
2/5/20 1

B.
Pattern Formation
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Differentiation
& Pattern Formation

• A central problem in 
development: How do cells 
differentiate to fulfill 
different purposes?

• How do complex systems 
generate spatial & temporal 
structure?

• CAs are natural models of 
intercellular communication

photos ©2000, S. Cazamine



Plecostomus
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Vermiculated Rabbit Fish

figs. from Camazine & al.: Self-Org. Biol. Sys.
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Zebra

figs. from Camazine & al.: Self-Org. Biol. Sys.
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Activation & Inhibition
in Pattern Formation

• Color patterns typically have a charac-
teristic length scale

• Independent of cell size and animal size
• Achieved by:

– short-range activation ⇒ local uniformity
– long-range inhibition ⇒ separation
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Interaction Parameters

• R1 and R2 are the interaction ranges
• J1 and J2 are the interaction strengths
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CA Activation/Inhibition Model

• Let states si ∈ {–1, +1}
• and h be a bias parameter
• and rij be the distance between cells i and j
• Then the state update rule is:
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Demonstration of NetLogo 
Program for Activation/Inhibition 

Pattern Formation

Run AICA.nlogo

../NetLogo%20Simulations/AICA.nlogo
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Example
(R1 = 1, R2 = 6, J1 = 1, J2 = –0.1, h = 0)

figs. from Bar-Yam
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Effect of Bias
(h = –6, –3, –1; 1, 3, 6)

figs. from Bar-Yam
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Effect of Interaction Ranges

R2 = 6
R1 = 1
h = 0

R2 = 6
R1 = 1.5

h = 0

R2 = 8
R1 = 1
h = 0

R2 = 6
R1 = 1.5
h = –3

figs. from Bar-Yam
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Differential Interaction Ranges
• How can a system using strictly local 

interactions discriminate between states at 
long and short range?

• E.g. cells in developing organism
• Can use two different morphogens diffusing 

at two different rates
– activator diffuses slowly (short range)
– inhibitor diffuses rapidly (long range)
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Digression on Diffusion
• Simple 2-D diffusion equation:

• Recall the 2-D Laplacian:

• The Laplacian (like 2nd derivative) is:
– positive in a local minimum
– negative in a local maximum
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∇2A x,y( ) =
∂ 2A x,y( )
∂x 2

+
∂ 2A x,y( )
∂y 2

A x, y( ) = D∇2A x, y( )
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Reaction-Diffusion System
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General Reaction-Diffusion System
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∂ci
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  where ji =

µici −div Dici  (flux)

where kα =  rate constant for reaction α
and ν iα =  stoichiometric coefficient

and mkα =  a non-negative integer
and µi =  drift vector
and Di =  diffusivity matrix

where div Dc = e j Djk
∂c
∂xkk

∑
j
∑

grad



Framework for Complexity

• change = source terms + transport terms
• source terms = local coupling

= interactions local to a small region
• transport terms = spatial coupling

= interactions with contiguous regions
= advection + diffusion
– advection: non-dissipative, time-reversible
– diffusion: dissipative, irreversible 
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NetLogo Simulation of
Reaction-Diffusion System

1. Diffuse activator in X and Y directions
2. Diffuse inhibitor in X and Y directions
3. Each patch performs:

stimulation = bias + activator – inhibitor + noise
if stimulation > 0 then

set activator and inhibitor to 100
else

set activator and inhibitor to 0
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Demonstration of NetLogo 
Program for Activator/Inhibitor 

Pattern Formation

Run Pattern.nlogo

../NetLogo%20Simulations/Pattern.nlogo


Stripes in two closely related species

Hiroto Shoji, Atsushi Mochizuki, Yoh Iwasa, Masashi Hirata, Tsuyoshi Watanabe, Syozo Hioki, and Shigeru Kondo. 
“Origin of Directionality in the Fish Stripe Pattern.” Developmental Dynamics, Volume: 226, Issue: 4, Pages: 627–633, 
First published: 28 February 2003, DOI: (10.1002/dvdy.10277) 

Genicanthus melanospilos Genicanthus watanabei



Scales and directionality
in fish stripe pattern

Developmental Dynamics, Volume: 226, Issue: 4, Pages: 627-633, First published: 28 February 2003, DOI: (10.1002/dvdy.10277) 



Developmental Dynamics, Volume: 226, Issue: 4, Pages: 627-633, First published: 28 February 2003, DOI: (10.1002/dvdy.10277) 

Schematic structure of fish skin



Patterns obtained by computer 
simulations

• a–d: Pattern formation under a periodic 
boundary condition. 

• e–h: Pattern formation under a 
boundary condition fixed at zero at the 
top and bottom and periodic along the 
sides. 

• i–l: Pattern formation from a model that 
assumes a spatial gradient of parameter 
B. The value of B changes linearly, 
taking a maximum value of 1.8 at the 
top and a minimum value of 1.5 at the 
bottom of the space. 

• m–x: Pattern formation from a model of 
anisotropic diffusion (model 2).
The magnitude of anisotropy of these two 
substances are (m–p) δu = δv = 0.5; (q–t) δu 
= 0.5, δv = 0; (u–x) δu = 0, δv = 0.5. 
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Summary of the direction of stripe patterns 
obtained by the anisotropic diffusion 

Developmental Dynamics, Volume: 226, Issue: 4, Pages: 627-633, First published: 28 February 2003, DOI: (10.1002/dvdy.10277) 



Some Conclusions
• Results do not depend on form of reaction or form 

of anisotropy
• Resulting stripes tend to run parallel to 

most-diffusive direction of activator, and 
perpendicular to that of inhibitor

• The substance with greater anisotropy decides the 
direction of resulting stripes

• A pattern with no directional stripes only occurs 
when the values of anisotropy are almost identical
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Continuous-time Activator-Inhibitor System

• Activator A and inhibitor I may diffuse at different 
rates in x and y directions

• Cell becomes more active if activator + bias 
exceeds inhibitor

• Otherwise, less active
• A and I are limited to [0, 100] 

(depletion/saturation)
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Demonstration of NetLogo 
Program for Activator/Inhibitor 

Pattern Formation
with Continuous State Change

Run Activator-Inhibitor.nlogo

../NetLogo%20Simulations/Activator-Inhibitor.nlogo


Turing Patterns

• Alan Turing studied the mathematics of 
reaction-diffusion systems

• Turing, A. (1952). The chemical basis of 
morphogenesis. Philosophical Transactions 
of the Royal Society B 237: 37–72.

• The resulting patterns are known as Turing 
patterns
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Some of Turing’s Results
• Homogeneous steady state defined by 
!" #$, &$ = 0 = !) #$, &$

• Steady state is stable with respect to very long 
wavelength fluctuations

• Steady state is unstable with respect to shorter 
wavelength fluctuations

• These conditions place constraints on reaction 
parameters, defining “Turing space”

• Relative position of steady state to limits is 
important
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Observations

• With local activation and lateral inhibition
• And with a random initial state
• You can expect to get Turing patterns
• These are stationary states (dynamic 

equilibria)
• Macroscopically, Class I behavior

– Microscopically, may be class III

2/5/20 30



2/5/20 31

A Key Element of
Self-Organization

• Activation vs. Inhibition

• Cooperation vs. Competition

• Amplification vs. Stabilization

• Growth vs. Limit

• Positive Feedback vs. Negative Feedback
– Positive feedback creates

– Negative feedback shapes
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Reaction-Diffusion Computing

• Has been used for image processing
– diffusion ⇒ noise filtering
– reaction ⇒ contrast enhancement

• Depending on parameters, RD computing 
can:
– restore broken contours
– detect edges
– improve contrast
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Image Processing in BZ Medium

• (A) boundary detection, (B) contour enhancement, 
(C) shape enhancement, (D) feature enhancement

Image < Adamatzky, Comp. in Nonlinear Media & Autom. Coll.
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Voronoi Diagrams

• Given a set of generating 
points:

• Construct a polygon 
around each generating 
point of set, so all points 
in a polygon are closer to 
its generating point than to 
any other generating 
points.

Image < Adamatzky & al., Reaction-Diffusion Computers
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Some Uses of Voronoi Diagrams

• Collision-free path planning
• Determination of service areas for power 

substations
• Nearest-neighbor pattern classification
• Determination of largest empty figure
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Computation of Voronoi Diagram 
by Reaction-Diffusion Processor

Image < Adamatzky & al., Reaction-Diffusion Computers



2/5/20 37

Mixed Cell Voronoi Diagram

Image < Adamatzky & al., Reaction-Diffusion Computers
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Path Planning via BZ medium:
No Obstacles

Image < Adamatzky & al., Reaction-Diffusion Computers
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Path Planning via BZ medium:
Circular Obstacles

Image < Adamatzky & al., Reaction-Diffusion Computers
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Mobile Robot with Onboard 
Chemical Reactor

Image < Adamatzky & al., Reaction-Diffusion Computers
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Actual Path: Pd Processor

Image < Adamatzky & al., Reaction-Diffusion Computers
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Actual Path: Pd Processor

Image < Adamatzky & al., Reaction-Diffusion Computers
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Actual Path: BZ Processor

Image < Adamatzky & al., Reaction-Diffusion Computers
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Bibliography for
Reaction-Diffusion Computing

1. Adamatzky, Adam. Computing in Nonlinear 
Media and Automata Collectives. Bristol: Inst. 
of Physics Publ., 2001.

2. Adamatzky, Adam, De Lacy Costello, Ben, & 
Asai, Tetsuya. Reaction Diffusion Computers. 
Amsterdam: Elsevier, 2005.



Project 2 is assigned!

Due Feb. 21
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