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V. Evolutionary Computing

A. Genetic Algorithms

Read Flake, ch. 20
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Genetic Algorithms

• Developed by John Holland in ‘60s
• Did not become popular until late ‘80s
• A simplified model of genetics and 

evolution by natural selection
• Most widely applied to optimization 

problems (maximize “fitness”)
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Assumptions
• Existence of fitness function to quantify 

merit of potential solutions
– This “fitness” is what the GA will maximize

• A mapping from bit-strings to potential 
solutions
– best if each possible string generates a legal 

potential solution
– choice of mapping is important
– can use strings over other finite alphabets
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Outline of Simplified GA
1. Random initial population P(0)
2. Repeat for t = 0, …, tmax or until 

converges:
a) create empty population P(t + 1)
b) repeat until P(t + 1) is full:

1) select two individuals from P(t) based on fitness
2) optionally mate & replace with offspring
3) optionally mutate offspring
4) add two individuals to P(t + 1)
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Fitness-Biased Selection
• Want the more “fit” to be more likely to 

reproduce
– always selecting the best 
⇒ premature convergence

– probabilistic selection ⇒ better exploration
• Roulette-wheel selection: probability ∝

relative fitness:

€ 

Pr i mates{ } =
f i
f jj=1

n
∑
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Crossover: Biological Inspiration
• Occurs during 

meiosis, when haploid 
gametes are formed

• Randomly mixes 
genes from two 
parents

• Creates genetic 
variation in gametes

(fig. from B&N Thes . Biol.)
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GAs: One-point Crossover

parents offspring
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GAs: Two-point Crossover

parents offspring
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GAs: N-point Crossover

parents offspring

4/10/16 11

Mutation: Biological Inspiration
• Chromosome mutation Þ

• Gene mutation: alteration 
of the DNA in a gene
– inspiration for mutation in 

GAs

• In typical GA each bit has 
a low probability of 
changing

• Some GAs models 
rearrange bits

(fig. from B&N Thes . Biol.)
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The Red Queen Hypothesis
• Observation: a species 

probability of extinc-
tion is independent of 
time it has existed

• Hypothesis: species 
continually adapt to 
each other

• Extinction occurs with 
insufficient variability 
for further adaptation

“Now, here, you see, it takes 
all the running you can do, 
to keep in the same place.”
— Through the Looking-Glass
and What Alice Found There
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Demonstration of GA:
Finding Maximum of

Fitness Landscape
Run Genetic Algorithms — An Intuitive 

Introduction
by Pascal Glauser

<www.glauserweb.ch/gentore.htm>
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Demonstration of GA:
Evolving to Generate
a Pre-specified Shape

(Phenotype)

Run Genetic Algorithm Viewer
<www.rennard.org/alife/english/gavgb.html>
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Demonstration of GA:
Eaters Seeking Food

http://math.hws.edu/xJava/GA/
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Morphology Project
by Michael “Flux” Chang

• Senior Independent Study project at UCLA
– users.design.ucla.edu/~mflux/morphology

• Researched and programmed in 10 weeks
• Programmed in Processing language

– www.processing.org
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Genotype ⇒ Phenotype
• Cells are “grown,” not specified individually
• Each gene specifies information such as:

– angle
– distance
– type of cell
– how many times to replicate
– following gene

• Cells connected by “springs”
• Run phenome: 

<users.design.ucla.edu/~mflux/morphology/gallery/sketches/phenome>
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Complete Creature
• Neural nets for control (blue)

– integrate-and-fire neurons

• Muscles (red)
– Decrease “spring length” when fire

• Sensors (green)
– fire when exposed to “light”

• Structural elements (grey)
– anchor other cells together

• Creature embedded in a fluid
• Run <users.design.ucla.edu/~mflux/morphology/gallery/sketches/creature>
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Effects of Mutation

• Neural nets for control (blue)
• Muscles (red)
• Sensors (green)
• Structural elements (grey)
• Creature embedded in a fluid
• Run 

<users.design.ucla.edu/~mflux/morphology/gallery/sketches/creaturepack>

4/10/16 19

Evolution
• Population: 150–200
• Nonviable & nonre-
sponsive creatures 
eliminated
• Fitness based on speed 
or light-following
• 30% of new pop. are 
mutated copies of best
• 70% are random
• No crossover
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Gallery of Evolved Creatures

• Selected for speed of movement
• Run

<users.design.ucla.edu/~mflux/morphology/gallery/sketches/creaturegallery>
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Karl Sims’ Evolved Creatures
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Why Does the GA Work?

The Schema Theorem
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Schemata
A schema is a description of certain patterns 

of bits in a genetic string

1 1 * 0 * * 1 1 0 0 1 01 1 1 0 1 0

1 1 0 0 0 1

1 1 0 0 0 0

. . 
.

. . 
.

a schema
describes

many strings

* * 0 * 1 *

* * * * * 0

1 1 0 * 1 0

1 1 0 0 1 0

a string
belongs to

many schemata
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The Fitness of Schemata
• The schemata are the building blocks of 

solutions
• We would like to know the average fitness 

of all possible strings belonging to a schema
• We cannot, but the strings in a population 

that belong to a schema give an estimate of 
the fitness of that schema

• Each string in a population is giving 
information about all the schemata to which 
it belongs (implicit parallelism)
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Effect of Selection

€ 

Let n = size of population

€ 

Let m S,t( ) = number of instances of schema S at time t

€ 

String i gets picked with probability f i
f jj∑

€ 

Let f S( ) = avg fitness of instances of S at time t

€ 

So expected m S,t +1( ) = m S,t( ) ⋅ n ⋅
f S( )

f jj∑

€ 

Since fav =
f jj∑

n
,   m S,t +1( ) = m S,t( )

f S( )
fav
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Exponential Growth

• We have discovered:
m(S, t+1) = m(S, t) · f(S) / fav

• Suppose f(S) = fav (1 + c)
• Then m(S, t) = m(S, 0) (1 + c)t

• That is, exponential growth in above-
average schemata
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Effect of Crossover
• Let λ = length of genetic strings
• Let δ(S) = defining length of schema S
• Probability {crossover destroys S}:

pd ≤ δ(S) / (λ – 1)
• Let pc = probability of crossover
• Probability schema survives:

€ 

ps ≥ 1− pc
δ S( )
λ−1

**1  …  0***
|⟵δ⟶|
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Selection & Crossover Together

€ 

m S,t +1( ) ≥ m S,t( )
f S( )
fav

1− pc
δ S( )
λ −1

& 

' 
( 

) 

* 
+ 
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Effect of Mutation
• Let pm = probability of mutation
• So 1 – pm = probability an allele survives
• Let o(S) = number of fixed positions in S

• The probability they all survive is
(1 – pm)o(S)

• If pm << 1, (1 – pm)o(S) ≈ 1 – o(S) pm
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Schema Theorem:
“Fundamental Theorem of GAs”

€ 

m S,t +1( ) ≥ m S,t( )
f S( )
fav

1− pc
δ S( )
λ −1

− o S( )pm
& 

' 
( 

) 

* 
+ 
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The Bandit Problem
• Two-armed bandit:

– random payoffs with (unknown) means m1, m2
and variances σ12, σ22

– optimal strategy: allocate exponentially greater 
number of trials to apparently better lever

• k-armed bandit: similar analysis applies
• Analogous to allocation of population to 

schemata
• Suggests GA may allocate trials optimally
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Goldberg’s Analysis of 
Competent & Efficient GAs
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Paradox of GAs

• Individually uninteresting operators:
– selection, recombination, mutation

• Selection + mutation ⇒ continual 
improvement

• Selection + recombination ⇒ innovation
– fundamental to invention: 

generation vs. evaluation
• Fundamental intuition of GAs: the three 

work well together
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Race Between Selection & 
Innovation: Takeover Time

• Takeover time t* = average time for most fit 
to take over population

• Transaction selection: population replaced 
by s copies of top 1/s

• s quantifies selective pressure
• Estimate t* ≈ ln n / ln s
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Innovation Time
• Innovation time ti = average time to get a 

better individual through crossover & 
mutation

• Let pi = probability a single crossover 
produces a better individual

• Number of individuals undergoing 
crossover = pc n

• Number of probable improvements = pi pc n
• Estimate: ti ≈ 1 / (pc pi n)
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Steady State Innovation
• Bad: t* < ti

– because once you have takeover, crossover 
does no good

• Good: ti < t*

– because each time a better individual is 
produced, the t* clock resets

– steady state innovation
• Innovation number:

€ 

Iv =
t*

ti
= pcpi

n lnn
ln s

>1
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Feasible Region

ln s

pc

selection pressure

cr
os

so
ve

r 
pr

ob
ab

ili
ty

mixing boundary

schema theorem boundary

dr
ift

 b
ou

nd
ar

y

cr
os

s-c
om

pe
tit

io
n

bo
un

da
ry

successful
genetic algorithm
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Other Algorithms Inspired by 
Genetics and Evolution

• Evolutionary Programming
– natural representation, no crossover, time-varying 

continuous mutation
• Evolutionary Strategies

– similar, but with a kind of recombination
• Genetic Programming

– like GA, but program trees instead of strings
• Classifier Systems

– GA + rules + bids/payments
• and many variants & combinations…
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