Part 4 A:

Neural Network Learning

IV. Neural Networks and Learning
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A.
Artificial Neural Net Learning
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Supervised Learning

* Produce desired outputs for training inputs

* Generalize reasonably & appropriately to
other inputs

* Good example: pattern recognition

Feedforward multilayer networks
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Feedforward Network

input hidden
layer layers
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Typical Artificial Neuron

— connection
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1 weights
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inputs -<

threshold
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Typical Artificial Neuron

activation
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Equations

iwusj) -0
j=1

h=Ws-6

Net input: h, =

Neuron output: s, =o(h;)
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Single-Layer Perceptron
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Variables
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Single Layer Perceptron
Equations

Binary threshold activation function :

I ifh>0
h)= =
IS U] {0, ith<0

flge i ij‘vx >0
otherwise

, ifw-x>60
o, ifw-x=0

Hence, y = {

i (=)
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2D Weight Vector

Wy
W x =[x cos ¢

v
COS¢=M

w-x =|wly

w-x>60

< |wlv>6

SV B/HWH
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N-Dimensional Weight Vector
©

normal
w vector
separating
hyperplane
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Goal of Perceptron Learning

* Suppose we have training patterns x!, x2,
..., x* with corresponding desired outputs

g caa e
e where x? € {0, 1}, € {0, 1}
e We want to find w, 0 such that
W=0wx?-0)forp=1,...,P

3123/16 13

Treating Threshold as Weight
h= (2wjx/) -0
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Treating Threshold as Weight
Xo = h=(§wjxi)—0

n
h=w0x0+2wjxj =ijx/=W‘X
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Augmented Vectors

0 -1
= W ) xlp
w=| . Sl %

w xp
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Reformulation as Positive
Examples

We have positive (y” =1) and negative (y” =0) examples
Want w- X’ >0 for positive, W+ X” <0 for negative
Let z” =X” for positive, z” = -X” for negative

Wantw-z’ =0, forp=1,...,P

Hyperplane through origin with all z” on one side
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Adjustment of Weight Vector
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Neural Network Learning

Outline of
Perceptron Learning Algorithm

1. initialize weight vector randomly
2. until all patterns classified correctly, do:

a) forp=1,...,Pdo:
1) if z» classified comrectly, do nothing

2) else adjust weight vector to be closer to correct
classification
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Weight Adjustment
W,:Q,ZP o
T 5
z"

=

B

3123/16 20

Improvement in Performance
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Perceptron Learning Theorem

o If there is a set of weights that will solve the
problem,

e then the PLA will eventually find it

* (for a sufficiently small learning rate)

» Note: only applies if positive & negative
examples are linearly separable
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NetLogo Simulation of
Perceptron Learning

Run Perceptron-Geometry.nlogo
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Classification Power of
Multilayer Perceptrons

* Perceptrons can function as logic gates

e Therefore MLP can form intersections,
unions, differences of linearly-separable
regions

e Classes can be arbitrary hyperpolyhedra

* Minsky & Papert criticism of perceptrons

* No one succeeded in developing a MLP
learning algorithm
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Hyperpolyhedral Classes

N

T
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Credit Assignment Problem

How do we adjust the weights of the hidden layers?

Desired
output

— -/ \ J

input hidden output
layer layers layer
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NetLogo Demonstration of
Back-Propagation Learning

Run Artificial Neural Net.nlogo
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Adaptive System

Evaluation Function
System (Fitness, Figure of Merit

Control
Algorithm

Control Parameters
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Gradient

JF ; o
—— measures how F is altered by variation of P,
k
oF
Apu

oF
vE=| %o,

F
OF,,

VF points in direction of maximum local increase in F
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Gradient Ascent
on Fitness Surface
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Gradient Ascent
by Discrete Steps
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Gradient Ascent 1s Local
But Not Shortest

Gk
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Gradient Ascent Process
P =nVF(P)

Change in fitness :

. dE m JF dP, m .
F= E = Eka?p‘cdilk w Ek=1(VF)kP"
F=VF-P

F =VF -nVF =q|VF[ 20

Therefore gradient ascent increases fitness
(until reaches 0 gradient)
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General Ascent in Fitness
Note that any adaptive process P(¢) will increase
fitness provided:
0<F =VF P =|VF[[P|cose

where ¢ is angle between VF and P

Hence we need cosg >0

or |g| < 90
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General Ascent
on Fitness Surface
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Fitness as Minimum Error

Suppose for Q different inputs we have target outputs t',... t°
Suppose for parameters P the corresponding actual outputs
arey',...,y?

Suppose D(t,y) € [0,%) measures difference between

target & actual outputs

LetE? = D(t",y") be error on gth sample

[

g=1 q-1
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Gradient of Fitness

VF =V —EE"]=—EVE"
q q
JEE ‘4 aD(t’.y") oy
anaPkD(tq’yq):; ay’ P,
_dD(ty?) gy

dy? dP,
3! Ly’
-v,.Dltry)- 7
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Jacobian Matrix
T

Note J € R™" and VD(t",y") e R

Define Jacobian matrix J? =

_OE' oy aD(tyY)

Since (VE")A = =
SR Shab gy

>

~VE* = (1) vD(t".y")

3123116

Derivative of Squared Euclidean
Distance

Suppose D(t.y) =t -y = 3 (1,-».)’

312316

Gradient of Error on g'" Input

aE" _dD(t'y') oy’
oP, dy' P,

=2(yq _tq).%
k

Ay
P

VE =2(3*) (y* -t)
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Recap
P () (=)

To know how to decrease the differences between
actual & desired outputs,

g
we need to know elements of Jacobian, &y%) ¢
k

which says how jth output varies with kth parameter
(given the gth input)

The Jacobian depends on the specific form of the system,
in this case, a feedforward neural network
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Multilayer Notation

1
AY
/ >\
x4 W! | w2 < Wi-2| Wi-1|  ya
YN/
Y
he ’
sl S2 7’ SI—I SI
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Notation
e [ layers of neurons labeled 1, ..., L
* N,neurons in layer /
* s/ = vector of outputs from neurons in layer /
* input layer s' = x7 (the input pattern)
e output layer st = y4 (the actual output)
* W! = weights between layers /and [+1

* Problem: find out how outputs y;¢ vary with
weights W,/ (I =1, ..., L-1)
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Typical Neuron

Error Back-Propagation

q

We will compute 2D 7 starting with last layer (/=L -1)
i

and working back to earlier layers (/ = L -2,...,1)
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1
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Delta Values
Convenient to break derivatives by chain rule:
JE‘ OE' Oh|
W, h oW,
q
Let &/ = i
oh;
q !
So (7E1_] =6! z?hll_]
W, W,
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Output-Layer Neuron
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Output-Layer Derivatives (1)

L_aEq J (,f—l,?)z

T e e
d(st ) ¢
=(Sth ) =2(sf—tf’)j%
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ohf J EE 1) 15 L-1
e e A = W
7= Tzl datat e i
Wt w4

_ OE*
et L-1
W]

where &/ = 2(5,-L ‘tfq)ol(hfL)

L _L-1
=0d;s;
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Output-Layer Derivatives (2)

Hidden-Layer Derivatives (1)

GE! _ 5 h|

Wl'_/l'il ‘&WUH
JE“ OE? oh"! "

(5,/= A~ kN5 2
oh! Zﬁh{‘ on! 2 4

Jh!
a0 Wisn _awist _, do(hi)
4% 1 F —=Wu T
h! ! ! dh!

Recall

= Wk[io-,(hz’)

o= Sorwio'(!)=o'(n) 8w,

k

Hidden-Layer Neuron
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Hidden-Layer Derivatives (2)

-1 _I-1
ol a0 EWI-ISI—I_M_S’-‘
T -1 i R R TR
é’W’] aW,'j k dWU
OE‘
T cS,vlslj'l
ij

where §/ = cr’( hf)E o'W
k
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X
Derivative of Sigmoid
1 g .
Suppose s =0 (h) = m (logistic sigmoid)

D,s=D, [1 + exp(—ah)]_] = —[1 + exp(—oeh)]_Z D, (1 + e'“”)

W) = -ah
= —(1 it ) (—ae h) =a (1 je*"’?)z
—ah

o 1 e e 1+e"”’_ 1
e | o | "

=as(l-ys)
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Summary of Back-Propagation

Algorithm
Output layer: 8 = 2as” (1 -st )(sf - t,”’)
IE* .
i

Hidden layers: ¢, = as, (1 - )E oW
k

312316
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Output-Layer Computation

AW =38 st
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Hidden-Layer Computation

o] —eul(1-51) 20 W,
&
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Training Procedures

¢ Batch Learning
— on each epoch (passthrough all the training pairs),
— weight changes for all pattems accumulated
— weight matrices updated at end of epoch
— accurate computation of gradient
¢ Online Learning
— weight are updated after back-prop of each training pair
— usually randomize order for each epoch
— approximation of gradient
¢ Doesn’t make much difference
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Summation of Error Surfaces
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Gradient Computation
in Batch Learning

B

312316 59

Gradient Computation
in Online Learning

E
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Testing Generalization

Training

Data
——

Test
Data

3123/16 61

Problem of Rote Learning

error

error on
test data

error on
training
data

=

epoch

stop training here

3123/16 62

Improving Generalization

Training
Data
——

[Validation Dat
——

>,
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A Few Random Tips

Too few neurons and the ANN may not beable to
decrease the error enough
Too many neurons can lead to rote learning
Preprocess data to:

— standardize

— eliminate irrelevant information

— capture invariances

— keep relevant information
If stuck in local min., restart with different random
weights
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Run Example BP Learning
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Beyond Back-Propagation

Adaptive Learning Rate
Adaptive Architecture

— Add/delete hidden neurons
— Add/delete hidden layers

Radial Basis Function Networks
Recurrent BP
Etc., etc., etc....

3123/16 66
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Deep Belief Networks

* Inspired by hierarchical representations in
mammalian sensory systems

e Use “deep” (multilayer) feed-forward nets

¢ Layers self-organize torepresentinput at
progressively more abstract, task-relevant levels

¢ Supervised training (e.g., BP) can be used to tune
network performance.

* Each layer is a Restricted Boltznann Machine

3123/16 67
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Restricted Boltzmann Machine

¢ Goal: hidden units
become model of
input domain

¢ Should capture
statistics of input

Hidden units

Visible units

* Evaluate by testingits
ability toreproduce
input statistics

* Change weightsto
decrease difference
3n3/16 (fig. from wikipedia) s

Unsupervised RBM Learning

* Stochastic binary units * Set y;/ with probability
u

* After several cycles of
sampling,update

¢ Assume bias units
Xy =Y, =1

¢ Set y; with probability

i)
4 weights based on

* Set x;/ with probability statistics:
jo(zwify’_) AW, = 77(<yixj>‘<fo}>)
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Training a DBN Network

* Present inputs and do RBM learning with
first hidden layer to develop model

* When converged, do RBM learning
between first and second hidden layers to
develop higher-level model

* Continue until all weight layers trained
* May further train with BP or other
supervised learning algorithms
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What is the Power of
Artificial Neural Networks?

* With respect to Turing machines?

¢ As function approximators?
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Can ANNs Exceed the “Turing Limit”?

¢ There are many results, which depend sensitively on
assumptions; for example:

¢ Finite NNs with real-valued weights have super-Turing
power (Siegelmann & Sontag ‘94)

¢ Recurrent nets with Gaussian noise have sub-Turing power
(Maass & Sontag ‘99)

* Finite recurrent nets with real weights can recognize all
languages, and thus are super-Turing (Siegelmann ‘99)

¢ Stochastic nets with rational weights have super-Turing
power (but only P/POLY, BPP/log*) (Siegelmann ‘99)

¢ But computing classes of functions is mot a very relevant
way to evaluate the capabilities of neural conputation

312316 kel
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A Universal Approximation Theorem

Suppose fis a continuous function on [0,1]"
Suppose o is a nonconstant, bounded,
monotone increasing real function on .

For any & > 0, there is an m such that
JaceR", beER", WeE R such that if

m

I xn)=2ai0(2Wijxj+b,.]
Jj=1

[i.e., F(x)=a-o(Wx+ b)]
then |F(x) - f(x)| < for all x €[0,1]'

3123/16 73
(see, e.g., Haykin, N.Nets 2/e, 208-9)
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One Hidden Layer is Sufficient

* Conclusion: One hidden layer is sufficient
to approximate any continuous function
arbitrarily closely

3123116 74

The Golden Rule of Neural Nets

Neural Networks are the
second-best way

to do everything!
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