
Part 4A: Neural Network Learning 3/23/16

1

3/23/16 1

IV. Neural Networks and Learning

3/23/16 2

A.
Artificial Neural Net Learning

3/23/16 3

Supervised Learning

• Produce desired outputs for training inputs
• Generalize reasonably & appropriately to

other inputs
• Good example: pattern recognition
• Feedforward multilayer networks

3/23/16 4

Feedforward Network
. .

 .

. .
 . . .
 . . .
 .

. .
 .

. .
 .

input
layer

output
layer

hidden
layers

3/23/16 5

Typical Artificial Neuron

inputs

connection
weights

threshold

output

3/23/16 6

Typical Artificial Neuron

linear
combination

net input
(local field)

activation
function

Part 4A: Neural Network Learning 3/23/16

2

3/23/16 7

Equations

€

hi = wijs j
j=1

n

∑

$
% %

&

'
((−θ

h =Ws−θ

Net input:

€

" s i =σ hi()
" s =σ h()

Neuron output:

3/23/16 8

Single-Layer Perceptron

. .
 . . .

 .
3/23/16 9

Variables

ΘΣxj

xn

x1

yh
wj

wn

w1

θ

3/23/16 10

Single Layer Perceptron
Equations

€

Binary threshold activation function :

σ h() =Θ h() =
1, if h > 0
0, if h ≤ 0
%
&
'

€

Hence, y =
1, if w j x j > θ

j∑
0, otherwise

$
%
&

=
1, if w ⋅ x > θ

0, if w ⋅ x ≤θ
$
%
&

3/23/16 11

2D Weight Vector

w

w1

w2
x

φ

€

w ⋅ x = w x cosφ

v

€

cosφ =
v
x

€

w ⋅ x = w v

€

w ⋅ x > θ

⇔ w v > θ

⇔ v > θ w

€

θ
w

+–

3/23/16 12

N-Dimensional Weight Vector

w

+

–

separating
hyperplane

normal
vector

Part 4A: Neural Network Learning 3/23/16

3

3/23/16 13

Goal of Perceptron Learning

• Suppose we have training patterns x1, x2,
…, xP with corresponding desired outputs
y1, y2, …, yP

• where xp∈ {0, 1}n, yp∈ {0, 1}
• We want to find w, θ such that

yp = Θ(w·xp – θ) for p = 1, …, P

3/23/16 14

Treating Threshold as Weight

ΘΣxj

xn

x1

yh
wj

wn

w1

θ

€

h = w j x j
j=1

n

∑

$
% %

&

'
((−θ

= −θ + w j x j
j=1

n

∑

3/23/16 15

Treating Threshold as Weight

ΘΣxj

xn

x1

yh
wj

wn

w1

–θ

€

h = w j x j
j=1

n

∑

$
% %

&

'
((−θ

= −θ + w j x j
j=1

n

∑

1

€

h = w0x0 + w j x j =
j=1

n

∑ w j x j = ˜ w ⋅ ˜ x
j= 0

n

∑

= w0

x0 =

Let x0 = 1 and w0 = –𝜃

3/23/16 16

Augmented Vectors

€

˜ w =

θ

w1

!
wn

$

%
%
%
%

&

'

(
(
(
(

€

˜ x p =

−1
x1
p

!
xn
p

$

%
%
%
%

&

'

(
(
(
(

€

We want y p =Θ ˜ w ⋅ ˜ x p(), p =1,…,P

3/23/16 17

Reformulation as Positive
Examples

€

We have positive (y p =1) and negative (y p = 0) examples

€

Want ˜ w ⋅ ˜ x p > 0 for positive, ˜ w ⋅ ˜ x p ≤ 0 for negative

€

Let z p = ˜ x p for positive, z p = − ˜ x p for negative

€

Want ˜ w ⋅ z p ≥ 0, for p =1,…,P

€

Hyperplane through origin with all z p on one side
3/23/16 18

Adjustment of Weight Vector

z1 0

z1 1

z1

z6

z7

z8

z4z3

z9

z5

z2

Part 4A: Neural Network Learning 3/23/16

4

3/23/16 19

Outline of
Perceptron Learning Algorithm

1. initialize weight vector randomly

2. until all patterns classified correctly, do:
a) for p = 1, …, P do:

1) if zp classified correctly, do nothing
2) else adjust weight vector to be closer to correct

classification

3/23/16 20

Weight Adjustment

€

˜ w

€

z p

€

ηz p

€

˜ " w

€

ηz p

€

˜ " " w

3/23/16 21

Improvement in Performance

! !w ⋅ z p = !w+ηz p() ⋅ z p

= !w ⋅ z p +ηz p ⋅ z p

= !w ⋅ z p +η z p
2

> !w ⋅ z p

3/23/16 22

Perceptron Learning Theorem

• If there is a set of weights that will solve the
problem,

• then the PLA will eventually find it
• (for a sufficiently small learning rate)
• Note: only applies if positive & negative

examples are linearly separable

3/23/16 23

NetLogo Simulation of
Perceptron Learning

Run Perceptron-Geometry.nlogo

3/23/16 24

Classification Power of
Multilayer Perceptrons

• Perceptrons can function as logic gates
• Therefore MLP can form intersections,

unions, differences of linearly-separable
regions

• Classes can be arbitrary hyperpolyhedra
• Minsky & Papert criticism of perceptrons
• No one succeeded in developing a MLP

learning algorithm

Part 4A: Neural Network Learning 3/23/16

5

Hyperpolyhedral Classes

3/23/16 25 3/23/16 26

Credit Assignment Problem

. .
 .

. .
 . . .
 . . .
 .

. .
 .

. .
 .

input
layer

output
layer

hidden
layers

How do we adjust the weights of the hidden layers?

. . .

Desired
output

3/23/16 27

NetLogo Demonstration of
Back-Propagation Learning

Run Artificial Neural Net.nlogo

3/23/16 28

Adaptive System

S F

Pk PmP1 … …

System
Evaluation Function

(Fitness, Figure of Merit)

Control Parameters
C

Control
Algorithm

3/23/16 29

Gradient

€

∂F
∂Pk

 measures how F is altered by variation of Pk

€

∇F =

∂F
∂P1
!

∂F
∂Pk
!

∂F
∂Pm

$

%

&
&
&
&
&
& &

'

(

)
)
)
)
)
))

€

∇F points in direction of maximum local increase in F

3/23/16 30

Gradient Ascent
on Fitness Surface

+
–

∇F

gradient ascent

Part 4A: Neural Network Learning 3/23/16

6

3/23/16 31

Gradient Ascent
by Discrete Steps

+
–

∇F

3/23/16 32

Gradient Ascent is Local
But Not Shortest

+
–

3/23/16 33

Gradient Ascent Process

€

˙ P =η∇F P()

€

Change in fitness :

˙ F = dF
d t

=
∂F
∂Pk

dPk

d tk=1

m
∑ = ∇F()k

˙ P kk=1

m
∑

˙ F =∇F ⋅ ˙ P

€

˙ F =∇F ⋅η∇F =η ∇F 2
≥ 0

Therefore gradient ascent increases fitness
(until reaches 0 gradient)

3/23/16 34

General Ascent in Fitness

€

Note that any adaptive process P t() will increase
 fitness provided :

0 < ˙ F =∇F ⋅ ˙ P = ∇F ˙ P cosϕ

where ϕ is angle between ∇F and ˙ P

€

Hence we need cosϕ > 0
or ϕ < 90!

3/23/16 35

General Ascent
on Fitness Surface

+
–

∇F

3/23/16 36

Fitness as Minimum Error

€

Suppose for Q different inputs we have target outputs t1,…,tQ

€

Suppose for parameters P the corresponding actual outputs
 are y1,…,yQ

€

Suppose D t,y()∈ 0,∞[) measures difference between
 target & actual outputs

€

Let E q = D tq ,yq() be error on qth sample

€

Let F P() = − E q P() = − D tq ,yq P()[]
q=1

Q

∑
q=1

Q

∑

Part 4A: Neural Network Learning 3/23/16

7

3/23/16 37

Gradient of Fitness

€

∇F =∇ − E q

q
∑

%

&
' '

(

)
* * = − ∇E q

q
∑

€

∂Eq

∂Pk
=

∂
∂Pk

D tq ,yq()

€

=
∂D tq,yq()

∂y j
q

j
∑

∂y j
q

∂Pk

€

=
dD tq,yq()
dyq

⋅
∂yq

∂Pk

€

=∇y qD t
q,yq() ⋅ ∂y

q

∂Pk
3/23/16 38

Jacobian Matrix

€

Define Jacobian matrix Jq =

∂y1
q

∂P1
! ∂y1

q

∂Pm
" # "

∂yn
q

∂P1
! ∂yn

q

∂Pm

$

%
%
%
%

&

'

(
(
(
(

€

Note Jq ∈ ℜn×m and ∇D tq,yq()∈ ℜn×1

€

Since ∇E q()k =
∂Eq

∂Pk
=

∂y j
q

∂Pk

∂D tq,yq()
∂y j

q
j
∑ ,

€

∴∇Eq = Jq()
T
∇D tq,yq()

3/23/16 39

Derivative of Squared Euclidean
Distance

€

Suppose D t,y() = t − y 2
= ti − yi()2

i∑

€

∂D t − y()
∂y j

=
∂
∂y j

ti − yi()2
i
∑ =

∂ ti − yi()2

∂y ji
∑

€

=
d t j − y j()

2

d y j

= −2 t j − y j()

€

∴
dD t,y()
dy

= 2 y − t()

3/23/16 40

Gradient of Error on qth Input

€

∂Eq

∂Pk
=
dD tq,yq()
dyq

⋅
∂yq

∂Pk

= 2 yq − tq() ⋅ ∂y
q

∂Pk

= 2 y j
q − t j

q()
∂y j

q

∂Pkj∑

€

∇Eq = 2 Jq()
T
yq − tq()

3/23/16 41

Recap

€

To know how to decrease the differences between
 actual & desired outputs,

we need to know elements of Jacobian, ∂y j
q

∂Pk
,

which says how jth output varies with kth parameter
(given the qth input)

The Jacobian depends on the specific form of the system,
in this case, a feedforward neural network

€

˙ P =η Jq()
T

tq − yq()q∑

3/23/16 42

Multilayer Notation

W1 W2 WL–2 WL–1

s1 s2 sL–1 sL

xq yq

Part 4A: Neural Network Learning 3/23/16

8

3/23/16 43

Notation
• L layers of neurons labeled 1, …, L
• Nl neurons in layer l
• sl = vector of outputs from neurons in layer l
• input layer s1 = xq (the input pattern)
• output layer sL = yq (the actual output)
• Wl = weights between layers l and l+1
• Problem: find out how outputs yi

q vary with
weights Wjk

l (l = 1, …, L–1)
3/23/16 44

Typical Neuron

σΣsjl–1

sNl–1

s1 l–1

sil
hilWijl–1

WiNl–1

Wi1 l–1

3/23/16 45

Error Back-Propagation

€

We will compute ∂E
q

∂Wij
l starting with last layer (l = L −1)

and working back to earlier layers (l = L − 2,…,1)

3/23/16 46

Delta Values

€

Convenient to break derivatives by chain rule :
∂Eq

∂Wij
l−1 =

∂Eq

∂hi
l
∂hi

l

∂Wij
l−1

Let δi
l =

∂Eq

∂hi
l

So ∂E
q

∂Wij
l−1 = δi

l ∂hi
l

∂Wij
l−1

3/23/16 47

Output-Layer Neuron

σΣsjL–1

sNL–1

s1L–1

siL = yiq
hiLWijL–1

WiNL–1

Wi1L–1

tiq

Eq

3/23/16 48

Output-Layer Derivatives (1)

€

δi
L =

∂Eq

∂hi
L =

∂
∂hi

L sk
L − tk

q()2k∑

=
d si

L − ti
q()
2

dhi
L = 2 si

L − ti
q() d si

L

dhi
L

= 2 si
L − ti

q() & σ hi
L()

Part 4A: Neural Network Learning 3/23/16

9

3/23/16 49

Output-Layer Derivatives (2)

€

∂hi
L

∂Wij
L−1 =

∂
∂Wij

L−1 Wik
L−1sk

L−1

k
∑ = s j

L−1

€

∴
∂Eq

∂Wij
L−1 = δi

Ls j
L−1

 where δi
L = 2 si

L − ti
q() & σ hi

L()

3/23/16 50

Hidden-Layer Neuron

σΣsjl–1

sNl–1

s1 l–1

sil
hilWijl–1

WiNl–1

Wi1 l–1

skl+1

sNl+1

s1 l+1
W1 il

Wkil

WNil

s1 l

sNl

Eq

3/23/16 51

Hidden-Layer Derivatives (1)

€

Recall ∂E
q

∂Wij
l−1 = δi

l ∂hi
l

∂Wij
l−1

€

δi
l =

∂Eq

∂hi
l =

∂Eq

∂hk
l+1
∂hk

l+1

∂hi
l

k
∑ = δk

l+1 ∂hk
l+1

∂hi
l

k
∑

€

∂hk
l+1

∂hi
l =

∂ Wkm
l sm

l

m∑
∂hi

l =
∂Wki

l si
l

∂hi
l =Wki

l dσ hi
l()

dhi
l =Wki

l % σ hi
l()

€

∴δi
l = δk

l+1Wki
l $ σ hi

l()
k
∑ = $ σ hi

l() δk
l+1Wki

l

k
∑

3/23/16 52

Hidden-Layer Derivatives (2)

€

∂hi
l

∂Wij
l−1 =

∂
∂Wij

l−1 Wik
l−1sk

l−1

k
∑ =

dWij
l−1s j

l−1

dWij
l−1 = s j

l−1

€

∴
∂Eq

∂Wij
l−1 = δi

l s j
l−1

 where δi
l = & σ hi

l() δk
l+1Wki

l

k
∑

3/23/16 53

Derivative of Sigmoid

Suppose s =σ h() = 1
1+ exp −αh()

 (logistic sigmoid)

€

Dh s =Dh 1+ exp −αh()[]−1 = − 1+ exp −αh()[]−2 Dh 1+ e−αh()

= − 1+ e−αh()−2 −αe−αh() =α
e−αh

1+ e−αh()
2

=α
1

1+ e−αh
e−αh

1+ e−αh
=αs 1+ e−αh

1+ e−αh
−

1
1+ e−αh

$

%
&

'

(
)

=αs(1− s)

3/23/16 54

Summary of Back-Propagation
Algorithm

€

Output layer :δi
L = 2αsi

L 1− si
L() siL − tiq()

∂Eq

∂Wij
L−1 = δi

Ls j
L−1

€

Hidden layers : δi
l =αsi

l 1− si
l() δk

l+1Wki
l

k
∑

∂Eq

∂Wij
l−1 = δi

l s j
l−1

Part 4A: Neural Network Learning 3/23/16

10

3/23/16 55

Output-Layer Computation

σΣsjL–1

sNL–1

s1L–1

siL = yiq
hiLWijL–1

WiNL–1

Wi1L–1

tiq–

δiL ×

2α

1–

€

δi
L = 2αsi

L 1− si
L() tiq − siL()

× η

∆Wij
L–1

€

ΔWij
L−1 =ηδi

Ls j
L−1

3/23/16 56

Hidden-Layer Computation

σΣsjl–1

sNl–1

s1 l–1

sil
hilWijl–1

WiNl–1

Wi1 l–1

skl+1

sNl+1

s1 l+1
W1 il

Wkil

WNil

Eq

δ1 l+1

δkl+1

δNl+1δil ×

α

1–

×

Σ

€

δi
l =αsi

l 1− si
l() δk

l+1Wki
l

k
∑

× η

∆Wij
l–1

€

ΔWij
l−1 =ηδi

l s j
l−1

3/23/16 57

Training Procedures
• Batch Learning

– on each epoch (pass through all the training pairs),
– weight changes for all patterns accumulated
– weight matrices updated at end of epoch
– accurate computation of gradient

• Online Learning
– weight are updated after back-prop of each training pair
– usually randomize order for each epoch
– approximation of gradient

• Doesn’t make much difference
3/23/16 58

Summation of Error Surfaces

E1

E2

E

3/23/16 59

Gradient Computation
in Batch Learning

E1

E2

E

3/23/16 60

Gradient Computation
in Online Learning

E1

E2

E

Part 4A: Neural Network Learning 3/23/16

11

3/23/16 61

Testing Generalization

Domain
Available

Data

Training
Data

Test
Data

3/23/16 62

Problem of Rote Learning
error

epoch

error on
training

data

error on
test data

stop training here

3/23/16 63

Improving Generalization

Domain
Available

Data

Training
Data

Validation Data

Test Data

3/23/16 64

A Few Random Tips
• Too few neurons and the ANN may not be able to

decrease the error enough
• Too many neurons can lead to rote learning
• Preprocess data to:

– standardize
– eliminate irrelevant information
– capture invariances
– keep relevant information

• If stuck in local min., restart with different random
weights

Run Example BP Learning

3/23/16 65

Beyond Back-Propagation

• Adaptive Learning Rate
• Adaptive Architecture

– Add/delete hidden neurons
– Add/delete hidden layers

• Radial Basis Function Networks
• Recurrent BP
• Etc., etc., etc.…
3/23/16 66

Part 4A: Neural Network Learning 3/23/16

12

Deep Belief Networks

• Inspired by hierarchical representations in
mammalian sensory systems

• Use “deep” (multilayer) feed-forward nets
• Layers self-organize to represent input at

progressively more abstract, task-relevant levels
• Supervised training (e.g., BP) can be used to tune

network performance.
• Each layer is a Restricted Boltzmann Machine

3/23/16 67

Restricted Boltzmann Machine
• Goal: hidden units

become model of
input domain

• Should capture
statistics of input

• Evaluate by testing its
ability to reproduce
input statistics

• Change weights to
decrease difference

3/23/16 68(fig. from wikipedia)

Unsupervised RBM Learning
• Stochastic binary units
• Assume bias units

• Set yi with probability

• Set xj/ with probability

3/23/16 69

σ Wijx j
j
∑
"

#
$$

%

&
''

σ Wijyi
i
∑
"

#
$

%

&
'

• Set yi/ with probability

• After several cycles of
sampling, update
weights based on
statistics:

σ Wij !x j
j
∑
#

$
%%

&

'
((x0 = y0 =1

ΔWij =η yix j − #yi #x j()

Training a DBN Network

• Present inputs and do RBM learning with
first hidden layer to develop model

• When converged, do RBM learning
between first and second hidden layers to
develop higher-level model

• Continue until all weight layers trained
• May further train with BP or other

supervised learning algorithms
3/23/16 70

What is the Power of
Artificial Neural Networks?

• With respect to Turing machines?

• As function approximators?

3/23/16 71

Can ANNs Exceed the “Turing Limit”?
• There are many results, which depend sensitively on

assumptions; for example:
• Finite NNs with real-valued weights have super-Turing

power (Siegelmann & Sontag ‘94)
• Recurrent nets with Gaussian noise have sub-Turing power

(Maass & Sontag ‘99)
• Finite recurrent nets with real weights can recognize all

languages, and thus are super-Turing (Siegelmann ‘99)
• Stochastic nets with rational weights have super-Turing

power (but only P/POLY, BPP/log*) (Siegelmann ‘99)
• But computing classes of functions is not a very relevant

way to evaluate the capabilities of neural computation
3/23/16 72

Part 4A: Neural Network Learning 3/23/16

13

A Universal Approximation Theorem

3/23/16 73

€

Suppose f is a continuous function on 0,1[]n

€

Suppose σ is a nonconstant, bounded,
 monotone increasing real function on ℜ.

€

For any ε > 0, there is an m such that
 ∃a ∈ ℜm , b∈ ℜn, W ∈ ℜm×n such that if

€

F x1,…,xn() = aiσ Wij x j + b j
j=1

n

∑
$

%
& &

'

(
))

i=1

m

∑

€

i.e., F x() = a ⋅σ Wx + b()[]

€

then F x() − f x() < ε for all x ∈ 0,1[]n

(see, e.g., Haykin, N.Nets 2/e, 208–9)

One Hidden Layer is Sufficient
• Conclusion: One hidden layer is sufficient

to approximate any continuous function
arbitrarily closely

3/23/16 74

Σσ

Σσ

Σσ

Σ

1
x1

xn

a1

am

a2

b1

Wmn

3/23/16 75

The Golden Rule of Neural Nets

Neural Networks are the
second-best way
to do everything!

IVB

