
Part 5A: Genetic Algorithms 4/10/16

1

4/10/16 1

V. Evolutionary Computing

A. Genetic Algorithms

Read Flake, ch. 20

4/10/16 2

4/10/16 3

Genetic Algorithms

• Developed by John Holland in ‘60s
• Did not become popular until late ‘80s
• A simplified model of genetics and

evolution by natural selection
• Most widely applied to optimization

problems (maximize “fitness”)

Part 5A: Genetic Algorithms 4/10/16

2

4/10/16 4

Assumptions
• Existence of fitness function to quantify

merit of potential solutions
– This “fitness” is what the GA will maximize

• A mapping from bit-strings to potential
solutions
– best if each possible string generates a legal

potential solution
– choice of mapping is important
– can use strings over other finite alphabets

4/10/16 5

Outline of Simplified GA
1. Random initial population P(0)
2. Repeat for t = 0, …, tmax or until

converges:
a) create empty population P(t + 1)
b) repeat until P(t + 1) is full:

1) select two individuals from P(t) based on fitness
2) optionally mate & replace with offspring
3) optionally mutate offspring
4) add two individuals to P(t + 1)

4/10/16 6

Fitness-Biased Selection
• Want the more “fit” to be more likely to

reproduce
– always selecting the best
⇒ premature convergence

– probabilistic selection ⇒ better exploration
• Roulette-wheel selection: probability ∝

relative fitness:

€

Pr i mates{ } =
f i
f jj=1

n
∑

Part 5A: Genetic Algorithms 4/10/16

3

4/10/16 7

Crossover: Biological Inspiration
• Occurs during

meiosis, when haploid
gametes are formed

• Randomly mixes
genes from two
parents

• Creates genetic
variation in gametes

(fig. from B&N Thes . Biol.)

4/10/16 8

GAs: One-point Crossover

parents offspring

4/10/16 9

GAs: Two-point Crossover

parents offspring

Part 5A: Genetic Algorithms 4/10/16

4

4/10/16 10

GAs: N-point Crossover

parents offspring

4/10/16 11

Mutation: Biological Inspiration
• Chromosome mutation Þ

• Gene mutation: alteration
of the DNA in a gene
– inspiration for mutation in

GAs

• In typical GA each bit has
a low probability of
changing

• Some GAs models
rearrange bits

(fig. from B&N Thes . Biol.)

4/10/16 12

The Red Queen Hypothesis
• Observation: a species

probability of extinc-
tion is independent of
time it has existed

• Hypothesis: species
continually adapt to
each other

• Extinction occurs with
insufficient variability
for further adaptation

“Now, here, you see, it takes
all the running you can do,
to keep in the same place.”
— Through the Looking-Glass
and What Alice Found There

Part 5A: Genetic Algorithms 4/10/16

5

4/10/16 13

Demonstration of GA:
Finding Maximum of

Fitness Landscape
Run Genetic Algorithms — An Intuitive

Introduction
by Pascal Glauser

<www.glauserweb.ch/gentore.htm>

4/10/16 14

Demonstration of GA:
Evolving to Generate
a Pre-specified Shape

(Phenotype)

Run Genetic Algorithm Viewer
<www.rennard.org/alife/english/gavgb.html>

4/10/16 15

Demonstration of GA:
Eaters Seeking Food

http://math.hws.edu/xJava/GA/

Part 5A: Genetic Algorithms 4/10/16

6

Morphology Project
by Michael “Flux” Chang

• Senior Independent Study project at UCLA
– users.design.ucla.edu/~mflux/morphology

• Researched and programmed in 10 weeks
• Programmed in Processing language

– www.processing.org

4/10/16 16

Genotype ⇒ Phenotype
• Cells are “grown,” not specified individually
• Each gene specifies information such as:

– angle
– distance
– type of cell
– how many times to replicate
– following gene

• Cells connected by “springs”
• Run phenome:

<users.design.ucla.edu/~mflux/morphology/gallery/sketches/phenome>

4/10/16 17

Complete Creature
• Neural nets for control (blue)

– integrate-and-fire neurons

• Muscles (red)
– Decrease “spring length” when fire

• Sensors (green)
– fire when exposed to “light”

• Structural elements (grey)
– anchor other cells together

• Creature embedded in a fluid
• Run <users.design.ucla.edu/~mflux/morphology/gallery/sketches/creature>

4/10/16 18

Part 5A: Genetic Algorithms 4/10/16

7

Effects of Mutation

• Neural nets for control (blue)
• Muscles (red)
• Sensors (green)
• Structural elements (grey)
• Creature embedded in a fluid
• Run

<users.design.ucla.edu/~mflux/morphology/gallery/sketches/creaturepack>

4/10/16 19

Evolution
• Population: 150–200
• Nonviable & nonre-
sponsive creatures
eliminated
• Fitness based on speed
or light-following
• 30% of new pop. are
mutated copies of best
• 70% are random
• No crossover

4/10/16 20

Gallery of Evolved Creatures

• Selected for speed of movement
• Run

<users.design.ucla.edu/~mflux/morphology/gallery/sketches/creaturegallery>

4/10/16 21

Part 5A: Genetic Algorithms 4/10/16

8

Karl Sims’ Evolved Creatures

4/10/16 22

4/10/16 23

Why Does the GA Work?

The Schema Theorem

4/10/16 24

Schemata
A schema is a description of certain patterns

of bits in a genetic string

1 1 * 0 * * 1 1 0 0 1 01 1 1 0 1 0

1 1 0 0 0 1

1 1 0 0 0 0

. .
.

. .
.

a schema
describes

many strings

* * 0 * 1 *

* * * * * 0

1 1 0 * 1 0

1 1 0 0 1 0

a string
belongs to

many schemata

Part 5A: Genetic Algorithms 4/10/16

9

4/10/16 25

The Fitness of Schemata
• The schemata are the building blocks of

solutions
• We would like to know the average fitness

of all possible strings belonging to a schema
• We cannot, but the strings in a population

that belong to a schema give an estimate of
the fitness of that schema

• Each string in a population is giving
information about all the schemata to which
it belongs (implicit parallelism)

4/10/16 26

Effect of Selection

€

Let n = size of population

€

Let m S,t() = number of instances of schema S at time t

€

String i gets picked with probability f i
f jj∑

€

Let f S() = avg fitness of instances of S at time t

€

So expected m S,t +1() = m S,t() ⋅ n ⋅
f S()

f jj∑

€

Since fav =
f jj∑

n
, m S,t +1() = m S,t()

f S()
fav

4/10/16 27

Exponential Growth

• We have discovered:
m(S, t+1) = m(S, t) · f(S) / fav

• Suppose f(S) = fav (1 + c)
• Then m(S, t) = m(S, 0) (1 + c)t

• That is, exponential growth in above-
average schemata

Part 5A: Genetic Algorithms 4/10/16

10

4/10/16 28

Effect of Crossover
• Let λ = length of genetic strings
• Let δ(S) = defining length of schema S
• Probability {crossover destroys S}:

pd ≤ δ(S) / (λ – 1)
• Let pc = probability of crossover
• Probability schema survives:

€

ps ≥ 1− pc
δ S()
λ−1

1 … 0*
|⟵δ⟶|

4/10/16 29

Selection & Crossover Together

€

m S,t +1() ≥ m S,t()
f S()
fav

1− pc
δ S()
λ −1

&

'
(

)

*
+

4/10/16 30

Effect of Mutation
• Let pm = probability of mutation
• So 1 – pm = probability an allele survives
• Let o(S) = number of fixed positions in S

• The probability they all survive is
(1 – pm)o(S)

• If pm << 1, (1 – pm)o(S) ≈ 1 – o(S) pm

Part 5A: Genetic Algorithms 4/10/16

11

4/10/16 31

Schema Theorem:
“Fundamental Theorem of GAs”

€

m S,t +1() ≥ m S,t()
f S()
fav

1− pc
δ S()
λ −1

− o S()pm
&

'
(

)

*
+

4/10/16 32

The Bandit Problem
• Two-armed bandit:

– random payoffs with (unknown) means m1, m2
and variances σ12, σ22

– optimal strategy: allocate exponentially greater
number of trials to apparently better lever

• k-armed bandit: similar analysis applies
• Analogous to allocation of population to

schemata
• Suggests GA may allocate trials optimally

4/10/16 33

Goldberg’s Analysis of
Competent & Efficient GAs

Part 5A: Genetic Algorithms 4/10/16

12

4/10/16 34

Paradox of GAs

• Individually uninteresting operators:
– selection, recombination, mutation

• Selection + mutation ⇒ continual
improvement

• Selection + recombination ⇒ innovation
– fundamental to invention:

generation vs. evaluation
• Fundamental intuition of GAs: the three

work well together

4/10/16 35

Race Between Selection &
Innovation: Takeover Time

• Takeover time t* = average time for most fit
to take over population

• Transaction selection: population replaced
by s copies of top 1/s

• s quantifies selective pressure
• Estimate t* ≈ ln n / ln s

4/10/16 36

Innovation Time
• Innovation time ti = average time to get a

better individual through crossover &
mutation

• Let pi = probability a single crossover
produces a better individual

• Number of individuals undergoing
crossover = pc n

• Number of probable improvements = pi pc n
• Estimate: ti ≈ 1 / (pc pi n)

Part 5A: Genetic Algorithms 4/10/16

13

4/10/16 37

Steady State Innovation
• Bad: t* < ti

– because once you have takeover, crossover
does no good

• Good: ti < t*

– because each time a better individual is
produced, the t* clock resets

– steady state innovation
• Innovation number:

€

Iv =
t*

ti
= pcpi

n lnn
ln s

>1

4/10/16 38

Feasible Region

ln s

pc

selection pressure

cr
os

so
ve

r
pr

ob
ab

ili
ty

mixing boundary

schema theorem boundary

dr
ift

 b
ou

nd
ar

y

cr
os

s-c
om

pe
tit

io
n

bo
un

da
ry

successful
genetic algorithm

4/10/16 39

Other Algorithms Inspired by
Genetics and Evolution

• Evolutionary Programming
– natural representation, no crossover, time-varying

continuous mutation
• Evolutionary Strategies

– similar, but with a kind of recombination
• Genetic Programming

– like GA, but program trees instead of strings
• Classifier Systems

– GA + rules + bids/payments
• and many variants & combinations…

Part 5A: Genetic Algorithms 4/10/16

14

4/10/16 40

Additional Bibliography

1. Goldberg, D.E. The Design of Innovation:
Lessons from and for Competent Genetic
Algorithms. Kluwer, 2002.

2. Milner, R. The Encyclopedia of
Evolution. Facts on File, 1990.

VB

