Part 4 A:

Neural Network Learning

IV. Neural Networks and Learning

3123/16 1

3/23/16

A.
Artificial Neural Net Learning

3123116

Supervised Learning

* Produce desired outputs for training inputs

* Generalize reasonably & appropriately to
other inputs

* Good example: pattern recognition

Feedforward multilayer networks

312316 6l

Feedforward Network

input hidden
layer layers

3123/16

Typical Artificial Neuron

— connection
s ichts
1 weights

©

inputs -<

threshold

312316 5

Typical Artificial Neuron

activation

Osl function
ésj Wij /T @f) S

net input
(local field)

312316

Part 4A: Neural Network Learning

Equations

iwusj) -0
j=1

h=Ws-6

Net input: h, =

Neuron output: s, =o(h;)

3123/16

3/23/16

Single-Layer Perceptron

3123116

Variables

312316

Single Layer Perceptron
Equations

Binary threshold activation function :

I ifh>0
h)= =
IS U] {0, ith<0

flge i ij‘vx >0
otherwise

, ifw-x>60
o, ifw-x=0

Hence, y = {

i (=)

3123/16

2D Weight Vector

Wy
W x =[x cos ¢

v
COS¢=M

w-x =|wly

w-x>60

< |wlv>6

SV B/HWH

312316

N-Dimensional Weight Vector
©

normal
w vector
separating
hyperplane

312316

Part 4 A:

Neural Network Learning

3/23/16

Goal of Perceptron Learning

* Suppose we have training patterns x!, x2,
..., x* with corresponding desired outputs

g caa e
e where x? € {0, 1}, € {0, 1}
e We want to find w, 0 such that
W=0wx?-0)forp=1,...,P

3123/16 13

Treating Threshold as Weight
h= (2wjx/) -0

3123116 14

Treating Threshold as Weight
Xo = h=(§wjxi)—0

n
h=w0x0+2wjxj =ijx/=W‘X

312316 15

Augmented Vectors

0 -1
= W) xlp
w=| . Sl %

w xp

3123/16 16

Reformulation as Positive
Examples

We have positive (y” =1) and negative (y” =0) examples
Want w- X’ >0 for positive, W+ X” <0 for negative
Let z” =X” for positive, z” = -X” for negative

Wantw-z’ =0, forp=1,...,P

Hyperplane through origin with all z” on one side

312316 17

Adjustment of Weight Vector

312316 18

Neural Network Learning

Outline of
Perceptron Learning Algorithm

1. initialize weight vector randomly
2. until all patterns classified correctly, do:

a) forp=1,...,Pdo:
1) if z» classified comrectly, do nothing

2) else adjust weight vector to be closer to correct
classification

3123/16

Weight Adjustment
W,:Q,ZP o
T 5
z"

=

B

3123/16 20

Improvement in Performance

312316

Perceptron Learning Theorem

o If there is a set of weights that will solve the
problem,

e then the PLA will eventually find it

* (for a sufficiently small learning rate)

» Note: only applies if positive & negative
examples are linearly separable

3123/16 2

NetLogo Simulation of
Perceptron Learning

Run Perceptron-Geometry.nlogo

312316

Classification Power of
Multilayer Perceptrons

* Perceptrons can function as logic gates

e Therefore MLP can form intersections,
unions, differences of linearly-separable
regions

e Classes can be arbitrary hyperpolyhedra

* Minsky & Papert criticism of perceptrons

* No one succeeded in developing a MLP
learning algorithm

312316 24

Part 4A: Neural Network Learning

3/23/16

Hyperpolyhedral Classes

N

T

3123116

Credit Assignment Problem

How do we adjust the weights of the hidden layers?

Desired
output

— -/ \ J

input hidden output
layer layers layer

312316 26

NetLogo Demonstration of
Back-Propagation Learning

Run Artificial Neural Net.nlogo

312316

Adaptive System

Evaluation Function
System (Fitness, Figure of Merit

Control
Algorithm

Control Parameters

3123/16

Gradient

JF ; o
—— measures how F is altered by variation of P,
k
oF
Apu

oF
vE=| %o,

F
OF,,

VF points in direction of maximum local increase in F

312316 29

Gradient Ascent
on Fitness Surface

312316

Part 4 A:

Neural Network Learning

3/23/16

Gradient Ascent
by Discrete Steps

3123116 31

Gradient Ascent 1s Local
But Not Shortest

Gk

3123116 32

Gradient Ascent Process
P =nVF(P)

Change in fitness :

. dE m JF dP, m .
F= E = Eka?p‘cdilk w Ek=1(VF)kP"
F=VF-P

F =VF -nVF =q|VF[20

Therefore gradient ascent increases fitness
(until reaches 0 gradient)

312316 33

General Ascent in Fitness
Note that any adaptive process P(¢) will increase
fitness provided:
0<F =VF P =|VF[[P|cose

where ¢ is angle between VF and P

Hence we need cosg >0

or |g| < 90

3123/16 34

General Ascent
on Fitness Surface

312316 35

Fitness as Minimum Error

Suppose for Q different inputs we have target outputs t',... t°
Suppose for parameters P the corresponding actual outputs
arey',...,y?

Suppose D(t,y) € [0,%) measures difference between

target & actual outputs

LetE? = D(t",y") be error on gth sample

[

g=1 q-1

312316 36

Part 4 A:

Neural Network Learning

Gradient of Fitness

VF =V —EE"]=—EVE"
q q
JEE ‘4 aD(t’.y") oy
anaPkD(tq’yq):; ay’ P,
_dD(ty?) gy

dy? dP,
3! Ly’
-v,.Dltry)- 7

3123116

3/23/16

Jacobian Matrix
T

Note J € R™" and VD(t",y") e R

Define Jacobian matrix J? =

_OE' oy aD(tyY)

Since (VE")A = =
SR Shab gy

>

~VE* = (1) vD(t".y")

3123116

Derivative of Squared Euclidean
Distance

Suppose D(t.y) =t -y = 3 (1,-».)’

312316

Gradient of Error on g'" Input

aE" _dD(t'y') oy’
oP, dy' P,

=2(yq _tq).%
k

Ay
P

VE =2(3*) (y* -t)

3123/16

Recap
P () (=)

To know how to decrease the differences between
actual & desired outputs,

g
we need to know elements of Jacobian, &y%) ¢
k

which says how jth output varies with kth parameter
(given the gth input)

The Jacobian depends on the specific form of the system,
in this case, a feedforward neural network

312316 41

Multilayer Notation

1
AY
/ >\
x4 W! | w2 < Wi-2| Wi-1| ya
YN/
Y
he ’
sl S2 7’ SI—I SI

312316

Part 4 A:

Neural Network Learning

Notation
e [layers of neurons labeled 1, ..., L
* N,neurons in layer /
* s/ = vector of outputs from neurons in layer /
* input layer s' = x7 (the input pattern)
e output layer st = y4 (the actual output)
* W! = weights between layers /and [+1

* Problem: find out how outputs y;¢ vary with
weights W,/ (I =1, ..., L-1)

3123116 43

3/23/16

Typical Neuron

Error Back-Propagation

q

We will compute 2D 7 starting with last layer (/=L -1)
i

and working back to earlier layers (/ = L -2,...,1)

312316 45

1
3123/16 44
Delta Values
Convenient to break derivatives by chain rule:
JE‘ OE' Oh|
W, h oW,
q
Let &/ = i
oh;
q !
So (7E1_] =6! z?hll_]
W, W,

3123/16 46

Output-Layer Neuron

312316 47

Output-Layer Derivatives (1)

L_aEq J (,f—l,?)z

T e e
d(st) ¢
=(Sth) =2(sf—tf’)j%

312316 48

Part 4A: Neural Network Learning

ohf J EE 1) 15 L-1
e e A = W
7= Tzl datat e i
Wt w4

_ OE*
et L-1
W]

where &/ = 2(5,-L ‘tfq)ol(hfL)

L _L-1
=0d;s;

3123/16

Output-Layer Derivatives (2)

Hidden-Layer Derivatives (1)

GE! _ 5 h|

Wl'_/l'il ‘&WUH
JE“ OE? oh"! "

(5,/= A~ kN5 2
oh! Zﬁh{‘ on! 2 4

Jh!
a0 Wisn _awist _, do(hi)
4% 1 F —=Wu T
h! ! ! dh!

Recall

= Wk[io-,(hz’)

o= Sorwio'(!)=o'(n) 8w,

k

Hidden-Layer Neuron

3123116

Hidden-Layer Derivatives (2)

-1 _I-1
ol a0 EWI-ISI—I_M_S’-‘
T -1 i R R TR
é’W’] aW,'j k dWU
OE‘
T cS,vlslj'l
ij

where §/ = cr’(hf)E o'W
k

3123/16

X
Derivative of Sigmoid
1 g .
Suppose s =0 (h) = m (logistic sigmoid)

D,s=D, [1 + exp(—ah)]_] = —[1 + exp(—oeh)]_Z D, (1 + e'“”)

W) = -ah
= —(1 it) (—ae h) =a (1 je*"’?)z
—ah

o 1 e e 1+e"”’_ 1
e | o | "

=as(l-ys)

312316

Summary of Back-Propagation

Algorithm
Output layer: 8 = 2as” (1 -st)(sf - t,”’)
IE* .
i

Hidden layers: ¢, = as, (1 -)E oW
k

312316

3/23/16

Part 4A:

Neural Network Learning

Output-Layer Computation

AW =38 st

3123/16 55

Hidden-Layer Computation

o] —eul(1-51) 20 W,
&

3123116 56

Training Procedures

¢ Batch Learning
— on each epoch (passthrough all the training pairs),
— weight changes for all pattems accumulated
— weight matrices updated at end of epoch
— accurate computation of gradient
¢ Online Learning
— weight are updated after back-prop of each training pair
— usually randomize order for each epoch
— approximation of gradient
¢ Doesn’t make much difference

312316 57

Summation of Error Surfaces

3123/16 58

Gradient Computation
in Batch Learning

B

312316 59

Gradient Computation
in Online Learning

E

312316 60

3/23/16

10

Part 4A:

Neural Network Learning

Testing Generalization

Training

Data
——

Test
Data

3123/16 61

Problem of Rote Learning

error

error on
test data

error on
training
data

=

epoch

stop training here

3123/16 62

Improving Generalization

Training
Data
——

[Validation Dat
——

>,

3123/16 63

A Few Random Tips

Too few neurons and the ANN may not beable to
decrease the error enough
Too many neurons can lead to rote learning
Preprocess data to:

— standardize

— eliminate irrelevant information

— capture invariances

— keep relevant information
If stuck in local min., restart with different random
weights

3123/16 64

Run Example BP Learning

3123/16 65

Beyond Back-Propagation

Adaptive Learning Rate
Adaptive Architecture

— Add/delete hidden neurons
— Add/delete hidden layers

Radial Basis Function Networks
Recurrent BP
Etc., etc., etc....

3123/16 66

3/23/16

11

Part 4A: Neural Network Learning

Deep Belief Networks

* Inspired by hierarchical representations in
mammalian sensory systems

e Use “deep” (multilayer) feed-forward nets

¢ Layers self-organize torepresentinput at
progressively more abstract, task-relevant levels

¢ Supervised training (e.g., BP) can be used to tune
network performance.

* Each layer is a Restricted Boltznann Machine

3123/16 67

3/23/16

Restricted Boltzmann Machine

¢ Goal: hidden units
become model of
input domain

¢ Should capture
statistics of input

Hidden units

Visible units

* Evaluate by testingits
ability toreproduce
input statistics

* Change weightsto
decrease difference
3n3/16 (fig. from wikipedia) s

Unsupervised RBM Learning

* Stochastic binary units * Set y;/ with probability
u

* After several cycles of
sampling,update

¢ Assume bias units
Xy =Y, =1

¢ Set y; with probability

i)
4 weights based on

* Set x;/ with probability statistics:
jo(zwify’_) AW, = 77(<yixj>‘<fo}>)

312316 69

Training a DBN Network

* Present inputs and do RBM learning with
first hidden layer to develop model

* When converged, do RBM learning
between first and second hidden layers to
develop higher-level model

* Continue until all weight layers trained
* May further train with BP or other
supervised learning algorithms

3123/16 70

What is the Power of
Artificial Neural Networks?

* With respect to Turing machines?

¢ As function approximators?

312316 71

Can ANNs Exceed the “Turing Limit”?

¢ There are many results, which depend sensitively on
assumptions; for example:

¢ Finite NNs with real-valued weights have super-Turing
power (Siegelmann & Sontag ‘94)

¢ Recurrent nets with Gaussian noise have sub-Turing power
(Maass & Sontag ‘99)

* Finite recurrent nets with real weights can recognize all
languages, and thus are super-Turing (Siegelmann ‘99)

¢ Stochastic nets with rational weights have super-Turing
power (but only P/POLY, BPP/log*) (Siegelmann ‘99)

¢ But computing classes of functions is mot a very relevant
way to evaluate the capabilities of neural conputation

312316 kel

12

Part 4 A:

Neural Network Learning

A Universal Approximation Theorem

Suppose fis a continuous function on [0,1]"
Suppose o is a nonconstant, bounded,
monotone increasing real function on .

For any & > 0, there is an m such that
JaceR", beER", WeE R such that if

m

I xn)=2ai0(2Wijxj+b,.]
Jj=1

[i.e., F(x)=a-o(Wx+ b)]
then |F(x) - f(x)| < for all x €[0,1]'

3123/16 73
(see, e.g., Haykin, N.Nets 2/e, 208-9)

3/23/16

One Hidden Layer is Sufficient

* Conclusion: One hidden layer is sufficient
to approximate any continuous function
arbitrarily closely

3123116 74

The Golden Rule of Neural Nets

Neural Networks are the
second-best way

to do everything!

323116 75

13

