+1Wki

l

k
∑
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Hidden-Layer Derivatives (2)

€ 

∂hi
l

∂Wij
l−1 =

∂
∂Wij

l−1 Wik
l−1sk

l−1

k
∑ =

dWij
l−1s j

l−1

dWij
l−1 = s j

l−1

€ 

∴
∂Eq

∂Wij
l−1 = δi

l s j
l−1

    where δi
l = & σ hi

l( ) δk
l+1Wki

l

k
∑
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Derivative of Sigmoid

Suppose s =σ h( ) = 1
1+ exp −αh( )

 (logistic sigmoid)

€ 

Dh s =Dh 1+ exp −αh( )[ ]−1 = − 1+ exp −αh( )[ ]−2 Dh 1+ e−αh( )

= − 1+ e−αh( )−2 −αe−αh( ) =α
e−αh

1+ e−αh( )
2

=α
1

1+ e−αh
e−αh

1+ e−αh
=αs 1+ e−αh

1+ e−αh
−

1
1+ e−αh

$ 

% 
& 

' 

( 
) 

=αs(1− s)
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Summary of Back-Propagation 
Algorithm

€ 

Output layer :δi
L = 2αsi

L 1− si
L( ) siL − tiq( )

∂Eq

∂Wij
L−1 = δi

Ls j
L−1

€ 

Hidden layers :  δi
l =αsi

l 1− si
l( ) δk

l+1Wki
l

k
∑

∂Eq

∂Wij
l−1 = δi

l s j
l−1
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Output-Layer Computation

σΣsjL–1

sNL–1

s1L–1

siL = yiq
hiLWijL–1

WiNL–1

Wi1L–1

tiq–

δiL ×

2α

1–

€ 

δi
L = 2αsi

L 1− si
L( ) tiq − siL( )

× η

∆Wij
L–1

€ 

ΔWij
L−1 =ηδi

Ls j
L−1
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Hidden-Layer Computation

σΣsjl–1

sNl–1

s1 l–1

sil
hilWijl–1

WiNl–1

Wi1 l–1

skl+1

sNl+1

s1 l+1
W1 il

Wkil

WNil

Eq

δ1 l+1

δkl+1

δNl+1δil ×

α

1–

×

Σ

€ 

δi
l =αsi

l 1− si
l( ) δk

l+1Wki
l

k
∑

× η

∆Wij
l–1

€ 

ΔWij
l−1 =ηδi

l s j
l−1
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Training Procedures
• Batch Learning

– on each epoch (pass through all the training pairs),
– weight changes for all patterns accumulated
– weight matrices updated at end of epoch
– accurate computation of gradient

• Online Learning
– weight are updated after back-prop of each training pair
– usually randomize order for each epoch
– approximation of gradient

• Doesn’t make much difference
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Summation of Error Surfaces

E1

E2

E
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Gradient Computation
in Batch Learning

E1

E2

E
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Gradient Computation
in Online Learning

E1

E2

E
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Testing Generalization

Domain
Available

Data

Training
Data

Test
Data
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Problem of Rote Learning
error

epoch

error on
training

data

error on
test data

stop training here
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Improving Generalization

Domain
Available

Data

Training
Data

Validation Data

Test Data
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A Few Random Tips
• Too few neurons and the ANN may not be able to 

decrease the error enough
• Too many neurons can lead to rote learning
• Preprocess data to:

– standardize
– eliminate irrelevant information
– capture invariances
– keep relevant information

• If stuck in local min., restart with different random 
weights

Run Example BP Learning
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Beyond Back-Propagation

• Adaptive Learning Rate
• Adaptive Architecture

– Add/delete hidden neurons
– Add/delete hidden layers

• Radial Basis Function Networks
• Recurrent BP
• Etc., etc., etc.…
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Deep Belief Networks

• Inspired by hierarchical representations in 
mammalian sensory systems

• Use “deep” (multilayer) feed-forward nets
• Layers self-organize to represent input at 

progressively more abstract, task-relevant levels
• Supervised training (e.g., BP) can be used to tune 

network performance.
• Each layer is a Restricted Boltzmann Machine
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Restricted Boltzmann Machine
• Goal: hidden units 

become model of 
input domain

• Should capture 
statistics of input

• Evaluate by testing its 
ability to reproduce 
input statistics

• Change weights to 
decrease difference

3/23/16 68(fig. from wikipedia)

Unsupervised RBM Learning
• Stochastic binary units
• Assume bias units

• Set yi with probability

• Set xj/ with probability
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σ Wijx j
j
∑
"

#
$$

%

&
''

σ Wijyi
i
∑
"

#
$

%

&
'

• Set yi/ with probability

• After several cycles of 
sampling, update 
weights based on 
statistics:

σ Wij !x j
j
∑
#

$
%%

&

'
((x0 = y0 =1

ΔWij =η yix j − #yi #x j( )

Training a DBN Network

• Present inputs and do RBM learning with 
first hidden layer to develop model

• When converged, do RBM learning 
between first and second hidden layers to 
develop higher-level model

• Continue until all weight layers trained
• May further train with BP or other 

supervised learning algorithms
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What is the Power of
Artificial Neural Networks?

• With respect to Turing machines?

• As function approximators?

3/23/16 71

Can ANNs Exceed the “Turing Limit”?
• There are many results, which depend sensitively on 

assumptions; for example:
• Finite NNs with real-valued weights have super-Turing 

power (Siegelmann & Sontag ‘94)
• Recurrent nets with Gaussian noise have sub-Turing power 

(Maass & Sontag ‘99)
• Finite recurrent nets with real weights can recognize all 

languages, and thus are super-Turing (Siegelmann ‘99)
• Stochastic nets with rational weights have super-Turing 

power (but only P/POLY, BPP/log*) (Siegelmann ‘99)
• But computing classes of functions is not a very relevant 

way to evaluate the capabilities of neural computation
3/23/16 72
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A Universal Approximation Theorem
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€ 

Suppose f is a continuous function on 0,1[ ]n

€ 

Suppose σ is a nonconstant, bounded, 
    monotone increasing real function on ℜ.

€ 

For any ε > 0, there is an m such that
     ∃a ∈ ℜm ,  b∈ ℜn,  W ∈ ℜm×n  such that if

  

€ 

F x1,…,xn( ) = aiσ Wij x j + b j
j=1

n

∑
$ 

% 
& & 

' 

( 
) ) 

i=1

m

∑

€ 

i.e.,  F x( ) = a ⋅σ Wx + b( )[ ]

€ 

then F x( ) − f x( ) < ε for all x ∈ 0,1[ ]n

(see, e.g.,  Haykin, N.Nets 2/e, 208–9)

One Hidden Layer is Sufficient
• Conclusion: One hidden layer is sufficient 

to approximate any continuous function 
arbitrarily closely
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Σσ

Σσ

Σσ

Σ

1
x1

xn

a1

am

a2

b1

Wmn
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The Golden Rule of Neural Nets

Neural Networks are the
second-best way
to do everything!

IVB


